Структурное звено это кратко

Обновлено: 05.07.2024

Структурное звено А содержит кониферилальдегидную группу и ответственно за даваемые лигнином цветные реакции. Звено А может быть частично заменено кониферилалкогольной группой. Со структурным звеном В звено А связано через эфирную связь между фенольной гидроксильной группой А и гидро-ксильной группой у р-углеродного атома В. [1]

Структурные звенья , входящие в состав службы автоматизации и вычислительной техники, должны обеспечить обслуживание всех средств связи, автоматизации, контрольно-измерительных приборов и электронно-вычислительной техники, а также осуществить внедрение в производство новейших систем автоматического контроля и регулирования. [2]

Структурные звенья D и Е образуют структуру пинорези-нола - димерного соединения, которое, как утверждает Фрей-денберг, имеется в молекуле лигнина. [3]

Указанные структурные звенья в значительно большей степени подтверждены экспериментальным материалом, чем некоторые из предложенных этими же авторами звеньев ионитов на основе продуктов сульфирования фенолформальдегидных новолаков. Следует все же учесть, что в зависимости от условий синтеза могут не только меняться соотношения приведенных звеньев в ионите, но также появляться новые звенья. Если в цепи возникают енольные группировки, в особенности если их двойные связи сопряжены с карбонильными группами, то степень ионизации гидроксилов может очень сильно увеличиваться. [4]

Структурные звенья производственной службы должны обеспечивать материальное и энергетическое обслуживание основных производственных фондов и регулировать производство с целью выполнения всех текущих ( месячных) планов. В целях успешного функционирования производственной деятельности работники производственной службы непосредственно связаны со структурными звеньями административно-линейного управления, а также с руководителями других служб предприятия. [5]

Сколько структурных звеньев приблизительно имеют молекулы целлюлозы и растворимой фракции крахмала. [6]

Сколько структурных звеньев полиоксиметилена представлено формулой. [7]

Первичным структурным звеном является производственное предприятие. [8]

Эти структурные звенья перекрестно связаны диалкилэфир-ными связями и образуют, таким образом, сетку с весьма высоким молекулярным весом. [9]

Поскольку структурные звенья в лигнинной молекуле могут быть связаны друг с другом эфирными связями ( в частности, алкиларильными эфирными связями), Шорыгина и Кефели [24- 26] применили вышеприведенную реакцию к препаратам лигнина. [10]

Какие структурные звенья входят в состав ЦИП. [11]

Лигниновре структурное звено не является определенным соединением ( или мономером), а должно рассматриваться, как радикал или фракция лигниновой молекулы. [12]

Если структурные звенья мономеров распределены вдоль полимерной цепи беспорядочно, такой сополимер называется статистическим. При упорядоченном расположении звеньев вдоль цепи сополимер называется регулярным. В таких сополимерах обычно звенья отдельных мономеров чередуются. [13]

Образованы новые структурные звенья , в том числе Учебно-исследовательский вычислительный центр, Главная редакция издания научной и учебной литературы, Институт обмена опытом социалистического строительства братских партий. [14]

Если структурные звенья мономеров распределены вдоль полимерной цепи беспорядочно, такой сополНмер называется статистическим. При упорядоченном расположении звеньев йдоль цени сополимер называется регулярным. В таких сополимерах обычно звенья отдельных мономеров черелуются. [15]

Ответ. Структурное звено – это повторяющийся фрагмент в молекуле полимера. Например, в поливинилхлориде (-CH2-CHCL)n структурное звено - CH2 - CHCL. Число структурных звеньев в молекуле полимера называется степенью полимеризации.

24. На конкретном примере покажите возможность образования полимера со стереорегулярным и стереонерегулярным строением.

Ответ. При полимеризации пропилена получают полипропилен:

Если в образующемся полимере группы – CH3 расположены хаотично по одну и другую сторону цепи, то это - стереонерегулярный полимер. Можно подобрать такие условия процесса полимеризации (в первую очередь катализатор), что группы – CH3 ,будут располагаться только по одну из сторон цепи или по обе стороны, но строго регулярно, В этом случае получится стереорегулярный полимер.

25. Охарактеризуйте процесс получения полиэтилена и полипропилена в промышленности. Составьте уравнения соответствующих реакций:

проводят при комнатной температуре и атмосферном давлении с катализаторами Al(C2H5)3 и TiCl4

26. Опишите свойства полиэтилена, полипропилена и тефлона. Где они применяются?

Ответ. Полиэтилен (-CH2-CH2-)n - прозрачный материал, обладающий высокой химический стойкостью, плохо проводит тепло и электричество. Его применяют для изоляции пленок и в качестве упаковочного материала.

Полипропилен (-CH2-CH-)n по свойствам похож на полиэтилен, но

плавится при более высокой температуре и механически более прочен. Из него изготавливают трубы, канаты, рыболовные сети.

Тефлон или политетрафторэтилен (-CF2-CF2-)n –термостойкое и химически чрезвычайно инертное вещество. По химической устойчивости он превосходит благородные металлы. Его используют для изготовления деталей аппаратов, работающих в агрессивных средах.

27. Составьте уравнения реакций, в которых образуются поливинилхлорид, полистирол, полиметилметакрилат. Где применяются эти полимеры?

поливинилхлорид применяется для изготовления искусственной кожи, труб, изоляционных материалов.

Полистирол применяется для изготовления труб, изоляционных материалов и пенопластов.

Из полиметилметакрилата изготовляют очень прочное органическое стекло.

28. На конкретных примерах поясните, чем отличаются реакции поликонденсации от реакций полимеризации.

Ответ. При полимеризации происходит реакция соединения молекул мономера в молекулу полимера:

При поликонденсации реакция соединения сопровождается выделением низкомолекулярного продукта, например воды:

29. В чем сущность процесса образования фенолформальдегидной смолы? Какие фенопласты из нее получают?

Ответ. Фенолформальдегидная смола - это высокомолекулярное вещество, которое образуется при поликонденсации фенола и формальдегида. Добавляя к смоле различные наполнители, получают фенол-формальдегидные пластмассы (фенопласты), такие как текстолит, карболит и другие.

30. Какие полимеры называют термопластическими, а какие – термореактивными? Приведите примеры.

Ответ. Термопластические полимеры при нагревании размягчаются и изменяют форму, которую сохраняют после охлаждения. К ним относятся полиэтилен и полипропилен. Термореактивные полимеры при нагревании не плавятся и не размягчаются. К ним относятся фенопласты.

31. Поясните, кем и когда впервые в мире был разработан метод производства каучука. Составьте уравнения.

Ответ. Первый синтетический каучук был получен из бутадиена по методу С.В. Лебедева в 1932 г.


32. Для получения бутадиеного и дивинилового каучуков используется один и тот же мономер. Поясните, почему эти каучуки отличаются по своим свойствам?

Ответ. Дивиниловый каучук имеет стереорегулярное строение, поэтому он по эластичности превосходит природный каучук. Бутадиеновый каучук имеет нерегулярное строение, поэтому он менее эластичен, чем природный каучук.

33. Составьте уравнение образования хлоропренового каучука из 2-хлор-1,3-бутадиена.

34. Охарактеризуйте известного вам синтетического каучука и поясните, для каких технических целей они применяются?

Ответ. 1) Бутадиеновый каучук – это полибутадиен с нерегулярным строением. Он применяется для производства кабелей и бытовых предметов.

2). Дивиниловый каучук – это полибутадиен с регулярным строением, он имеет высокую износостойкость и эластичность. Применяется в производстве шин.

35. Чем отличается каучук от резины?

Ответ. Резина – это продукт реакции каучука с серой. Она обладает значительно большей прочностью, но меньшей эластичностью, чем каучук.

36. Какие условия следует соблюдать при долгом хранении автокамер, шин, резиновых трубопроводов и других изделий? Почему?

Ответ. Резину нельзя хранить при очень низкой температуре, т.к. это приведет к частичной кристаллизации каучука и потере и при высокой температуре, поскольку при этом разрушаются сульфидные мостики между полиизопреновыми цепями и также ухудшаются механические свойства резины.

37. Какие основные виды волокон вам известны? Приведите примеры.

Ответ. Основные виды волокон природные, искусственные и синтетические. Пример природного волокна – хлопок (C6H10O5)n, пример искусственного ацетатное волокно [C6H7O2(OCOH3)3]n. Синтетического волокна например, капрон [-NH-(CH2)5-CО-]n

38. Чем отличаются искусственные волокна от синтетических? Приведите примеры.

Ответ. Искусственные волокна получают путем химической модификации природных веществ. Например, ацетатное волокно

[C6H7O2(OCOCH3)3]n получают в синтеза без использования природных соединений.

39. Назовите наиболее известное вам полиамидное волокно. Охарактеризуйте свойства и получение этого волокна.

Ответ. Самое известное полиамидное волокно – капрон

Его получают поликонденсацией 6-аминогенсановой кислоты, образующейся при гидролизе капролактама. Капрон обладает высокой прочностью, однако разрушающиеся кислотами и не выдерживает высоких температур.

40. Составьте уравнение реакции окисления n-ксилола. Для каких целей используется продукт реакции?

Продукт реакции – терефталевая кислота используется для получения синтетического волокна лавсана.

41. По какому признаку лавсан относят к полиэфирным волокнам?

Ответ. Лавсан (полиэтилентерефталат), образуется при поликонденсации сложного эфира этиленгликоля и терефталевой кислоты. В молекулах лавсана есть сложноэфирные связи –O-CO-, поэтому лавсан относят к полиэфирным волокнам.

42. Каковы характерные свойства лавсана? Где его применяют?

Ответ. Лавсан обладает высокой прочностью и хорошей химической стойкостью. Его применяют для изготовления не мнущихся тканей, производства ремней, парусов, транспортных лент.

43. Углеводородное сырье (нефть, каменный уголь, природный газ) является источником для синтеза полиэтилена, фенопластов.

Приведите уравнения соответствующих реакций.

Ответ. Полиэтилен можно синтезировать из природного газа:


Фенопласты получают из фенола и формальдегида:

Необходимый для этого фенол выделяют из каменноугольной смолы, который получают каменного угля. Формальдегид получают окислением метана:CH4+O2→H2C=O+H2O

44. Приведите примеры природных волокон растительного и животного происхождения. Каковы некоторые недостатки этих волокон перед синтетическими?

45. В чем преимущества искусственных волокон перед природными?

46. В чем проявляется различие свойств полиэтилена высокого и низкого давления? Чем это различие объясняется?

47. Формальдегид может полимеризоваться по месту двойной связи, образуя полиформальдегид, в цепи которого последовательно чередуются атомы углерода и кислорода. Составьте схему реакции полимеризации формальдегида. Какими свойствами обладает полиформальдегид?

Данный полимер обладает хорошими механическими свойствами и используется для изготовления деталей машин, пленок, волокон.[21, 22]

Во все времена химия служит человеку в его практической деятельности. Большую роль играет химия в современной промышленности. Среди важнейших продуктов следует назвать пластмассы, каучуки и резины, синтетические волокна и многое другое. В настоящее время химическая промышленность выпускает несколько десятков тысяч наименований продукции.

Химия и химическая промышленность являются одним из наиболее существенных источников загрязнения окружающей среды. Для решения задач в области охраны окружающей среды необходимо осуществить комплекс мер, многие из которых решаются путем применения химических, физических или биохимических методов.

Среди многочисленных веществ, встречающихся в природе, резко выделяется группа соединений, отличающихся от других особыми физическими свойствами, высокой вязкостью растворов, способностью образовывать волокна, пленки и т.д. К этим веществам относятся целлюлоза, лигнин, пентозаны, крахмал, белки и нуклеиновые кислоты, широко распространенные в растительном и животном мире, где они образуются в результате жизнедеятельности организмов.

Высокомолекулярные соединения получили свое название вследствие большой величины их молекулярного веса, отличающие их от низкомолекулярных веществ, молекулярный вес которых лишь сравнительно редко достигает нескольких сотен. В настоящее время принято относить к ВМС вещества с молекулярным весом более 5000.

Молекулы ВМС называют макромолекулами, а химию ВМС – химией макромолекул и макромолекулярной химией.

В результате многочисленных соединений, осуществленных огромной армией химиков, физиков и технологов, было установлено не только строение некоторых природных ВМС, но и найдены пути синтеза их заменителей из доступных видов сырья. Возникли новые виды промышленности, началось производство синтетического каучука, искусственных синтетических волокон, пластических масс, лаков и красок, заменителей кожи и т.д. На первых парах синтетические материалы носили характер заменителей природных материалов. В настоящее время в результате успехов в химии и физике ВМС и усовершенствования технологий их производства, благодаря принципиальной возможности сочетать в одном веществе любые желаемые свойства, синтетические ВМС постепенно проникают во все области промышленности, где они становятся совершенно незаменимыми конструкционными и антикоррозийными материалами. Однако с эксплуатацией и утилизацией ВМС связаны не малые проблемы, которые нужно своевременно решать.

1. Рудзитис Г. Е., Фельдман Ф. Г. Химия: Органическая химия. Основы общей химии (Обобщение и углубление знаний):Учеб. Для 11 класса.-М.: Просвещение, 2004.- 160с.

4. Гузей Л. С. и др. Химия, 11 класс/ Л.С. Гузей, Р.П. Суровцева, Г.Г. Лысова - М.: "Дрофа", 1999. -240c.

5. Вивюрский В.Я. Вопросы, упражнения и задачи по органической химии с ответами и решениями. - М.: Гуманит. Изд. Центр ВАДОС, 1999. - 688с.

6. Воробьев В. А., Андрианов Р. А. Технология полимеров. - М.: Высш. школа, 1990. - 303с.

8. Бачурин Д. Г. Исследование и применение полимеров в промышленности.-М.:1990. - 112с.

12. Мовсумзаде Э. М. и др. Химия в вопросах и ответах с использованием ЭВМ./Э. М. Мовсумзаде, Г. А. Аббасова, Т. Г. Захарочкина. - М.: Высш. школа,1991. - 191с.

13. Химия и жизнь (Солтерсовская химия) Часть II Химические новеллы: Пер. с англ. – М.: РХТУ им. Д. И. Менделеева, 1997 437с., ил.

14. Химия и жизнь (Солтерсовская химия) Часть III Химические новеллы: Пер. с англ. – М.: РХТУ им. Д. И. Менделеева, 1997. - 437с.

15. Энциклопедия полимеров. Ред. Коллегия: Каргин В. А. и др. т.3.- М.: Сов. энциклопедия, 1972.

16. Кузьменко Н. Е., Еремин В. В. Химия. 2400 задач для школьников и поступающих в вузы.- М.: Дрофа, 1999.- 560 с.

17. Исидоров В. А. Экологическая химия: Учебное пособие для вузов. – СПб: Химиздат, 2001. – 304 с.

18. Селезнев А. В. Некоторые представления о свойствах поливинилхлорида и материалов на его основе // Экология и промышленность России.- 2001.- №11.- с. 35-37.

19. Микитюк А. Д. Обобщение сведений о реакциях полимеризации // Химия в школе.- 2002.- №4.- с. 56-62.

20. Вивюрский В.Я. Вопросы, упражнения и задачи по органической химии с ответами и решениями. - М.: Гуманит. Изд. Центр ВАДОС, 1999. - 688с.

22. Барковский Е. В., Врублевский А. И. Тесты по химии, Минск, Юнипресс, 2002

23. Химия: Большой справочник для школьников и поступающих в вузы / Е. А. Алферова, Н. С. Ахметов, Н. В. Богомолова и др. М.: Дрофа, 1999. 485-498

Раздел: Педагогика
Количество знаков с пробелами: 79614
Количество таблиц: 1
Количество изображений: 8

Для характеристики высокомолекулярных соединений необходимо рассмотреть следующие основные структурные понятия.


Мономер

Мономеры — низкомолекулярные вещества, из которых образуются молекулы полимеров.

Молекулы полимеров являются макромолекулами.

Например, пропилен СН2=СH–CH3 является мономером полипропилена:

а такие соединения, как α-аминокислоты, служат мономерами при синтезе природных полимеров – белков (полипептидов):

Полимер, макромолекула

Например, полиэтилен, получаемый при полимеризации этилена CH2=CH2:


Молекулярная масса макромолекул достигает десятков — сотен тысяч (и даже миллионов) атомных единиц массы.

Структурное звено полимера (мономерное звено)

Группа атомов, многократно повторяющаяся в цепной макромолекуле, называется ее структурным звеном.

. -CH2-CHCl- CH2-CHCl -CH2-CHCl-CH2-CHCl-CH2-CHCl- .

поливинилхлорид

В формуле макромолекулы это звeно обычно выделяют скобками:

По строению структурного звeна макромолекулы можно сказать о том, какой мономер использован в синтезе данного полимера и, наоборот, зная формулу мономера, нетрудно представить строение структурного звeна.

Строение структурного звена соответствует строению исходного мономера, поэтому его называют также мономерным звеном.

Степень полимеризации


n >> 1

Для синтетических полимеров, как правило, n ≈ 10 2 -10 4 ; а самые длинные из известных природных макромолекул – ДНК (полинуклеотидов) – имеют степень полимеризации n ≈ 10 9 -10 10 .

Молекулярная масса макромолекулы и полимера

Молекулярная масса макромолекулы связана со степенью полимеризации соотношением:

М(макромолекулы) = M (звена) × n,

где n - степень полимеризации,
M - относительная молекулярная масса
(подстрочный индекс r в обозначении относительной молекулярной массы Мr в химии полимеров обычно не используется).

Для полимера, состоящего из множества макромолекул, понятие молекулярная масса и степень полимеризации имеют несколько иной смысл. Дело в том, что когда в ходе реакции образуется полимер, то в каждую макромолекулу входит не строго постоянное число молекул мономера. Это зависит от того, в какой момент прекратится рост полимерной цепи.

Поэтому в одних макромолекулах мономерных звеньев больше, а в других — меньше. То есть, образуются макромолекулы с разной степенью полимеризации и, соответственно, с разной молекулярной массой (так называемые полимергомологи).

Следовательно, молекулярная масса и степень полимеризации полимера являются средними величинами:

Mср(полимера) = M (звена) × nср

Геометрическая форма макромолекул

Геометрическая форма макромолекулы — пространственная структура макромолекулы в целом.

В зависимости от строения углеродной цепи, различают линейные (неразветвленные), разветвленные и пространственные (сетчатые, сшитые) полимеры.

Линейная форма (структурные звенья соединены в длинные цепи последовательно одно за другим) — натуральный каучук, целлюлоза, амилоза (составная часть крахмала), поливиниловый спирт, полистирол, полиэтилен низкого давления, капрон, найлон и др. полимеры:


Разветвленная форма (макромолекулы разветвленных полимеров – это длинные цепи с короткими боковыми ответвлениями) — полиэтилен высокого давления, амилопектин (компонент крахмала):


Пространственная форма (сетчатая, сшитая), при которой длинные линейные молекулы соединены между собой поперечными химическими связями – шерсть, вулканизованный каучук (резина), фенолформальдегидные смолы:


Геометрическая форма макромолекул в значительной степени влияет на свойства полимеров.



Рубрики: Высокомолекулярные соединения

- классификация полимеров по основным признакам: происхождение, химический состав, структура макромолекулы, пространственная структура макромолекулы, физические свойства (аморфное или кристаллическое строение, отношение к нагреванию);

- основные методы синтеза ВМС - полимеризация и поликонденсация;

- особенности строения ВМС и зависимость свойств полимеров от их строения;

- вещества и материалы, широко используемые в практике: искусственные волокна, каучуки, волокна.

Мономер– исходное низкомолекулярное вещество, из которого синтезируют полимер.

Элементарное (структурное) звено – одинаковые многократно повторяющиеся звенья в макромолекуле полимера. Макромолекула– молекула полимера.

макромолекула
Степень полимеризации (n)– число элементарных звеньев в молекуле полимера.

степень полимеризации

структурное звено
nCH2=CH2 p, t, кат -(– CH2 – CH2–)-n

После изучения этой темы вы должны знать:

- общие понятия химии высокомолекулярных соединений: мономер, полимер, структурное звено, степень полимеризации, средняя молекулярная масса;

- классификация полимеров по основным признакам: происхождение, химический состав, структура макромолекулы, пространственная структура макромолекулы, физические свойства (аморфное или кристаллическое строение, отношение к нагреванию);

- основные методы синтеза ВМС - полимеризация и поликонденсация;

- особенности строения ВМС и зависимость свойств полимеров от их строения;

- вещества и материалы, широко используемые в практике: искусственные волокна, каучуки, волокна.

Мономер– исходное низкомолекулярное вещество, из которого синтезируют полимер.

Элементарное (структурное) звено – одинаковые многократно повторяющиеся звенья в макромолекуле полимера. Макромолекула– молекула полимера.

Читайте также: