Теорема это в геометрии кратко

Обновлено: 05.07.2024

В математических текстах теоремами обычно называют только достаточно важные утверждения. При этом требуемые доказательства обычно кем-либо найдены (исключение составляют в основном работы по логике, в которых изучается само понятие доказательства, а потому в некоторых случаях теоремами называют даже неопределённые утверждения). Менее важные утверждения-теоремы обычно называют леммами, предложениями, следствиями, условиями и прочими подобными терминами. Утверждения, о которых неизвестно, являются ли они теоремами, обычно называют гипотезами.

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Теорема" в других словарях:

Теорема Лёба — Теорема Лёба теорема в математической логике о взаимосвязи между доказуемостью утверждения и самим утверждением. Установлена математиком Мартином Хуго Лёбом в 1955 году. Теорема Лёба гласит, что во всякой теории, включающей аксиоматику… … Википедия

ТЕОРЕМА — (от греч. theoreo – рассматриваю) научное положение. Философский энциклопедический словарь. 2010. ТЕОРЕМА (греч. ϑεώρημα, от ϑεωρέω – рассматриваю, исследу … Философская энциклопедия

ТЕОРЕМА — (греч. theorema, от theorein рассматривать). Предложение, долженствующее быть подтвержденным; истина, требующая доказательства, преимущественно в математике. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ТЕОРЕМА… … Словарь иностранных слов русского языка

ТЕОРЕМА — Пифагора. Жарг. шк. Шутл. Учительница математики. ВМН 2003, 131. Теорема Пофигатора. Жарг. шк. Шутл. Теорема Пифагора. ВМН 2003, 108. Теорема Фаллоса. Жарг. студ. (матем.). Шутл. Теорема Фалеса. (Запись 2003 г.). Теорема хана банаха. Жарг. студ.… … Большой словарь русских поговорок

теорема — См … Словарь синонимов

ТЕОРЕМА — (греч. theorema от theoreo рассматриваю), в математике предложение (утверждение), устанавливаемое при помощи доказательства (в противоположность аксиоме). Теорема обычно состоит из условия и заключения. Напр., в теореме: если в треугольнике один… … Большой Энциклопедический словарь

ТЕОРЕМА — ТЕОРЕМА, утверждение или предложение, которое доказывается логическими рассуждениями, основанными на фактах и АКСИОМАХ. см. также ВЕЛИКАЯ ТЕОРЕМА ФЕРМА … Научно-технический энциклопедический словарь

ТЕОРЕМА — ТЕОРЕМА, теоремы, жен. (от греч. theorema, букв. зрелище) (научн.). Положение, справедливость которого устанавливается путем доказательств, основанных на аксиомах или на других, уже доказанных положениях (мат.). Доказать теорему. Пифагорова… … Толковый словарь Ушакова

Теорема Бёма — Якопини положение структурного программирования, согласно которому любой исполняемый алгоритм может быть преобразован к структурированному виду, то есть такому виду, когда ход его выполнения определяется только при помощи трёх структур… … Википедия

теорема — ы, ж. Следуя логике лотмановского подхода к искусству можно предложить понятие эротемы как структурно тематической единицы эроса (термин образован с тем же французским суффиксом ем , что и другие обозначения структурных единиц языка: лексема,… … Исторический словарь галлицизмов русского языка


Чтобы щелкать задачки по геометрии, важно рассуждать логически. Это качество поможет быстрее запомнить все правила и перейти к решению задач и доказательствам. В этой статье узнаем про аксиомы, теоремы и доказательства теорем.

О чем эта статья:

Понятие аксиомы

Аксиоматический метод — это подход к получению знаний, при котором сначала разрабатывают аксиомы, а потом с их помощью формулируют новые теории.

Синоним аксиомы — постулат. Антоним — гипотеза.

Основные аксиомы евклидовой геометрии

  1. Через любые две точки проходит единственная прямая.
  2. Каждая точка на прямой разбивает эту прямую на две части так, что точки из разных частей лежат по разные стороны от данной точки. А точки из одной части лежат по одну сторону от данной точки.
  3. На любом луче от его начала можно отложить только один отрезок, равный данному.
  4. Отрезки, полученные сложением или вычитанием соответственно равных отрезков — равны.
  5. Каждая прямая на плоскости разбивает эту плоскость на две полуплоскости. При этом если две точки принадлежат разным частям, то отрезок, который соединяет эти две точки, пересекается с прямой. Если две точки принадлежат одной части, то отрезок, соединяющий эти точки, не пересекается с прямой.
  6. От любого луча на плоскости в заданную сторону можно отложить только один угол, который равен данному. Все развернутые углы равны.
  7. Углы равны, если они получились путем сложения или вычитания соответственно равных углов.

Учить наизусть эти аксиомы не обязательно. Главное — помнить о них и держать под рукой, чтобы при доказательстве теоремы сослаться на одну из них.

А теперь давайте рассмотрим несколько аксиом из геометрии за 7 и 8 класс.

Самая известная аксиома Евклида — аксиома о параллельных прямых. Звучит она так:

Это значит, что если дана прямая и любая точка, которая не лежит на этой прямой, то через неё можно провести только одну единственную прямую, которая будет параллельна этой первой данной прямой.


аксиома о параллельных прямых

У этой аксиомы два следствия:

Аксиома Архимеда заключается в том, что, если отложить достаточное число раз меньший из двух отрезков, то можно покрыть больший из них. Звучит так:

Если на прямой есть меньший отрезок А и больший отрезок B, то, можно сложить А достаточное количество раз, чтобы покрыть B.

На картинке можно увидеть, как это выглядит:


Аксиома Архимеда

Из этого следует, что не существует бесконечно малых и бесконечно больших величин. В качестве математической формулы аксиому можно записать так: А + А + … + А = А * n > В, где n — это натуральное число.

Понятие теоремы

Что такое аксиома мы уже поняли, теперь узнаем определение теоремы.

Теорема — логическое следствие аксиом. Это утверждение, которое основано на аксиомах и общепринятых утверждениях, которые были доказаны ранее, и доказывается на их основе.

Состав теоремы: условие и заключение или следствие.

Среди теорем выделяют такие, которые сами по себе не используются в решениях задач. Но их используют для доказательства других теорем.

Лемма — это вспомогательная теорема, с помощью которой доказываются другие теоремы. Пример леммы: если одна из двух параллельных прямых пересекает плоскость, то и вторая прямая тоже пересекает эту плоскость.

Следствие — утверждение, которое выводится из аксиомы или теоремы. Следствие, как и теорему, необходимо доказывать.

Примеры следствий из аксиомы о параллельности прямых:

  • если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую;
  • если две прямые параллельны третьей прямой, то они параллельны.

Доказательство теоремы — это процесс обоснования истинности утверждения.

Каждая доказанная теорема служит основанием доказательства для следующей теоремы. Именно поэтому так важно изучать геометрию последовательно, переходя от аксиом к теоремам.

Способы доказательства геометрических теорем

  • Синтетический или синтез — метод, при котором данное предложение выступает, как необходимое следствие другого, уже доказанного.
  • Аналитический или анализ — обратный синтезу способ. Рассуждения всегда начинаются с доказываемой теоремы и закачиваются другой известной истиной.

Часть аналитического способа — доказательство от противного, когда для доказательства данного предложения убеждают в невозможности предположения противоположного.

Приемы для доказательства в геометрии:

  • Способ наложения — когда одну геометрическую величину накладывают на другую. Этим способом убеждаются в равенстве или неравенстве геометрических протяжений в зависимости от того, совмещаются они или нет при наложении.
  • Способ пропорциональности — применение свойств пропорций. Этот способ пригодится для доказательства теорем про подобные фигуры и пропорциональные отрезки.
  • Способ пределов — когда вместо данной величины берут свойства другой, близкой к ней. А потом перекладывают эти выводы на исходные данные.

Обратная теорема — это такой перевертыш: в ней условие исходной теоремы дано заключением, а заключение — условием.

Прямая и обратная теорема взаимно-обратные. Например:

  • прямая теорема: в треугольнике против равных сторон лежат равные углы.
  • обратная теорема: в треугольнике против равных углов лежат равные стороны.

В первой теореме данное условие — это равенство сторон треугольника, а заключение — равенство противолежащих углов. А во второй всё наоборот.

Противоположная теорема — это утверждение, в котором из отрицания условия вытекает отрицание заключения.

Вот, как выглядит взаимное отношение теорем на примере:

  • Прямая: если при пересечении двух прямых третьей соответственные углы равны, то данные прямые параллельны.
  • Обратная: если две прямые параллельны, то при пересечении их третьей, соответственные углы равны.
  • Противоположная: если при пересечении двух прямых третьей соответственные углы не равны, прямые не параллельны.
  • Обратная противоположной: если прямые не параллельны, соответственные углы не равны.

В геометрическом изложении достаточно доказать только две теоремы, тогда остальные справедливы без доказательства.

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Теоремы без доказательств

Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов.

Доказательств может быть несколько. Одно из них звучит так: если построить квадраты на сторонах прямоугольного треугольника, то площадь большего из них равна сумме площадей меньших квадратов. На картинке понятно, как это работает:


Теорема Пифагора

Теорема косинусов: квадрат одной стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними. В виде формулы это выглядит так:


формула Теорема косинусов

где a, b и c — стороны плоского треугольника,

α — угол, противолежащий стороне а.


Треугольник

Следствия из теоремы косинусов:

Понятия свойств и признаков

У нас есть список аксиом и мы уже знаем, что такое теорема и как ее доказывать. Есть два типа утверждений среди теорем, которые часто встречаются при изучении новых фигур: свойства и признаки.

Свойства и признаки — понятия из обычной жизни, которые мы часто используем.

Свойство — такое утверждение, которое должно выполняться для данного типа объектов. У ноутбука есть клавиатура — это свойство есть у каждого ноутбука. А у электронной книги такого свойства нет.

Примеры геометрических свойств мы уже знаем: у квадрата все стороны равны. Это верно для любого квадрата, поэтому это — свойство.

Такое свойство можно встретить у другого четырехугольника. И клавиатура может быть на других устройствах, помимо ноутбука. Из этого следует, что свойства не обязательно должны быть уникальными.

Признак — это то, по чему мы однозначно распознаем объект.

Звезды в темном небе — признак того, что сейчас ночь. Если человек ходит с открытым зонтом — это признак того, что сейчас идет дождь. При этом ночью не обязательно должны быть видны звезды, иногда может быть облачно. Значит это не свойство ночи.

А теперь вернемся к геометрии и рассмотрим четырехугольник ABCD, в котором AB = BD = 10 см.

Является ли равенство диагоналей признаком прямоугольника? У такого четырехугольника, где AB = BD, диагонали равны, но он не является прямоугольником. Это свойство, но не его признак.


равенство диагоналей признак прямоугольника

Но если в четырехугольнике противоположные стороны параллельны AB || DC и AD || BC и диагонали равны AB = BD, то это уже верный признак прямоугольника. Смотрите рисунок:


параллельные противоположные стороны четырехугольника

Иногда свойство и признак могут быть эквивалентны. Лужи — это верный признак дождя. У других природных явлений не бывает луж. Но если приходит дождь, то лужи на асфальте точно будут. Значит, лужи — это не только признак, но и свойство дождя.

Решение всех задач в геометрии построено на логических рассуждениях. С их помощью мы решаем задачи или выводим новые доказательства.

Чтобы лучше понять сказанное, нарисуем наглядный рисунок, где прямая a пересекает точки A и B .

проведем прямую через две точки

Казалось бы, очевидно, если попытаться провести еще одну прямую b через точки A и B , она совпадет с прямой a .

проведем две прямые через две точки

Но можно ли считать подобное рассуждение доказательством?

Галка

Важно!

Дело в том, что утверждение, которое в своем доказательстве
не опирается на выстроенную логическую цепочку доказательств, нельзя считать доказанным .

Но что нам в таком случае делать? Ведь при решении задач мы используем какие-то очевидные утверждения, не задумываясь об их истинности.

Нам остается, только принять их на веру без доказательств . Иначе мы не сможем доказывать следующие утверждения, чтобы двигаться дальше.

Что такое аксиома

Запомните!

Аксиома — утверждение , которое не требует доказательств.

С точки зрения учащихся, аксиома — лёгкий способ получить отличную оценку. Достаточно просто выучить формулировку. Ведь никаких доказательств для аксиомы учить не требуется.

Всего в геометрии насчитывается около 15 аксиом. В школьном курсе используются далеко не все. Некоторые из них используются в школьном курсе как само собой разумеющееся для нас. Приведем некоторые примеры довольно известных аксиом из школьного курса геометрии:

  • через любые две точки проходит прямая, и притом только одна;
  • через точку, не лежащую на данной прямой, проходим только одна прямая, параллельная данной;
  • если при наложении совмещаются концы двух отрезков, то совмещаются и сами отрезки;
  • любая фигура равна самой себе.

Что такое теорема

Запомните!

Теорема — утверждение , которое требует доказательства.

Примеры формулировок теорем:

  • сумма углов треугольника равна 180 градусов;
  • площадь прямоугольника равна произведению его смежных сторон;
  • теорема Пифагора. В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Галка

Важно!

Формулировки аксиом и теорем необходимо учить строго наизусть
без искажений .

Каждое слово или предлог в формулировке играет существенную роль в передаче смысла выражения. Даже просто поменяв порядок слов можно сильно изменить смысл утверждения.

Помните, что все формулировки в геометрии были выверены несколькими тысячами лет развития математики лучшими умами планеты и не терпят никаких словесных изменений.

Что такое лемма

Среди теорем выделяют такие теоремы, которые сами по себе не используются в решениях задач. Но их используют для доказательства других теорем.

Запомните!

Лемма — это вспомогательная теорема , с помощью которой доказываются другие теоремы.

  • если одна из двух параллельных прямых пересекает плоскость, то и вторая прямая тоже пересекает эту плоскость.

Что такое следствие в геометрии

Запомните!

Следствие — утверждение, которое выводится непосредственно из аксиомы или теоремы. Следствие, как и теорему, необходимо доказывать .

Приведем примеры следствий из аксиомы о параллельности прямых:

  • если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую;
  • если две прямые параллельны третьей прямой, то они параллельны.

Если подытожить все вышесказанное, то сравнивая геометрию с высотным домом, можно представить, что:

Каждая доказанная теорема служит основанием доказательства для следующей теоремы. Именно поэтому так важно изучать геометрию последовательно, переходя с самых основ (аксиом) к теоремам.

Невозможно понять геометрию 9 и 10 класса, не выучив аксиомы и теоремы 7 и 8 класса.

Теоремы

Теорема 1: Две прямые, перпендикулярные к третьей, не пересекаются.

Доказательство от противного. Есть две прямые АА1 и ВВ1 перпендикулярны к прямой PQ одновременно. Предположим, что, продолжая прямые, можно достичь некоторой точки M, в которой они пересекаются. Перегнем плоскость вдоль прямой PQ. В этом случае углы при данных прямых накладываются друг на друга, а наложенные лучи совпадают. При этом точка М, получит проекцию некоторой точки M1 (при пересечения АА1 и ВВ1 в нижней полуплоскости) . Это будет означать, что две прямые АА1 и ВВ1 пересекаются в двух точках М и М1. Но через любые две точки на плоскости можно провести только одну прямую! Таким образом, предположение о том, что данные прямые пересекаются неверно. Следовательно, две прямые, перпендикулярные к третьей, не пересекаются. Что и требовалось доказать.

Теорема 2
Первый признак равенства треугольников ( по двум сторонам и углу между ними)


Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Доказательство:

Так как ∠A=∠A1, то можно треугольник A1B1C1 наложить на треугольник ABC так, чтобы
точка A1 совместилась с точкой A,
луч A1C1 наложился на луч AC,
луч A1B1 — на луч AB.
Так как AB=A1B1, то при таком наложении сторона A1B1 совместится со стороной AB, а значит, точка B1 совместится с точкой B.
Аналогично, сторона A1C1 совместится со стороной AC, а точка C1 — с точкой C.
Следовательно, сторона B1C1 совместится со стороной BC.
Значит, при наложении треугольники полностью совместятся, поэтому ΔABC= ΔA1B1C1 (по определению).
Что и требовалось доказать.

Теорема 3
Теорема единственности перпендикуляра, проведенного из произвольной точки к заданной прямой
Из любой точки А, не лежащей на данной прямой, можно провести перпендикуляр к прямой. К тому же этот перпендикуляр единственный.

Дано: точка А не принадлежит прямой a.

Доказать: существует единственный отрезок АН, где АН- перпендикуляр к a из точки A.

1. Построим 2 равных угла. ∠АВС =∠МВС или ∠1 = ∠2.

2. Равные углы можно совместить наложением. При этом точка А перейдет в точку A1. ВА = ВA1(перегибание по прямой ВС).


3. Соединим точки А и A1. Получим точку Н. Углы ∠ВНА = ∠3, ∠ВНA1 = ∠4.

4. Так как ∠1 = ∠2,ВА = ВA1, BC- общая,то треугольники ВНА = ВНA1 по первому признаку равенства треугольников, то есть по углу и двум прилежащим сторонам. Из равенства треугольников следует равенство всех элементов. А значит, ∠3 = ∠4. Эти углы лежат против равных сторон. Два смежных равны только в случае, если каждый из них равен по 90°. А значит, АН ⊥ ВС. Мы доказали, что из точки А можно провести перпендикуляр к прямой a.

5. Предположим, что из точки А можно провести к прямой a два разных перпендикуляра.


Это невозможно, поскольку из разных точек прямой a проведены 2 перпендикуляра, которые имеют общую точку А. Мы получили противоречие, значит, наше предположение неверно. Из точки А можно провести лишь один перпендикуляр к прямой a. Теорема доказана.

Термины по геометрии, 7 класс

Геометрия

В планиметрии изучаются свойства фигур на плоскости. В стереометрии изучаются свойства фигур в пространстве.

Отрезок — это часть прямой, ограниченная двумя точками. Эти точки называются концами отрезка.

Угол — это геометрическая фигура, которая состоит из точки и двух лучей, исходящих из этой точки.

Лучи называются сторонами угла, а точка — вершиной угла.

Окружностью называется геометрическая фигура, состоящая из всех точек, расположенных на заданном расстоянии от данной точки. Данная точка называется центром окружности.

Радиус окружности – отрезок, соединяющий центр окружности с какой-либо её точкой.

Отрезок, соединяющий две точки окружности, называется ее хордой.

Хорда, проходящая через центр окружности, называется диаметром.

Круг — это часть плоскости, ограниченная окружностью.

Угол называется развёрнутым, если обе его стороны лежат на одной прямой. ( Развёрнутый угол равен 180°).

Две геометрические фигуры называются равными, если их можно совместить наложением.

Середина отрезка — это точка отрезка, делящая его пополам, т.е. на два равных отрезка.

Биссектриса угла — это луч, исходящий из вершины угла и делящий его на два равных угла.

Угол называется прямым, если он равен 90°.

Угол называется острым, если он меньше 90° (т.е. меньше прямого угла).

Угол называется тупым, если он больше 90°, но меньше 180°. (т.е. больше прямого, но меньше развёрнутого).

Два угла, у которых одна сторона общая, а две другие являются продолжениями одна другой, называются смежными. Сумма смежных углов равна 180°.

Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого. Вертикальные углы равны.

Расстоянием от точки до прямой называется длина перпендикуляра, проведённого из этой точки к прямой.

Перпендикулярные прямые — прямые, которые при пересечении образуют прямой угол.

Параллельные прямые — прямые, лежащие в одной плоскости и не имеющие общих точек.

Треугольник — это геометрическая фигура, которая состоит из трех точек, не лежащих на одной прямой и трех отрезков, соединяющих эти точки. Точки называются вершинами, а отрезки — сторонами треугольника.

Сумма углов треугольника равна 180°.

Внешним углом треугольника называется угол, смежный с каким-нибудь углом этого треугольника.

Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.

Если все три угла треугольника острые, то треугольник называется остроугольным.

Если один из углов треугольника тупой, то треугольник называется тупоугольным.

Если один из углов треугольника прямой, то треугольник называется прямоугольным.

Сторона прямоугольного треугольника, лежащая против прямого угла, называется гипотенузой, а две стороны, образующие прямой угол — катетами.

(Т. о соотношениях между сторонами и углами треугольника) В треугольнике против большей стороны лежит больший угол, и обратно, против большего угла лежит большая сторона.

В прямоугольном треугольнике гипотенуза больше катета.

(Признак равнобедр. треугольника) Если два угла треугольника равны, то треугольник равнобедренный.

(Т. Неравенство треугольника) Каждая сторона треугольника меньше суммы двух других сторон.

Если два треугольника равны, то элементы (т.е. стороны и углы) одного треугольника соответственно равны элементам другого треугольника.

Теорема – утверждение, справедливость которого устанавливается путём рассуждений. Сами рассуждения называются доказательством теоремы.

Первый признак равенства треугольников

На рисунке 1 представлен треугольник ABС. Который имеет три вершины (А, В и С). И стороны – АВ, АС и ВС.

Треугольники считаются равными, когда все их стороны и углы соответственно равны друг другу (в случае, когда равны лишь углы, а стороны пропорциональны, треугольники называются подобными). Таким образом очевидно, что равные треугольники можно наложить друг на друга – и они полностью совпадут.

Доказательство первого признака равенства треугольников

Два треугольника: ABC и DEF (рисунок 2).

По условию теоремы две пары отрезков этих треугольников равны между собой (АС = FD и СВ = EF). Углы между отрезками также равны (т.е. ∠АСВ = ∠EFD).

Доказать, что треугольник ABC равен треугольнику DEF.

Поскольку имеется равенство углов (∠АСВ = ∠EFD), треугольники можно наложить друг на друга, так чтобы вершина С совпадала с вершиной F.
При этом отрезки СА и СВ наложатся на отрезки FE и FD.
А поскольку отрезки двух треугольников равны между собой (АС = FD и СВ = EF по условию), то отрезок АВ также совпадёт со стороной ED.
Это в свою очередь даст совмещение вершин А и D, В и Е.
Следовательно, треугольники полностью совместятся, а значит, они равны.
Теорема доказана.

Второй признак равенства треугольников

Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Как и в доказательстве первого признака, нужно убедиться, достаточно ли этого для равенства треугольников, можно ли их полностью совместить?

1. Так как MN=PR, то эти отрезки совмещаются, если совместить их конечные точки.

2. Так как∡N=∡R и∡M=∡P, то лучи MK и NK наложатся соответственно на лучи PT и RT.

3. Если совпадают лучи, то совпадают точки их пересечения K и T.

4. Совмещены все вершины треугольников, то есть ΔMNK и ΔPRT полностью совместятся, значит они равны.

Третий признак равенства треугольников

Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны.

Опять попробуем совместить треугольникиΔMNK и ΔPRT наложением и убедится, что соответственно равные стороны гарантирует и равенство соответственных углов этих треугольников и они полностью совпадут.

Совместим, например, одинаковые отрезки MK иPT. Допустим, что точки N и R при этом не совмещаются.

Пусть O — середина отрезка NR. Соответственно данной информацииMN=PR, KN=TR. Треугольники MNR и KNR равнобедренные с общим основанием NR.

Поэтому их медианы MO и KO являются высотами, значит перпендикулярны NR. Прямые MO и KO не совпадают, так как точки M, K, O не лежат на одной прямой. Но через точку O прямой NR можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию.

Доказано, что должны совместиться и вершины N и R.

Третий признак позволяет назвать треугольник очень сильной, устойчивой фигурой, иногда говорят, что треугольник — жёсткая фигура. Если длины сторон не меняются, то углы тоже не меняются. Например, у четырёхугольника такого свойства нет. Поэтому разные поддержки и укрепления делают треугольными.

Перпендикуляр к прямой

Из точки не лежащей на прямой можно провести перпендикуляр к этой прямой и притом только один

Медианы,биссектриссы и высоты треугольника

В любом треугольнике медианы пересекаются в одной точке. Биссектрисы пересекаются в одной точке. Высоты или их продолжения также пересекаются в одной точке

Свойства равнобедренного треугольника

  1. В равнобедренном треугольнике углы при основании равны.
  2. В рабнобедренном треугольнике бисссектриса проведенная к основанию является медианой и высотой.
  3. Высота равнобедренного треугольника проведенная к основанию является медианой и биссектрисой.
  4. Медиана равнобедренного треугольника проведенная к основанию является высотой и биссекрисой.

Признаки параллельности двух прямых. Теорема 1

Если при пересечении двух прямых секущей накрест лежащие углы равны то прямые параллельны.

Признаки параллельности прямых.Теорема 2

Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

Признаки параллельности прямых. Теорема 3.

Если при пересечении двух прямых секущей сумма односторонних углов равна 180⁰ то прямые параллельны.

Теорема об углах образованных двумя параллельными прямыми и секущей.

Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны.

Аксиома параллельных прямых.

В одной плоскости с заданной прямой через точку, не лежащую на этой прямой, можно провести только одну прямую, параллельную заданной прямой.

Теоремы об углах, образованных двумя параллельными прямыми и секущей

  1. Если две параллельные прямые пересечены секущей, накрест лежащие углы равны.
  2. Если две параллельные прямые пересечены секущей, то соответственные углы равны.
  3. Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°.
  4. Если при пересечении двух прямых секущей накрест лежащие углы равны, топрямые параллельны.

Теорема Сумма углов треугольника равна 180°.

Рассмотрим произвольный треугольник KLM и докажем, что ∡K+∡L+∡M=180°.

Проведём через вершину L прямую a, параллельную стороне KM.

Углы, обозначенные 1, являются накрест лежащими углами при пересечении параллельных прямых a и KMсекущей KL, а углы, обозначенные 2 — накрест лежащими углами при пересечении тех же параллельных прямых секущей ML.

Очевидно, сумма углов 1, 2 и 3 равна развёрнутому углу с вершиной L, т. е.
∡1+∡2+∡3= 180°или ∡K+∡L+∡M=180°.

Следствия из теоремы о сумме углов треугольника

Следствие 1. Сумма острых углов прямоугольного треугольника равна 90°.

Следствие 2. В равнобедренном прямоугольном треугольнике каждый острый угол равен 45°.

Следствие 3. В равностороннем треугольнике каждый угол равен 60°.

Следствие 4. В любом треугольнике либо все углы острые, либо два угла острые, а третий — тупой или прямой.

Следствие 5. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.

Из равенств ∡KML+∡BML= 180° и ∡K+∡L+∡KML=180° получаем, что ∡BML=∡K+∡L.

Четырёхугольники

Многоугольник — фигура, состоящая из нескольких точек плоскости, поочередно соединённых между собой непересекающимися отрезками.

Диагональ -это отрезок, соединяющий две несоседних вершины многоугольника.

Выпуклый многоугольник — это многоугольник, который весь лежит по одну сторону от каждой прямой, проходящей через две его соседние вершины.

Теорема:Сумма внутренних углов выпуклого n-угольника равна (n-2)*1800.

Параллелограмм- это четырёхугольник, у которого противоположные стороны попарно параллельны.

Свойство:в параллелограмме противоположные стороны равны и противоположные углы равны.

Свойство:диагонали параллелограмма точкой пересечения делятся пополам.

Теорема(признакпараллелограмма): Если в четырёхугольнике две стороны равны и параллельны, то этот четырёхугольник – параллелограмм.

Теорема(признак параллелограмма): Если в четырёхугольнике противоположные стороны попарно равны, то этот четырёхугольник – параллелограмм.

Теорема(признак параллелограмма): Если в четырёхугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырёхугольник – параллелограмм.

Трапеция — это четырёхугольник, у которого две стороны параллельны, а две другие не параллельны.Параллельные стороны-основания, непараллельные стороны-боковые.

Равнобедренная трапеция — это трапеция, у которой боковые стороны равны.

Прямоугольная трапеция — это трапеция, у которой один из углов прямой.

Теорема Фалеса: если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые, пресекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки.

Прямоугольник — это параллелограмм, у которого все углы прямые.

Свойство: диагонали прямоугольника равны.

Теорема(признакпрямоугольника): если в параллелограмме диагонали равны, то этот параллелограмм – прямоугольник.

Ромб — это параллелограмм, у которого все стороны равны.

Свойство: диагонали ромба взаимно перпендикулярны и делят его углы пополам.

Квадрат — это прямоугольник, у которого все стороны равны.

Площадь

Площадь плоской фигуры-это количество единичных квадратов, вмещающихся в данную фигуру.

Единицы измерения площади: мм2,см2, дм2, м2, ар=100м2, км2 , га=100км2.

Площадь квадрата равна квадрату его стороны.

Площадь прямоугольника равна произведению его смежных сторон.

Площадь параллелограмма равна произведению его основания на высоту.

Площадь треугольника равна половине произведения его основания на высоту.

Площадь прямоугольного треугольника равна произведению его катетов.

Если высоты двух треугольников равны, то их площади относятся как основания.

Если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, заключающих равные углы.

Площадь трапеции равна полусумме её оснований на высоту.

Теорема Пифагора: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Теорема(обр.): если квадрат одной стороны треугольника равен сумме квадратов двух других его сторон, то треугольник прямоугольный.

Подобные треугольники

Отрезки m и n пропорциональны отрезкам m1и n1,если отношения их длин равны m:m1= n: n1.

Подобные треугольники — это треугольники,у которых соответственные углы равны, а сходственные стороны пропорциональны.

Коэффициент подобия — это число, равное отношению сходственных сторон подобных треугольников.

Теорема: Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Свойство биссектрисы тр-ка: биссектриса треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам треугольника.

Теорема(первый признак подобия треугольников): если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.

Теорема(второй признак подобия треугольников): если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключённые между этими сторонами, равны, то такие треугольники подобны.

Теорема(первый признак подобия треугольников): если три стороны одного треугольника пропорциональны трём сторонам другого треугольника, то такие треугольники подобны.

Средняя линия треугольника – это отрезок, соединяющий середины двух его сторон.

Теорема: Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.

С. Высота прямоугольного треугольника, проведённая из вершины прямого угла, разделяет треугольник на два подобных прямоугольных треугольника, каждый из которых подобен данному треугольнику.

Среднее пропорциональное(среднее геометрическое)двух величин – это квадратный корень из произведения этих величин.

С. Высота прямоугольного треугольника, проведённая из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.

С. Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы,заключённым между катетом и высотой, проведённой из вершины прямого угла.

Синус острого угла прямоугольного треугольника — это отношение противолежащего катета к гипотенузе.

Косинус острого угла прямоугольного треугольника- это отношение прилежащего катета к гипотенузе.

Тангенс острого угла прямоугольного треугольника- это отношение противолежащего катета к прилежащему .

Котангенс острого угла прямоугольного треугольника- это отношение прилежащего катета к противолежащему .

Окружность

Касательная к окружности – это прямая, имеющая с окружностью только одну общую точку.

Т. Касательная к окружности перпендикулярна к радиусу, проведённому в точку касания.

Т.(обр.) Если прямая проходит через конец радиуса, лежащий на окружности, и перпендикулярна к этому радиусу, то она является касательной.

Центральный угол – это угол с вершиной в центре окружности.

Дуга окружности измеряется центральным углом, который на неё опирается.

Вписанный угол – это угол, вершина которого лежит на окружности, а стороны пересекают окружность.

Т.Вписанный угол равен половине дуги, на которую он опирается.

С. Вписанные углы, опирающиеся на одну и ту же дугу, равны.

С. Вписанный угол, опирающийся на полуокружность, — прямой.

Т. Если две хорды окружности пересекаются, произведение отрезков одной хорды равно произведению отрезков другой хорды.

Читайте также: