Сравните конвекцию и излучение кратко и понятно

Обновлено: 04.07.2024

Конвекция и излучение - это два процесса, обсуждаемые в области тепла. Конвекция - это метод передачи тепла с помощью движущихся частиц. Для излучения не требуются частицы или среда для передачи энергии. Оба эти процесса очень важны во многих областях. Эти концепции широко используются в тепло- и термодинамике, атмосферных науках, анализе погоды, климатическом анализе, механике жидкостей и даже в медицинских науках. Жизненно важно иметь правильное понимание этих концепций, чтобы преуспеть в тех областях, где эти концепции широко используются. В этой статье мы собираемся обсудить, что такое конвекция и излучение, их определения, приложения конвекции и излучения, их сходства и, наконец, разницу между конвекцией и излучением.

Что такое радиация?

Электромагнитное излучение или широко известное как излучение или электромагнитное излучение - это метод передачи тепла. Электромагнитное излучение было впервые предложено Джеймсом Клерком Максвеллом. Позже это подтвердил Генрих Герц, который успешно произвел первую электромагнитную волну. Максвелл вывел форму волны для электрических и магнитных волн и успешно предсказал скорость этих волн. Поскольку скорость этой волны была равна экспериментальному значению скорости света, Максвелл также предположил, что свет, по сути, был формой электромагнитных волн. Электромагнитные волны имеют как электрическое поле, так и магнитное поле, колеблющиеся перпендикулярно друг другу и перпендикулярно направлению распространения волны. Все электромагнитные волны в вакууме имеют одинаковую скорость. Частота электромагнитной волны определяет запасенную в ней энергию. Позже с помощью квантовой механики было показано, что эти волны на самом деле представляют собой пакеты волн. Энергия этого пакета зависит от частоты волны. Это открыло поле корпускулярно-волнового дуализма материи. Теперь видно, что электромагнитное излучение можно рассматривать как волны и частицы. Объект, который помещен в любую температуру выше абсолютного нуля, будет излучать электромагнитные волны любой длины. Энергия, которую испускает максимальное количество фотонов, зависит от температуры тела.

Что такое конвекция?

Конвекция - это терминология, используемая для описания объемных перемещений жидкости. Однако в данной статье под конвекцией понимается тепловая конвекция. В отличие от проводимости, в твердых телах конвекция невозможна. Конвекция - это процесс передачи энергии посредством прямой передачи вещества. В жидкостях и газах при нагревании снизу сначала нагревается нижний слой жидкости. Затем нагретый слой воздуха расширяется; будучи менее плотным, чем холодный воздух, слой горячего воздуха поднимается в виде конвекционного потока. Затем следующий слой жидкости испытывает те же явления. Между тем, первый слой горячего воздуха остынет и опустится. Этот эффект создает контур проводимости, непрерывно передающий тепло, отбираемое от нижних слоев, к верхним слоям. Это очень важная закономерность в погодных системах. В этом механизме тепло от поверхности земли передается в верхние слои атмосферы.

В чем разница между конвекцией и излучением?

• Для возникновения конвекции вокруг нагретого тела должна находиться среда с подвижными частицами. Радиация не требует какой-либо среды.

• Передача тепла за счет излучения происходит быстрее, чем за счет конвекции.

• Конвекция всегда уносит тепло от силы тяжести, тогда как излучение излучается во всех направлениях.

Излучение отличается от конвекции и теплопроводности тем, что не требуется прямого контакта при теплопередаче и теплопередача излучением может осуществлятся даже в полном вакууме. Сходство в том, что излучение, конвекция, теплопроводность - это различные способы изменения внутренней энергии, виды теплопередачи. Излучение - это вид теплопередачи осуществляемый посредством электромагнитных волн.

Излучение - это электромагнитное излучение вещества (возмущение электромагнитного поля) . которое возникает за счет его (вещества или тела) внутренней энергии (наример, нагретая батарея, горячая печка, солнечное тепло и свет) Тепловое излучение - это коротковолновое инфракрасное излучение.
Конвекция - это перенос энергии за счет движения частиц вещества (движущимися частицами) . Наиболее часто конвекция наблюдается в газах и жидкостях (например, закипание чайника, или тепло от батареи, распространяющееся по комнате)
Теплопроводность - это перенос теплоты структурными частицами вещества (молекулами, атомами, электронами - "твердой" средой, связанными частицами вещества ) в процессе их теплового движения или от наиболее нагретой области к наименее нагретой. Наибольшая теплопроводность наблюдается у металлов, как у наиболее плотных веществ, наименьная - у газов, как у наименее плотных.
Проще говоря, излучение - это лучистая энергия, конвекция - это перенос тепла, а теплопроводность - это способность вещества (материалов) передавать тепло. Это не совсем точно, зато более понятно.
Желаю успехов!

Теплопередача – это способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы. Существуют следующие виды теплопередачи: теплопроводность, конвекция и излучение.

Теплопроводность

Теплопроводность – это процесс передачи энергии от одного тел а к другому или от одной части тела к дpугой благодаря тепловому движению частиц. Важно, что при теплопроводности не происходит перемещения вещества, от одного тела к другом у или от одной части телa к другой передается энергия.

Разные вещества обладают разной теплопроводностью. Если на дно пробирки, наполненной водой, положить кусочек льда и верхний её конец поместить над пламенем спиртовки, то через некоторое время вода в верхней части пробирки закипит, а лёд при этом не растает. Следовательно, вода, так же как и все жидкости, обладает плохой теплопроводностью.

Виды теплопередачи: теплопроводность, конвекция, излучение

Ещё более плохой теплопроводность ю обладают газы. Возьмём пробирку, в которой нет ничего, кроме воздуха, и расположим её над пламенем спиртовки. Палец, помещённый в пробирку, не почувствует тепла. Следовательно, воздух и другие газы обладает плохой теплопроводностью.

Хорошими проводниками теплоты являются металлы, самыми плохими — сильно разреженные газы. Это объясняется особенностями их строения. Молекулы газов находятся друг от друга на расстояниях, больших, чем молекулы твёрдых тел, и значительно реже сталкиваются. Поэтому и передача энергии от одних молекул к другим в газах происходит не столь интенсивно, как в твёрдых телах. Теплопроводность жидкости занимает промежуточное положение между теплопроводностью газов и твёрдых тел.

Конвекция

Как известно, газы и жидкости плохо проводят теплоту. В то же время от батарей парового отопления нагревается воздух. Это происходит благодаря такому виду теплопроводности, как конвекция.

Если вертушку, сделанную из бумаги, поместить над источником тепла, то вертушка начнёт вращаться. Это происходит потому, что нагретые менее плотные слои воздуха под действием выталкивающей силы поднимаются вверх, а более холодные движутся вниз и занимают их место, что и приводит к вращению вертушки.

Конвекция — вид теплопередачи, при котором энергия передаётся слоями жидкости или газа. Конвекция связана с переносом вещества, поэтому она может осуществляться только в жидкостях и газах; в твёрдых телах конвекция не происходит.

Излучение

Третий вид теплопередачи — излучение. Если поднести руку к спирали электроплитки, включённой в сеть, к горящей электрической лампочке, к нагретому утюгу, к батарее отопления и т.п., то можно явно ощутить тепло.

Опыты также показывают, что чёрные тела хорошо поглощают и излучают энергию, а белые или блестящие плохо испускают и плохо поглощают её. Они хорошо энергию отражают. Поэтому понятно, почему летом носят светлую одежду, почему дома на юге предпочитают красить в белый цвет.

Виды теплопередачи: теплопроводность, конвекция, излучение

Путём излучения энергия передаётся от Солнца к Земле. Поскольку пространство между Солнцем и Землёй представляет собой вакуум (высота атмосферы Земли много меньше расстояния от неё до Солнца), то энергия не может передаваться ни путём конвекции, ни путём теплопроводности. Таким образом, для передачи энергии путём излучения не требуется наличия какой-либо среды, эта теплопередача может осуществляться и в вакууме.

теплопередача виды


Из трех известных механизмов передачи теплоты от тела более теплого более холодному (теплопроводность, конвекция и излучение (радиация)) в процессе теплоотдачи отопительных приборов конвекция и радиация играют наиболее заметную роль при формировании теплового комфорта в отапливаемом помещении.

При радиации (этот механизм также называют передачей тепла с помощью лучистой энергии или лучистым обогревом) энергия переносится с объекта на объект посредством электромагнитного излучения с длиной волны (λ) от 0,7 до 400 мкм – инфракрасная часть спектра. При поглощении электромагнитных волн с длиной волны из инфракрасной части спектра каким-либо телом (облучаемым объектом) происходит возбуждение молекул вещества, ускорение движения этих молекул и генерация тепловой энергии. Так, в частности, передается на Землю тепло Солнца, таким же образом мы греемся у костра или камина и, более того, таким способом мы воспринимаем часть тепла от любых предметов и сами отдаем его.

Любой традиционный отопительный прибор отдает тепло в обогреваемое помещение обоими упомянутыми способами. Однако соотношение долей указанных природных механизмов в передаче тепловой энергии окружающей среде и предметам для разных отопительных приборов будет различно. Это соотношение и послужило когда-то основой для их деления на радиаторы и конвекторы. В соответствии с преобладающим способом теплоотдачи отопительные приборы делились на следующие виды:

- радиационные, передающие излучением не менее 50% всего вырабатываемого теплового потока (обычно потолочные отопительные панели и излучатели),

- конвективно-радиационные, передающие конвекцией 50%-75% общего теплового потока (радиаторы секционные и панельные, гладкотрубные приборы, напольные отопительные панели),

- конвективные, передающие конвекцией не менее 75% общего теплового потока (конвекторы и ребристые трубы).

Радиаторы и (или) конвекторы

Рис. 1 Секционный радиатор, установленный под окном

Секционный радиатор, установленный под окном

Даже для однорядного стального панельного радиатора без оребрения (тип 10) доля лучистого тепла составляет в общей теплоотдаче около 45 % (рис. 2, 3).

Рис. 2 Типы стальных панельных радиаторов

Типы стальных панельных радиаторов

Рис. 3 Стальной панельный радиатор – тип 10

Стальной панельный радиатор – тип 10

Во всех остальных радиаторах оребрение играет главную роль в теплоотдаче, как за счет увеличения площади, так и за счет формирования конвекционных каналов. При этом оребрение само себя экранирует, препятствуя распространению тепла лучистым способом (рис. 4). Поэтому и доля конвективной отдачи с любого отопительного прибора оказывается больше.

Рис. 4 Оребрение стального панельного радиатора

Оребрение стального панельного радиатора

Конвекторами в классификации старых ГОСТО-в, как приводится выше, было принято считать приборы, доля лучистой составляющей в теплоотдаче которых не превышает 25 %. В то же время такие модели приборов, за которыми укоренилось название стальных панельных радиаторов, например, тип 22 или тип 33 не дают и 20 % лучистой энергии в общей теплоотдаче (рис. 5, 6).

Рис. 5 Стальной панельный радиатор тип 22

Стальной панельный радиатор тип 22

Рис. 6 Стальной панельный радиатор тип 33

Стальной панельный радиатор тип 33

Рис. 7 Напольный конвектор

Напольный конвектор

Qизм – тепловой поток испытуемого отопительного прибора,

S – доля теплоотдачи излучением, определяемая согласно ГОСТ-у по приводящейся там таблице.

Атмосферное давление влияет на конвективную составляющую теплоотдачи отопительного прибора, так как при этом способе отдачи теплоты основную роль играет формирование теплых воздушных потоков, а если прибор имеет существенную долю лучистой энергии в теплоотдаче, то атмосферное давление на его общей теплоотдаче сказывается меньше. В целом же изменения атмосферного давления в природных условиях оказывает влияние на значение теплоотдачи прибора обычно в пределах 2-3%.

Рис. 8 График для поправки на атмосферное давление к расчету теплового потока

График для поправки на атмосферное давление к расчету теплового потока

Конвекция и радиация в температурном комфорте

Наиболее комплексно состояние теплового комфорта человека определяется в микроклимате помещения с помощью эквивалентно-эффективной температуры (ЭЭТ) и результирующей температуры (РТ). ЭЭТ – условно-числовая величина субъективного ощущения человека при разных соотношениях температуры, влажности, скорости движения воздуха, а РТ – и радиационной температуры. Этот параметр используется при наличии источников теплового излучения и рассчитывается, в общем случае, с помощью таблиц или номограмм по показателям сухого и радиационного термометров.

PT = 0,6 tp + 0,4 tr,

где tp и tr – соответственно температуры воздуха в помещении и средняя радиационная. Для получения последней используются показатели шарового термометра или температуры внутренних поверхностей ограждений и отопительных приборов:

где Ai – площадь внутренней поверхности ограждений и отопительных приборов, ti – их температуры, ˚С.

На степень комфортности внутреннего климата значительно влияют также тепловая радиационная асимметрия, температура поверхности пола, температурный градиент по вертикали.

По своей природе инфракрасное излучение более эффективный способ передачи тепла от его источника к окружающим предметам и именно потому, что при этом не нагревается воздух, выступающий при конвекции как промежуточный теплоноситель, доставляющий тепло к месту его потребления. При транспортировке происходят основные потери тепла. Под воздействием же инфракрасного излучения непосредственно нагревается поверхность пола, облучаемые площади стен, поверхность человеческого тела, окружающие предметы. Практически вся излученная энергия переходит в тепло обогреваемого предмета без теплопотерь, и уже впоследствии от нагретых поверхностей предметов нагревается воздух в помещении.

Кроме того, для передачи тепла лучистой энергией свойственен эффект дополнительного обогрева - находящийся под воздействием инфракрасного излучения человек ощущает температуру примерно на 3-4 градуса выше, чем реальная температура воздуха в помещении.

Однако при формировании теплового комфорта в помещении, которое обогревается прибором водяного отопления, размещенном под подоконником, наблюдается такой парадокс, что именно конвекторы оказываются более эффективны и, в том числе, за счет вклада радиационной составляющей в общий баланс для достижения температуры комфорта.

Прежде всего, условный конвектор, установленный под подоконником, создает более мощный конвекционный поток теплого воздуха, чем установленный там же условный радиатор. В результате, этот поток лучше защищает от холода, поступающего внутрь помещения от окна. Поток теплого воздуха от конвектора на 1-2 ºС лучше прогревает поверхность оконного стекла, чем поток от радиатора. А эти 2 градуса очень хорошо чувствуются, если люди сидят около окна и разница между температурами 16 ºС и 18 ºС очень заметна.

Эффективны в повышении вклада радиационной составляющей в общий баланс температурного комфорта оказываются и плинтусные (парапетные) конвекторы, которые размещаются при отоплении больших помещений по периметру стен, особенно при сочетании с вентиляторными конвекторами, устанавливаемыми под окнами. При их работе не только перегревается потолок, но и формирующиеся у поверхности стен конвекционные потоки прогревают и сами стены. Опять на те же 2-3 °С, но в этом случае и стены начинают вносить больший вклад в радиационную составляющую общего теплового комфорта. Таким образом получается, что как бы теплопотери с промежуточного теплоносителя (воздуха) работают на более эффективное достижение комфортной температуры.


Из этого видеофрагмента вы узнаете, что представляют собой конвекция и излучение. Научитесь отличать естественную конвекцию от вынужденной. Узнаете, какие тела лучше, а какие хуже поглощают энергию излучения. А также узнаете, чем отличаются друг от друга все три вида теплопередачи.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Конвекция. Излучение"

На прошлом уроке мы с вами подробно рассмотрели один из видов теплопередачи — теплопроводность. Давайте вспомним, что теплопроводность — это явление передачи внутренней энергии от одного тела к другому или от одной части тела к другой при их непосредственном контакте.

Ещё раз обратим внимание на то, что при теплопроводности не происходит переноса вещества.

Однако существуют и другие виды теплопередачи — это конвекция и излучение. Именно этим явлениям и будет посвящён наш с вами сегодняшний урок.

Мы уже знаем, что газы и жидкости обладают плохой теплопроводностью. Однако возникают закономерные вопросы: почему же нагревается вода в кастрюле, поставленной на включённую плиту? И почему же прогревается воздух в комнате от батарей водяного отопления?

Ответим на первый вопрос, проделав следующий опыт. Нальём в колбу воду и аккуратно опустим на дно несколько кристалликов марганцовки. Затем поставим колбу на спиртовку так, чтобы её пламя касалось колбы в том месте, где лежат кристаллики.

Через некоторое время мы с вами увидим, как со дна колбы начнут подниматься окрашенные струйки воды. А достигнув верхних слоёв воды, эти струйки начнут опускаться.


Наблюдаемое нами явление можно объяснить следующим образом. Нижний слой воды нагревается от стенки колбы. Вы знаете, что при увеличении температуры тело начинает расширяться. Вследствие чего уменьшается плотность тела. На этот тёплый слой воды действует архимедова сила, которая выталкивает его вверх. На место тёплого слоя опускается холодный слой воды. После нагревания, этот слой воды также начнёт двигаться вверх, а его места займёт новый слой. И так будет происходить до тех пор, пока температура воды не выровняется по всему своему объёму. Таким образом, энергия переносится посредством поднимающихся потоков жидкости.

А кто из вас не замечал такую картину: в морозное утро дым из печной трубы серебристым столбом поднимается вверх?


Найдём объяснение и этому факту. Нагретый в печной трубе воздух становится легче холодного, и по закону Архимеда холодный воздух, подтекая под нагретую часть, заставляет его подниматься вверх. При таком перемещении нагретого объёма вещества и переносится теплота.

В рассмотренных нами примерах мы наблюдали ещё один вид теплопередачи — конвекцию.

Конвекция — это вид теплопередачи, при котором энергия передаётся потоками жидкости или газа, то есть сопровождается переносом вещества.

Конечно же у вас может возникнуть закономерный вопрос: а возможна ли конвекция в твёрдых телах? Очевидно, что нет, так как конвекция связана с переносом вещества. А в твёрдом теле вещество не может перемещаться по объёму.

Конвекция обуславливает множество явлений природы и процессов, происходящих в повседневной жизни. Так, например, благодаря конвекции создаётся нужная тяга в печах и каминах, чтобы полностью сжечь в них топливо. Для создания нужной тяги даже в очень небольших котельных трубы делают высотой в несколько десятков метров.

А, самой высокой дымовой трубой в мире является труба Экибастузской ГРЭС-2 в Казахстане. Её высота равна 420 м.


Примером использования конвекции является система водяного отопления домов. Вы наверняка замечали, что отопительные батареи в основном размещаются внизу (под окнами).


Это сделано для того, чтобы ускорить конвекцию воздуха в помещении. Холодный воздух от окна спускается вниз, где он соприкасается с батареями. Получив от них теплоту, он поднимается вверх, уступая место холодному воздуху. В результате такой конвекции и происходит прогревание воздуха по всему объёму комнаты.

Конвекцией объясняются ночные и дневные ветры — бризы, возникающие на берегах морей и океанов.

На берегу водоёмов в жаркий летний день вода нагревается Солнцем медленнее, чем суша, так как вода обладает малой теплопроводностью. Это вызывает понижение давления воздуха над сушей. Поэтому холодный воздух перемещается с водоёма на сушу. Это — дневной бриз.


Ночью же наоборот, суша охлаждается быстрее, чем вода. Поэтому ночной бриз дует от суши к водоёму.


Рассмотренные примеры — это примеры естественной конвекции. Когда же естественной конвекции недостаточно, то используют вынужденную конвекцию. При вынужденной конвекции перемещение вещества обусловлено действием внешних сил. Примерами такой конвекции могут служить движение воздуха в помещении под действием вентилятора. Или добыча нефти из глубинных слоёв Земли при помощи мощных насосов.


Проведём такой опыт. Возьмём теплоприёмник — это металлическая коробочка, одна сторона которой блестящая, а другая покрыта матовой чёрной краской. Внутри коробочки находится воздух.

Установим вертикально электрическую плитку, а возле неё укрепим теплоприёмник, соединённый с манометром. И начнём нагревать плитку.


Через некоторое время мы заметим, что уровень жидкости в колене манометра, соединённом с теплоприёмником, начнёт понижаться, что говорит о нагревании воздуха внутри теплоприёмника и повышении вследствие этого его давления.

Могло ли это произойти за счёт теплопроводности воздуха? Очевидно, нет, так как теплопроводность воздуха мала, а теплота к приёмнику была перенесена достаточно быстро.

Тогда может быть это произошло за счёт конвекции? Опять нет, так как конвекционные потоки идут вверх.

Оказывается, существует ещё один способ передачи теплоты — излучение. Его главной особенностью является то, что оно возможно не только в среде, но и в вакууме. Значит, основным способом переноса теплоты от электрической плитки к теплоприёмнику было излучение. Нагревание воздуха в теплоприёмнике произошло потому, что он поглотил энергию, переданную излучением. Любое тело излучает энергию. Но эта энергия зависит от многих факторов, в частности от температуры тела. Чем она выше, тем больше энергии излучает тело, и наоборот.

А теперь зададимся вопросом, одинаково ли излучают и поглощают тела? Чтобы на него ответить, проведём такой опыт. Возьмём два теплоприёмника и укрепим их на одинаковом расстоянии от сосуда, в котором находится вода, так, чтобы черные поверхности теплоприёмников были обращены к сосуду.


Присоединим к теплоприёмникам манометры. Обратите внимание, что одна из стенок сосуда покрашена чёрной, а другая белой краской. Будем нагревать сосуд с водой на плитке и проследим за изменением уровней жидкостей в коленах манометра, присоединённого к теплоприёмникам. Через некоторое время уровень жидкости в колене манометра, соединённом с левым теплоприёмником, понизится, что говорит о большем нагревании в нём воздуха, чем в правом приёмнике.

Так как левый теплоприёмник получил теплоту, излучаемую чёрной поверхностью сосуда, то можно сделать важный вывод о том, что чёрные поверхности излучают больше энергии, чем белые.

Тогда возникает закономерный вопрос: а одинаково ли поглощают энергию черные и белые поверхности? Опять ответим на вопрос с помощью опыта. В схему предыдущего опыта внесём небольшие изменения. Заменим сосуд на другой, полностью окрашенный в чёрный цвет, а правый теплоприёмник повернём к сосуду белой стороной. Опять нагреем сосуд с водой и будем следить за уровнями жидкостей в коленах манометра.


Можно заметить, что уровень жидкости в колене манометра, соединённого с левым теплоприёмником, ниже, чем в другом колене. Значит, температура воздуха в этом теплоприёмнике выше, чем во втором. Но оба теплоприёмника поглощали энергию от одного сосуда, только один теплоприёмник был повернут к нему чёрной поверхностью, а другой — белой. Значит, чёрная поверхность поглощает энергии больше, чем белая.

Именно поэтому, в летний солнечный день в чёрной одежде значительно жарче, чем в белой.

На основании проделанных опытов и наблюдений можно утверждать, что черные поверхности при равной температуре и поглощают, и излучают энергии больше, чем белые.

Читайте также: