Теория поля кратко физика

Обновлено: 05.07.2024

Содержание

Основные положения

После построения в конце XIX века электродинамики, объединившей на основе уравнений Максвелла в единой теоретической схеме явления электричества, магнетизма и оптики, в физике возникла идея объяснения на основе электромагнетизма всех известных физических явлений. Однако создание общей теории относительности привело физиков к мысли, что для описания на единой основе всех явлений необходимо объединение теорий электромагнетизма и гравитации.

Теория всего Энтони Гэррета Лизи

Концепции квантовой физики появились в начале ХХ века. Именно она заставила нас по-другому посмотреть на мир частиц, заполняющих собой всё и вся.

Учёные выяснили, что элементарных частиц существует огромное множество, а также подтвердилась гипотеза Эйнштейна о том, что энергия переходит в материю, а материя – в энергию, то есть при столкновении элементарных частиц могут рождаться новые частицы. Понятие точечной частицы заменило другое понятие – понятие квантового поля , из которого соткано всё пространство-время, и кванты этого поля – это и есть элементарные частицы.

Например, у нас есть одна колеблющаяся частица. Если рассматривать её в отдельности, то можно изучить её кинетическую и потенциальную энергию. Если мы возьмём поле, занимающее всю Вселенную, то в каждой точке будут находиться такие колеблющиеся частицы. Они могут быть связанными друг с другом (то есть колебания одной частицы будут влиять на другую) – тогда это будет выглядеть как движущаяся волна, так как одна частица будет влиять на вторую, вторая – на третью и так далее. Трудность заключается в том, что если частица, подобно маятнику, будет колебаться вдоль одной оси, то у неё будет только одна степень свободы. А если она будет колебаться вдоль разных осей (например, вдоль оси Х, У и Z ), то у неё будет уже 3 степени свободы. Получается, что поле, как система таких движущихся частиц, имеет бесконечное число степеней свободы, так как в поле, заполняющем собой всю Вселенную, этих частиц огромное количество. Описать математически это очень сложно – это первая трудность квантовой механики.

Вторая трудность заключается в том, что, если в классической механике число частиц было постоянным, то, согласно квантовой механике, одна частица может породить ещё одну. Дело в том, что классическая физика не рассматривала большой энергетический интервал. А вот при движении частиц на очень высоких скоростях они уже будут обладать и высокими энергиями – об этом нам говорит знаменитое уравнение Альберта Эйнштейна:

Соответственно, если на высокой скорости одна частица сталкивается с другой, то может родиться и третья. Число частиц постоянно меняется – они могут не только рождаться, но и уничтожаться. Как же описать такую сложную систему?

Квантовое поле, которым пронизана вся Вселенная, легко можно сравнить с водой. Например, вы сидите на берегу озера, поверхность которого абсолютно безмятежна, её ничто не тревожит – это поле. Бросьте в воду камень, и пойдёт волна – вы увидите её гребень в форме горки, родившийся в результате взаимодействия с камнем, - это частица. Главная идея квантовой теории поля – это то, что частицы являются элементарными возмущениями полей. Таким образом, наша реальность – это поле, а мы состоим из элементарного возмущения полей. Будучи рожденными этими самыми полями, их кванты содержат в себе все свойства своих прародителей. Такова роль частиц в мире, в котором одновременно существует множество океанов, именуемых полями.

Отсюда вытекает и принцип корпускулярно-волнового дуализма: частицы могут вести себя как волны, а волны – как частицы. Согласно квантовой теории поля, вся Вселенная заполнена не одним, а различными полями из-за того, что частицы могут иметь бесконечное число степеней свободы: это электрические поля, магнитные, гравитационные и другие. При этом, частице соответствует возмущение на этих разных полях.

Например, положительное возмущение электрического поля и гравитационного будут соответствовать протону, так как у него положительный заряд. Если идёт возмущение только гравитационного поля, то виновник этому – нейтрон, так как он нейтрален и имеет массу. Если идёт возмущение электрического и магнитного полей, а гравитационное при этом остаётся спокойным, то мы уже будем иметь дело с фотоном, так как у него нет массы.

Представим, что квантовое поле – это набор энергетических уровней, некая слоистая лестница. Каждая точка в таком пространстве будет описываться определённым значением, соответствующим напряженности электрического, магнитного, гравитационного поля в этой конкретной точке. Когда частица входит в пространство, она изменяет его различные поля в соответствии со своими физическими параметрами (например, в соответствии с электрическим зарядом или массой). Анализируя значения этих полей в данном месте, учёные могут определить, какая частица только что пересекла это пространство.

Когда частицы взаимодействуют друг с другом, передаётся и энергия от одного поля к следующему. Так, например, возмущение электрического поля может передаваться магнитному или гравитационному. Когда пара частица-античастица аннигилирует, масса может быть преобразована в фотон, а значит, в электромагнитную энергию. Но Вселенная не спешит растрачивать свою энергию зря: она всегда сохраняется и может переходить из одного поля в другое. Получается, что ничего не исчезает просто так, и конец одного всегда является началом чего-то нового.

В \(1820\) году Х. Эрстед провёл опыт, доказывающий, что электрический ток порождает магнитное поле. Фарадей своими опытами доказал, что всякое изменение во времени магнитного поля порождает переменный индукционный ток в замкнутом проводнике. Но электрический ток возникает только при наличии электрического поля.

• имеют ли различия поля, которые созданы подвижным и покоящимся электрическими зарядами?
• Существует ли поле исключительно в проводнике или возникает и в пространстве вокруг него?
• Имеет ли значение замкнутый проводник, по которому течёт ток, для возникновения поля?

Теория Максвелла объясняла появление индукционного тока в контуре под воздействием изменяющегося магнитного потока, пронизывающего его. Переменное магнитное поле порождало вихревое электрическое поле, которое и заставляло упорядоченно двигаться в одном направлении свободные заряды, имеющиеся в проводнике. Наличие электрического тока фиксировалось гальванометром. Таким образом, проводник являлся индикатором, который позволил обнаружить наличие электрического поля.

Вокруг неподвижного заряда создаётся только электрическое поле. Но заряд, находящийся в покое относительно одной системы, может находиться в движении относительно других систем, и значит, порождать магнитное поле.

Если магнит лежит на столе, то вокруг него возникает только магнитное поле. Но наблюдатель, движущийся относительно стола, зафиксирует и электрическое поле.

Поэтому утверждение о существовании электрического или магнитного полей в заданной точке имеет смысл только при указании системы отсчёта, относительно которой они рассматриваются. Оба поля являются проявлением единого электромагнитного поля.

Электромагнитное поле — это совокупность неразрывно связанных между собой переменных электрического и магнитного полей.

Основные понятия

Основные понятия, которыми оперирует электродинамика, включают в себя:

  • Электромагнитное поле — это основной предмет изучения электродинамики, вид материи, проявляющийся при взаимодействии с заряженными телами. Исторически разделяется на два поля:
    • Электрическое поле — создаётся любым заряженным телом или переменным магнитным полем, оказывает воздействие на любое заряженное тело.
    • Магнитное поле — создаётся движущимися заряженными телами, заряженными частицами, имеющими спин, и переменными электрическими полями, оказывает воздействие на движущиеся заряды и заряженные тела, имеющие спин. (Понятие спина в обменном взаимодействии тождественных частиц учитывается в квантовой механике и представляет собой чисто квантовый эффект, исчезающий при предельном переходе к классической механике.)
    • Скалярный потенциал — временна́я компонента 4-вектора
    • Векторный потенциал — трёхмерный вектор, образованный оставшимися компонентами 4-вектора.

    Основными уравнениями, описывающими поведение электромагнитного поля и его взаимодействие с заряженными телами являются:

    • Уравнения Максвелла , определяющие поведение свободного электромагнитного поля в вакууме и среде, а также генерацию поля источниками. Среди этих уравнений можно выделить:
      • Теорема Гаусса (закон Гаусса) для электрического поля, определяющая генерацию электростатического поля зарядами.
      • Закон замкнутости силовых линий магнитного поля ( соленоидальности магнитного поля); он же — закон Гаусса для магнитного поля .
      • Закон индукции Фарадея , определяющий генерацию электрического поля переменным магнитным полем.
      • Закон Ампера — Максвелла — теорема о циркуляции магнитного поля с добавлением токов смещения , введённых Максвеллом, определяет генерацию магнитного поля движущимися зарядами и переменным электрическим полем.

      Частными уравнениями, имеющими особое значение являются:

      • Закон Кулона — в электростатике — закон, определяющий электрическое поле (напряженность и/или потенциал) точечного заряда; также законом Кулона называется и сходная формула, определяющая электростатическое взаимодействие (силу или потенциальную энергию) двух точечных зарядов.
      • Закон Био — Савара — в магнитостатике — основной закон, описывающий порождение магнитного поля током (аналогичен по своей роли в магнитостатике закону Кулона в электростатике).
      • Закон Ампера , определяющий силу, действующую на элементарный ток, помещённый в магнитное поле.
      • Теорема Пойнтинга , выражающая собой закон сохранения энергии в электродинамике.
      • Закон сохранения заряда .



      Иногда под электродинамическими эффектами (в противоположность электростатике) понимают те существенные отличия общего случая поведения электромагнитного поля (например, динамическую взаимосвязь между меняющимися электрическим и магнитным полем) от статического случая, которые делают частный статический случай гораздо более простым для описания, понимания и расчётов.

      Читайте также: