Теория хаоса кратко и понятно

Обновлено: 04.07.2024

ХАОСА ТЕОРИЯ, раздел математики, изучающий кажущееся случайным или очень сложное поведение детерминированных динамических систем. Динамическая система – это такая система, состояние которой меняется во времени в соответствии с фиксированными математическими правилами; последние обычно задаются уравнениями, связывающими будущее состояние системы с текущим. Такая система детерминирована, если эти правила не включают явным образом элемента случайности.

Вплоть до 1960-х годов многим казалось естественным полагать, что динамическая система, описываемая простыми детерминистическими уравнениями, должна вести себя относительно просто, хотя уже более столетия было известно, что это верно лишь в некоторых весьма специальных случаях, таких, как Солнечная система. Однако к 1980 математики и естествоиспытатели обнаружили, что хаос вездесущ.

Пример хаотического поведения из повседневной жизни – движение жидкости в миксере. Это устройство подчиняется простым механическим законам: его нож-смеситель вращается с постоянной скоростью, и взаимодействие жидкости с ножом внутри миксера можно описать простыми детерминистическими уравнениями. Однако возникающее при этом движение жидкости весьма сложно. Ее соседние области рассекаются ножом и разделяются, а отдаленные области могут сближаться. Короче говоря, жидкость перемешивается – для этого миксеры и предназначены.

Основные принципы.

Основным понятием теории хаоса является аттрактор, т.е. то поведение, к которому в конце концов приходит или в пределе стремится система. Аттракторами для трех описанных выше систем являются: единственное число 0; пара чисел (0, -1); весь интервал чисел между –1 и 1. Динамика в этих трех случаях соответственно стационарная, периодическая и хаотическая. Хаотический аттрактор обладает скрытой структурой, которая часто становится явной после графического представления итераций. Состояние динамической системы – это набор чисел, которые можно интерпретировать как координаты изображающей его точки в некотором фазовом пространстве. Когда состояние системы меняется, эта точка движется. Для стационарного аттрактора движущаяся точка стремится к фиксированному положению, а для периодического аттрактора она циклически проходит через фиксированную последовательность положений. В случае хаотического аттрактора движущаяся точка образует более сложную конфигурацию с очень хитроумной, многослойной структурой. Такие конфигурации называют фракталами; этот термин был введен в 1970 Б.Мандельбротом. Его работы впоследствии стимулировали огромное количество исследований по фрактальной геометрии.

Важной чертой хаотической динамики является ее непредсказуемость. Представим себе две частички порошка, находящиеся рядом друг с другом в жидкости внутри миксера. После включения миксера эти две частички недолго останутся рядом; они быстро разойдутся в разные стороны и вскоре начнут двигаться независимо. Подобным же образом, если дважды запустить хаотическую систему из очень близких начальных состояний, ее поведение в этих двух случаях быстро станет совершенно непохожим. Это означает, что на больших временных интервалах хаотические системы непредсказуемы. Малейшая погрешность измерения начального состояния быстро растет, и предсказание будущего состояния становится все более неточным. Однако, в отличие от случайной системы, краткосрочное прогнозирование здесь возможно.

История вопроса.

Понятие хаоса не было в явном виде сформулировано до 1960-х годов, но его истоки можно проследить начиная с последнего десятилетия 19 в., когда появилась удостоенная премии работа французского математика А.Пуанкаре о движении в Солнечной системе. Двумя столетиями раньше Ньютон установил закон всемирного тяготения, из которого вывел, что движение двух притягивающихся тел в отсутствие других сил описывается просто: каждое из них перемещается относительно их общего центра масс по одному из конических сечений – окружности, эллипсу, параболе, гиперболе или прямой. Для трех или большего числа тел, однако, нельзя найти подобного простого решения, и Пуанкаре показал, что эта трудность вызвана не недостатком человеческой изобретательности, а свойствами, внутренне присущими динамике многих тел. Он установил, что даже в ограниченной задаче трех тел, масса одного из которых пренебрежимо мала, возможно столь сложное движение, что его нельзя описать никакой математической формулой.
См. также НЕБЕСНАЯ МЕХАНИКА.

Примеры приложений.

Теория хаоса находит приложения в широком спектре наук. Одним из самых ранних стало ее применение к анализу турбулентности в жидкости. Движение жидкости бывает либо ламинарным (гладким и регулярным), либо турбулентным (сложным и нерегулярным). До появления теории хаоса существовали две конкурирующие теории турбулентности. Первая из них представляла турбулентность как накопление все новых и новых периодических движений; вторая объясняла неприменимость стандартной физической модели невозможностью описания жидкости как сплошной среды в молекулярных масштабах. В 1970 математики Д.Рюэль и Ф.Такенс предложили третью версию: турбулентность – это хаос в жидкости. Их предположение поначалу считалось весьма спорным, но с тех пор оно было подтверждено для нескольких случаев, в частности, для ранних стадий развития турбулентности в течении между двумя вращающимися цилиндрами. Развитая турбулентность по-прежнему остается загадочным явлением, но хаоса вряд ли удается избежать в любом возможном ее объяснении. См. также ГИДРОАЭРОМЕХАНИКА.

Хаос имеет место также в биологии и экологии. В конце 19 в. было установлено, что популяции животных редко бывают стабильными; им свойственны нерегулярно чередующиеся периоды быстрого роста и почти полного вымирания. Теория хаоса показывает, что простые законы изменения численности популяций могут объяснить эти флуктуации без введения случайных внешних воздействий. Теория хаоса также объясняет динамику эпидемий, т.е. флуктуирующих популяций микроорганизмов в организмах людей.

Может создаться впечатление, что теория хаоса не должна иметь каких-либо полезных применений, поскольку хаотические системы непредсказуемы. Однако это неверно, во-первых, потому, что лишь некоторые аспекты хаотических систем непредсказуемы, и, во-вторых, потому, что полезность теории не ограничивается способностью прямого прогнозирования. В частности, теория хаоса предлагает новые методы анализа данных и обнаружения скрытых закономерностей там, где прежде систему считали случайной и никаких закономерностей в ее поведении не искали, полагая, что их просто не существует. Одним из приложений этого подхода служит машина FRACMAT, обеспечивающая дешевую и быструю процедуру контроля качества пружинной проволоки.

Все в мире целиком и полностью имеет свои причины и последствия. Возможно, эта мысль навела меня на осознание того, что все в мире взаимосвязано. Всему есть свои причины. Даже в случайности заложено движение к какой-то цели.

События, кажущиеся случайными, происходят в определенной последовательности.

Когда был открыт Хаос? Первый истинный экспериментатор в области Хаоса был метеоролог Эдвард Лоренс. В 1960 году он работал над проблемой предсказания погоды. У него была компьютерная установка с набором из 12 уравнений, моделирующих погоду (имеются ввиду воздушные потоки в атмосфере)[уточнение тут]. Они сами по себе не предсказывали погоду. Но как бы то ни было, компьютерная программа теоретически предсказывала, какой могла быть погода.

Однажды в 1961 году он [Эдвард Лоренс] снова захотел посмотреть особенную последовательность. Чтобы сэкономить время, он начал с середины последовательности, вместо того, чтобы сделать это сначала. Он ввел числа из распечатки и запустил программу…

Когда он вернулся часом позже, закономерность была решена по-другому. Вместо той же модели, что была прежде, была модель, отклоняющаяся в конце очень сильно, отличаясь от оригинальной (см. Рисунок 1). В конце –концов он выяснил, что произошло. Компьютер поместил в память 6 чисел после запятой. Чтобы сэкономить бумагу, он вводил только 3 числа после запятой. В оригинальном порядке было число 0.0506127, а он напечатал только 0.506.

image

По общепринятому мнению того времени это должно было сработать. Он должен был получить порядок очень близкий к оригинальному. Ученый мог посчитать себя счастливцем, получив измерения с точностью до 3 чисел после запятой. Конечно, измерить 4-ю и 5-ю цифру, используя рациональные методы, было невозможно, и это не могло повлиять на результат эксперимента. Лоренс посчитал идею неверной. Этот эффект известен как Эффект Бабочки. Разница в начальных точках двух кривых настолько мала, что сравнима с порханием крыльев бабочки [в реальной жизни].

Этот феномен, в общем называемый Теорией Хаоса, также известен как чувствительная зависимость от начальных условий. Всего лишь маленькое изменение в начальных условиях может кардинально изменить поведение системы, рассматриваемой длительный период времени. Такая маленькая разница в измерениях может быть вызвана в эксперименте шумом, фоновым шумом или неисправностью оборудования. Этих вещей невозможно избежать даже в самой изолированной лаборатории.

Начиная с числа 2, в итоге может получиться результат, всецело отличающийся от результатов такой же системы с начальной цифрой 2.000001. Это просто невозможно- достигнуть такого уровня точности- просто попытайтесь измерить что-нибудь с точностью до миллионной доли дюйма!Исходя из этой идеи, Лоренс установил невозможность точного предсказания погоды. Как бы то ни было, это открытие привело Лоренса к другим аспектам того, что впоследствии стало известным как Теория Хаоса.

Лоренс начал наблюдать за простейшими системами, которые чувствительны к разнице в начальных условиях. Его первое открытие имело 12 уравнений, и он хотел его очень упростить, но чтобы оно все же имело этот атрибут[чувствительность к разнице в начальных условиях]. Он взял уравнения конвекции и сделал их неимоверно простыми. Эта система больше не имела отношения к конвекции, но имела чувствительность к разнице в начальных условиях, и на этот раз осталось всего лишь 3 уравнения. Позже было установлено, что эти уравнения описывают водоворот.

Уравнения для этой системы также казалось, показывали общую случайность поведения.Как бы то ни было, когда был построен график, он был удивлен [Лоренс]. Выходные параметры всегда оставались на кривой, образуя двойную спираль. До этого было известно только два типа порядка: постоянное состояние, в котором переменные никогда не меняются, и периодичное состояние, в котором система циклична, и неопределенно повторяется. Уравнения Лоренса были определенно упорядочены- они всегда следовали по спирали. Они никогда не останавливались на одной точке, но никогда не повторяли то же состояние, то есть не были периодичными. Он назвал полученные уравнеия аттрактором Лоренса(см. Рисунок 2).

image

Рисунок 2 – Аттрактор Лоренса

В 1963 Лоренс опубликовал статью, описывающую его открытие. Он включил туда статью о непредсказуемости погоды и обсудил все типы уравнений, вызвавших этот тип поведения. К несчастью, единственным журналом, в котором он мог опубликовать свою статью, был метеорологический журнал, так как он был не физиком или математиком, a метеорологом. В результате открытия Лоренса не были известны до тех пор, пока не были открыты снова другими людьми. Лоренс открыл нечто революционное, и ждал, пока кто-то откроет его.

Другая система, в которой есть чувствительность к разнице в начальных условиях- бросание монетки. Есть две переменные в бросании монетки: как скоро она упадет и как быстро она вращается. Теоретически, возможно контролировать эти две переменные полностью, и контролировать- как монетка упадет. На практике невозможно контролировать абсолютно точно скорость вращения монеты и то, насколько она подлетит. Возможно только поместить эти переменные в определенном диапазоне, но невозможно контролировать их настолько, чтобы знать результат.

Схожая проблема имеет место в экологии и предсказании биологических популяций. Уравнение простое, если популяция растет определенно, но хищники и ограниченность в пище делают это уравнение неверным. Самое простое уравнение имеет вид:

next year's population = r * this year's population * (1 — this year's population) [где next year's population-популяция в следующем году, this year's population- популяция в этом году]

В этом уравнении популяция описывается числом между 1 и 0, где 1 представляет собой максимально возможную популяцию, а 0- вымирание. R- показатель роста. Вопрос состоял в том, как этот параметр влияет на популяцию? Очевидный ответ- высокий показатель роста популяции значит установление высокого уровня, в то время как низкий означает, что популяция упадет. Это условие истинно для некоторых показателей роста, но не для всех.

Как только параметр повышался далее, линия бифурцировала(раздваивалась) снова. Бифуркации происходили быстрее и быстрее, до тех пор, пока неожиданно не становились хаотичными. Устанавливая точный показатель роста невозможно предсказать поведение уравнения. Как бы то ни было, при ближайшем исследовании можно увидеть белые полоски. Посмотрев на эти полоски ближе обнаруживаем ряд маленьких окон, где через бифуркации проходит линия, перед тем, как вновь вернуться к состоянию хаоса. Эта похожесть на саму себя,- факт того, что график- точная копия его самого, спрятанного глубоко внутри.Это стало очень важным аспектом хаоса.(рисунок 3)

image

Рисунок 3- Бифуркация

Служащий IBM Бенуа Мандельброт был математиком, изучавшим эту самопохожесть. Одной из областей, которые он изучал, было колебание цен на хлопок. Неважно, как были проанализированы данные о ценах на хлопок, результаты не были распределенными нормально. Мандельброт в конечном счете получил все доступные данные о ценах на хлопок, вплоть до 1900 года. Когда он проанализировал данные с помощью ЭВМ, он заметил поразительный факт:число с точки зрения нормальных продаж было симметрично относительно точки зрения в масштабе. Каждая отдельная цена менялась случайно и непредсказуемо. Но расчет изменений был независим от масштабов: кривые дневных и месячных колебаний цен абсолютно совпадали. Поразительно, но проанализированные Мандельбротом изменения цен оставались постоянными на протяжении всего шумного периода 60-х, Второй Мировой и депрессии.( James Gleick, Chaos — Making a New Science, стр. 86)

Мандельброт проанализировал не только цены на хлопок, но и другие явления. Одним из них была протяженность береговой линии. Карта побережья показывает множество заливов. Но как бы то ни было, при подсчете длины береговой линии будут упущены мелкие заливы, которые слишком малы, чтобы быть показанными на карте. Это подобно тому, как при прогулке по берегу мы пропускаем микроскопические промежутки между песчинками. Неважно, насколько увеличить линию побережья, будет больше видимых промежутков при приближении.

Один математик, Хельге вон Кох взл эту идею для математического конструирования, названного кривой Коха. Чтобы создать кривую Коха, представьте равносторонний треугольник. К середине каждой стороны дорисуйте еще по равностороннему треугольнику.Продолжайте добавлять новые треугольники к серединам каждой из сторон, и в результате получите кривую Коха.(см. Рисунок 4).

Приближенная кривая Коха выглядит точно так же, как и оригинал. Это другой пример самопохожести.

image

Кривые Коха заключают в себе интересный парадокс. Каждый раз, когда добавляется очередной треугольник, длина линии становится больше. Но как бы то ни было, внутренняя площадь[ограниченная] кривой Коха всегда остается меньше площади описанной окружности вокруг первого треугольника. То есть это линия неограниченной длины, заключенная в ограниченной области.

Под фракталом имеется ввиду любое изображение, имеющее в себе самопохожесть. Бифуркационная диаграмма уравнения популяции- фрактал. Аттрактор Лоренса- фрактал.Кривая Коха- тоже фрактал.

В это время ученые нашли трудным публиковать работы о Хаосе. С тех пор как они еще не показали его отношение к реальному миру. Большинство ученых не думали, что результаты экспериментов относительно Хаоса важны. Как результат, даже несмотря на то, что Хаос- математический феномен, большинство исследований в области Хаоса были сделаны людьми, являющимися специалистами в других областях, таких как метеорология и экология. Изучение области распространения Хаоса – было хобби для ученых, работающих над проблемой, что же с этим делать.

Позже, ученый по фамилии Фигенбаум снова исследовал диаграмму бифуркации.Он исследовал скорость наступления бифуркации. Он открыл, что она наступает при постоянном показателе. Он вычислил, что это число 4.669. другими словами, он определил точный масштаб при котором кривая бифуркации приобретает свойство самопохожести.

Уменьшенная в 4.669 раз, диаграмма выглядит как последующий регион бифуркации. Он решил посмотреть на другие уравнения чтобы увидеть, возможно ли применить фактор масштаба и к ним. К большому удивлению, фактор масштаба оказался таким же. Не только для сложных уравнений, описывающих закономерность.Закономерность была точно такой же как и у простых уравнений.Он опробовал множество функций, и они давали фактор масштабирования 4.669.

Это было революционным открытием. Он обнаружил целый класс математических функций, ведущих себя одинаково, предсказуемо. Универсальность помогла многим ученым легко анализировать уравнения хаоса. Она дала ученым первые инструменты для анализа хаотических систем. Теперь они могли использовать простые уравнения для получения результата более сложных.

Многие ученые открыли уравнения, создающие фрактальные уравнения. Самое известное изображение фрактала- является и самым простым. Оно известно как уравнение Мандельброта. Уравнение простое: z=z 2 +c. Чтобы выяснить, является ли ваше уравнение таковым, возьмите комплексное число z. Получите его квадрат и затем добавьте число. Введите в квадрат полученный результат и добавьте число. Повторяйте далее, и если число стремится к бесконечности, это не уравнение Мандельброта.

Фрактальные структуры были замечены во многих областях реального мира. Кровь разносится по кровеносным сосудам, ветвящимся дальше и дальше, ветви дерева, структура легких, графики данных о продаже акций, и другие системы раельного мира имеют нечто общее: они все обладают самопохожестью(самоповторением).

Ученые в Университете Санта Круз нашли проявления Хаоса в водопроводном кране[то, как он капает]. Записывая падение капель из крана и периоды времени, они открыли точную скорость потока, капли не падали в то же самое время. Когда они построили графики данных, они нашли, что на самом деле капли падают с определенной закономерностью.

Человеческое сердце тоже бьется с хаотической закономерностью. Время между ударами непостоянно, оно зависит от того, насколько активен человек в данный момент, и от многих других вещей. При постоянных условиях сердцебиение все равно может ускориться. При различных условиях сердце бьется неуправляемо. Это можно назвать хаотичным сердцебиением. Анализы сердцебиения могут помочь в медицинских исследованиях найти способ установить сердцебиение в определенных рамках, вместо неконтролируемой хаотичности.

Хаос имеет применение даже в науке. Компьютерные изображения становятся более реалистичными при применении Хаоса и фракталов. Сейчас с помощью простой формулы можно создать на компьютере красивое реалистично выглядещее дерево. Вместо того, чтобы следовать нормальной закономерности, ветки деревьев могут быть созданы по формуле, которая почти, но не точно повторяет себя.

Последовавшие затем в фильме события заставили многих думать, что теория хаоса – это что-то вроде Закона Мерфи: если неприятность может случиться, то она случается. Это неправильно. Математик говорил о другом. Почему случается неприятность? Потому что всё предусмотреть невозможно.

Вот это в целом правильно и совершенно понятно. Непонятно только, для чего же тут понадобилась целая теория? Вот это мы и попробуем объяснить.

Неудача Пифагора

В Древней Греции хаосом называлось первоначальное состояние вселенной – когда не существовало ни света, ни тьмы, ни жизни, ни правил и законов. А сотворение мира с точки зрения древних греков представляло собой переход от хаоса (беспорядка) к космосу (порядку).

Если есть законы, которым подчиняются все явления природы, то должны быть законы, которым беспрекословно должны подчиняться все люди. Так же мы с вами рассуждаем, правда?

Теория Лапласа

Во времена позднего Средневековья начался расцвет механики. Мастера того времени научились создавать удивительные (даже по нашим меркам) механические диковины.

Это были и часы, которые могли предсказывать астрономические явления, например, фазы Луны или затмения Солнца. Это были и разнообразные механические куклы – например, известно описание фигурки мальчика, который прекрасным почерком писал текст на бумаге.

Своё математическое описание механика получила в основном благодаря работам французского учёного Лапласа. Именно он начал любое явление рассматривать в качестве динамической системы, то есть системы, свойства (параметры) которой изменяются во времени. Для каждого элемента такой системы (например, отдельной шестерёнки в механизме часов) можно указать некое правило, формулу, которая называется законом движения.

Достигнутые результаты привели Лапласа в такой восторг, что он заявил следующее (читаем внимательно):

Что-то не то.

Теория Лапласа испытывала проблемы не только с прогнозом погоды или человеческими отношениями. Дело в том, что в математике того времени тоже были сделаны важные открытия, которые концепциям Лапласа ну никак не хотели подчиняться!

Случайные процессы

Первым таким открытием стало создание теории вероятностей – области математики, изучающей случайные процессы. Например, бросание игральных кубиков. Сколько на следующем броске выпадет очков? Можно ли это предсказать с помощью математики? Нет, нельзя.

Хуже того – в дальнейшем оказалось, что математически невозможно вообще описать такое понятие, как случайное число. Любой из нас с лёгкостью придумает какое-нибудь случайное число – а вот написать математическую формулу, которая это случайное число описывает, оказалось невозможно в принципе!

Вторым открытием стал закон всемирного тяготения Ньютона. Довольно простая формула, её в школе в седьмом классе проходят. Но дело в том, что эта формула описывает поведение динамической системы, состоящей из двух тел – например, Земли и Луны. Или Земли и Солнца. Но на самом-то деле таких тел намного больше! Земля притягивает Луну, а Солнце притягивает Землю – но ведь Луну Солнце тоже притягивает, правда? А когда математики попробовали с помощью формулы Ньютона решить задачу для трёх тел, они столкнулись с невероятными сложностями!

Точное общее решение этой задачи не найдено до сих пор.

Теория хаоса

Внимательно изучая эти и другие задачи, к концу XIX века учёные пришли к выводу, что большинство динамических систем в нашей вселенной ведут себя совсем не так, как это описывал Лаплас. Даже если эти системы описываются с помощью простых и точных формул, в итоге их поведение оказывается непредсказуемым – хаотическим!

Так на свет появилась математическая теория хаоса. Или, если говорить правильнее, детерминированного хаоса.

Возьмём, например, движение Луны вокруг Земли. С одной стороны, оно описывается простой формулой – законом всемирного тяготения Ньютона. Луна вращается вокруг Земли по орбите. Но при этом рассчитать точное положение Луны на орбите не получается, хоть ты тресни!

Современные астрономы используют для расчётов особые, очень сложные формулы (в математике такие формулы называют рядами), причём числовые параметры этих формул постоянно уточняются и исправляются на основании реальных наблюдений в телескоп.

Другой пример – погода. С одной стороны, погода на нашей планете – это всего лишь перемещения масс воздуха. И параметров тут всего три – это температура, скорость и влажность. И описываются эти параметры довольно простыми математическими формулами. Только простота формул в итоге ничего не даёт, – как известно, даже прогноз погоды на завтра может ошибаться. А уж предсказать более-менее точно погоду в следующем месяце вам не возьмётся ни один метеоролог. Так что никакого расписания, никакой предопределённости, сплошные сюрпризы и самый натуральный хаос!

Линейность и нелинейность

Как показали исследования, хаотической может быть только нелинейная система.

Две сцеплённые между собой одинаковые шестерёнки – это классический пример линейной системы: если мы начнём быстрее вращать одну шестерёнку, автоматически начнёт вращаться быстрее и другая. Причём во сколько раз быстрее мы будем вращать первую, в точности во столько же раз ускорится вторая. Такая система линейна, а потому хаосом быть не может.

А вот в случае с погодой параметры независимы друг от друга: если, скажем, мы увеличим скорость ветра в два раза, ведь его температура при этом не станет в два раза выше, правда?

Возьмём ещё один пример. Допустим, рабочий делает на станке детали и получает деньги за каждую изготовленную деталь. Если он начнёт работать в два раза быстрее, то сделает в два раза больше деталей и получит в два раза больше денег. Такая система линейна, в ней зарплата линейно зависит от скорости работы.

Но заменим теперь рабочего на, скажем, телеведущего. Допустим, телеведущий решил говорить во время выпусков новостей в два раза быстрее – как вы считаете, прибавят ему за это зарплату в два раза? Данная система нелинейна.

Эфффект бабочки

Другой важный вывод, к которому пришла теория хаоса, следующий. При малом расхождении начальных условий динамической системы разброс её конечных состояний может быть очень большим. Что это означает?

Если взять механические часы и повернуть чуть-чуть одну шестерёнку, то вторая, сцеплённая с ней, тоже повернётся чуть-чуть. А вот в хаотических системах совсем не так!

Например, лежит снег на склоне горы. Одна снежинка чуть-чуть подвинула две другие, эти две немножко подвинули соседние – и через 5 минут по склону несётся с огромной скоростью чудовищная лавина снега!

Время Ляпунова

Третий важный вывод теории хаоса – ограниченность возможности предсказания состояния системы в будущем. Для каждой хаотической системы существует некое время, называемое временем Ляпунова, за пределами которого её поведение становится полностью непредсказуемым.

Что это означает? С помощью формул и расчётов мы можем в какой-то степени предсказать поведение динамической системы – но только до определённого момента! Скажем, местный гидрометцентр может дать надёжный прогноз погоды на ближайшие 2 часа. Вполне приличный прогноз – на ближайшие 6 часов. Более-менее приемлемый – на завтра. Однако уже прогноз погоды на 3–4 дня вперёд достоверным не будет!

Другой пример – наша Солнечная система. С одной стороны, она управляется по законам небесной механики, и учёные могут очень точно предсказать движение планет, спутников и других небесных тел. Да, это так – но со временем эта точность падает! Для Солнечной системы время Ляпунова составляет 50 миллионов лет – а это значит, что предсказать положение планет и их спутников на 50 миллионов лет вперёд (пускай даже хоть сколько-нибудь приблизительно!) мы не в состоянии. Вообще! Никак!


Теория хаоса гласит, что небольшие изменения приводят к большим последствиям.

Теория хаоса

В 1970-х годах американский математик и метеоролог Эдвард Лоренц не только открыл хаос (что было событием случайным) но также определил его ключевой механизм, отметив странное свойство – повторение (построение траектории с течением времени) любых двух близлежащих точек приводит к их разделению.

По сути, хаос – это наука о неожиданностях, о нелинейности и непредсказуемости. В то время как большинство научных областей имеют дело с предположительно предсказуемыми явлениями, такими как гравитация, электричество или химические реакции, теория хаоса являет собой фактическую невозможность предсказания или контроля, например турбулентности, погоды, экономики, состояния мозга и так далее.


Наш мир устроен бесконечно сложно

Эти явления часто описываются с помощью фрактальной математики, которая отражает бесконечную сложность природы. Многие природные объекты обладают фрактальными свойствами, включая облака, деревья и реки, однако многие системы, в которых мы живем, демонстрируют сложное, хаотичное поведение.

Признание хаотической, фрактальной природы нашего мира может подарить нам его новое понимание. Хаос – это не просто беспорядок. Он исследует переходы между порядком и беспорядком, которые часто происходят удивительным образом.

Принципы хаоса

Один из принципов хаоса предложенных Лоренцом – тот самый эффект бабочки. Если бабочка хлопает крыльями в России, это, возможно, приведет к урагану где-то в Нью-Мексико. Согласна, звучит как полная бессмыслица, но эта связь реальна. Если бы бабочка не взмахнула крыльями в нужной точке пространства/времени, урагана бы не произошло.

Еще один принцип заключается в том, что небольшие изменения в начальных условиях приводят к резкому изменению результатов. В конце-концов наша жизнь является постоянной демонстрацией этого принципа. Кто знает, каковы будут долгосрочные последствия обучения миллионов детей хаосу и фракталам?

Фракталы – это бесконечно сложные паттерны, которые создаются путем многократного повторения простого процесса в непрерывном цикле обратной связи. Движимые рекурсией, фракталы представляют собой образы динамических систем – картины Хаоса. Геометрически они существуют между нашими привычными измерениями.


На микроуровне все происходит иначе

Важно понимать, что закономерности внутри хаоса скрыты, так как они очень чувствительны к любым, даже самым крошечным изменениям. Это означает, что похожие, но не идентичные ситуации могут привести к совершенно разным результатам. Другой способ при этом гласит: в хаотичном мире последствия могут быть совершенно несоразмерны их причинам. И хотя правила детерминированы, будущее непредсказуемо в долгосрочной перспективе.

Поскольку хаос настолько чувствителен к небольшим изменениям, существует почти бесконечное количество способов, следующих правилам, и нам необходимо знать невероятное количество подробностей о настоящем и прошлом, чтобы точно определить, как будет развиваться мир.

Теория хаоса утверждает, что небольшие изменения могут привести к последствиям. Но одной из центральных концепций теории является невозможность точного предсказания состояния системы.


Точно так же мы не можем перепроектировать некоторую часть информации о прошлом, просто зная текущие и даже будущие ситуации. При этом путешествие во времени не помогает восстановить прошлую информацию, так как даже при движении назад во времени хаотическая система все еще в игре и приводит к непредсказуемым последствиям.

И хотя эффект бабочки является классической поэтической метафорой, иллюстрирующей теорию хаоса, хаотическая динамика также проявляется в реальном контексте, включая рост популяции тигров и вращение лун Плутона. Чудеса.

Не забудьте подписаться на наш канал в Яндекс.Дзен – там регулярно выходят статьи, которых нет на сайте

Существует ли эффект бабочки?


Законы квантового мира очень сильно отличаются от тех, что мы можем непосредственно наблюдать

Но как выяснили исследователи квантовая система может эффективно исцелять и даже восстанавливать информацию, которая была зашифрована в прошлом – и для этого не нужен хаос и эффект бабочки. С помощью компьютерного моделирования авторы исследования обнаружили, что во время путешествий во времени мир остается прежним, а это значит, что в квантовой механике эффекта бабочки не существует.

Путешествие во времени требует изменения прошлого – даже простого добавления путешественника во времени, – отмечают исследователи. Более того, понятие хаоса в классической физике и в квантовой механике должно пониматься по-разному.


Нельзя не отметить и результаты еще одного интересного исследования, которые гласят, что на квантовом уровне путешествия во времени возможны. Подробнее о результатах можно прочитать здесь. И, конечно, подписывайтесь на наш новостной канал в Telegram – так вы всегда будете в курсе последних событий из мира науки и высоких технологий!

Читайте также: