Состав атомных ядер изотопы кратко

Обновлено: 02.07.2024

В 20 -х годах XX века сомнений насчет сложности строения открытых Резерфордом в 1911 году ядер атомов у физиков уже не оставалось. На данный факт указывало большое количество различных совершенных к тому времени время экспериментов, таких как:

  • открытие явления радиоактивности,
  • опытное доказательство ядерной модели атома,
  • измерение отношения e m для электрона, α -частицы и для H -частицы, представляющей собой ядро атома водорода,
  • открытие искусственной радиоактивности и ядерных реакций,
  • измерение зарядов атомных ядер и многие другие.

Протон

Из каких же частиц состоят ядра атомов? В наше время является фактом то, что ядра атомов различных элементов состоят из двух видов частиц, то есть из нейтронов и протонов. Вторая из этих частиц является лишившийся единственного своего электрона атомом водорода. Такая частица была замечена уже в опытах Дж. Томсона 1907 года. Ученый смог измерить у нее отношение e m .

Э. Резерфордом в 1919 году были обнаружены в продуктах расщепления ядер атомов значительного числа элементов атомные ядра водорода. Физиком найденной частице было дано название протона. Он предположил, что в состав любого из ядер атомов входят протоны.

Схема опытов Резерфорда проиллюстрирована на рисунке 6 . 5 . 1 .

Протон

Рисунок 6 . 5 . 1 . Схема опытов Резерфорда по обнаружению протонов в продуктах расщепления ядер. К – свинцовый контейнер с радиоактивным источником α -частиц, Ф – металлическая фольга, Э – экран, покрытый сульфидом цинка, М представляет собой микроскоп.

Прибор Резерфорда состоял из вакуумированной камеры с расположенным в ней контейнером К , в котором находился источник α -частиц. Металлическая фольга, на рисунке обозначенная как Ф , перекрывала окно камеры. Толщина фольги подбиралась таким образом, чтобы предотвратить проникание через нее α -частиц. За окном был расположен покрытый сернистым цинком экран, на изображении 6 . 5 . 1 отмеченный буквой Э. Применяя микроскоп М , можно было наблюдать световые вспышки или, как их еще называют, сцинтилляции в точках, в точках экрана, в которых происходило попадание тяжелых заряженных частиц.

В процессе заполнения камеры азотом с низким давлением на экране обнаруживались световые вспышки. Данное явление указывало на тот факт, что в условиях эксперимента существует поток неизвестных частиц, обладающих способностью проникать сквозь практически полностью задерживающую поток α -частиц фольгу Ф . Раз за разом удаляя от окна камеры экран Э. Резерфорд смог измерить среднюю длину свободного пробега наблюдаемых частиц в воздухе. Полученная величина оказалась приблизительно равной 28 с м , что совпадало с оценкой длины пробега наблюдавшихся ранее Дж. Томсоном H -частиц.

С помощью исследований воздействия электрических и магнитных полей на выбиваемые из ядер азота частицы были получены данные о положительности их элементарного заряда. Также было доказано, что масса таких частиц эквивалентна массе ядер атомов водорода.

Впоследствии опыт выполнили с целым рядом других газообразных веществ. Во всех проведенных подобных опытах было обнаружено, что из их ядер α -частицы выбивают H -частицы или протоны.

Согласно современным измерениям, положительный заряд протона абсолютно эквивалентен элементарному заряду e = 1 , 60217733 · 10 – 19 К л . Другими словами, по модулю он равен отрицательному заряду электрона. В наше время равенство зарядов протона и электрона проверено с точностью 10 – 22 . Подобное совпадение зарядов двух значительно отличающихся друг от друга частиц вызывает искреннее недоумение и по сей день остается одной из фундаментальных загадок современной физики.

Опираясь на современные измерения, можно заявить, что масса протона равна m p = 1 , 67262 · 10 – 27 к г . В условиях ядерной физики принадлежащую частицам массу нередко выражают в атомных единицах массы ( а . е . м . ) , равных массы атома углерода с массовым числом 12 :

1 а . е . м . = 1 , 66057 · 10 - 27 к г .

Соответственно, m p = 1 , 007276 а . е . м .

Довольно часто выражение массы частицы наиболее удобно при использовании эквивалентных значений энергии в соответствии со следующей формулой: E = m c 2 . По причине того, что 1 э В = 1 , 60218 · 10 – 19 Д ж , в энергетических единицах масса протона равняется 938 , 272331 М э В .

Следовательно, опыт Резерфорда, открывший явление расщепления ядер азота и иных элементов таблицы Менделеева в условиях ударов быстрых α -частиц, также показал, что в состав атомных ядер входят протоны.

Вследствие открытия протонов у некоторых физиков появилось предположение, что новые частицы не просто входят в состав ядер атомов, а являются его единственными возможными элементами. Однако по причине того, что отношение заряда ядра к его массе не остается постоянным для разных ядер, как это было бы, если бы в состав ядер входили одни протоны, данное предположение было признано несостоятельным. Для более тяжелых ядер такое отношение оказывается меньше, чем для легких, из чего следует, что при переходе к более тяжелым ядрам масса ядра возрастает быстрее заряда.

Нейтроны

В 1920 году Э. Резерфордом была высказана гипотеза о присутствии в составе ядер некой компактной жестко связанной пары, состоящей из электрона и протона. В понимании ученого данная связка являлась электрически нейтральным образованием в качестве частицы, обладающей практически эквивалентной массе протона массой. Им также было придумано название для данной гипотетической частицы, Резерфорд хотел назвать ее нейтроном. К сожалению, приведенная идея, несмотря на свою красоту, была ошибочной. Было выяснено, что электрон не может являться частью ядра. Квантово-механический расчет на основании соотношения неопределенностей показывает, что локализованный в ядре, т. е. области размером R ≈ 10 – 13 с м , электрон должен обладать невероятной кинетической энергией, которая на много порядков превосходит энергию связи ядер в расчете на одну частицу.

Идея о существовании некой тяжелой нейтрально заряженной частицы в составе ядра была крайне привлекательна для Резерфорда. Ученый незамедлительно обратился к группе своих учеников во главе с Дж. Чедвиком с предложением заняться ее поисками. По прошествии 12 лет, в 1932 году Чедвик провел экспериментальное исследование излучения, возникающего в условиях облучения бериллия α -частицами. В процессе он обнаружил, что данное излучение является потоком нейтральных частиц, обладающих массой, практически эквивалентной массе протона. Таким образом был открыт нейтрон. На рисунке 6 . 5 . 2 проиллюстрирована упрощенная схема установки для обнаружения нейтронов.

Рисунок 6 . 5 . 2 . Схема установки для обнаружения нейтронов.

В процессе бомбардировки бериллия испускаемыми радиоактивным полонием α -частицами появляется мощное проникающее излучение, способное пройти сквозь преграду в виде 10 - 20 сантиметрового слоя свинца. Данное излучение практически в то же время, что и Чедвик обнаружили супруги дочь Марии и Пьера Кюри Ирен и Фредерик Жолио-Кюри, однако ими было выдвинуто предположение, что это γ -лучи большой энергии. Они заметили, что если на пути излучения бериллия установить парафиновую пластину, то ионизирующая способность данного излучения скачкообразно увеличивается. Супруги доказали, что излучение бериллия выбивает из парафина в большом количестве имеющиеся в приведенном водородосодержащем веществе протоны. Используя значение длины свободного пробега протонов в воздухе, учеными была оценена энергия γ -квантов, обладающих способностью в условиях столкновения сообщать протонам нужную скорость. Полученное в результате оценки значение энергии оказалось огромным – около 50 М э В .

В 1932 Дж. Чедвиком была выполнена целая серия из экспериментов, направленных на всестороннее изучение свойств излучения, которое возникает при облучении бериллия α -частицами. В своих опытах Чедвик применял разные методы исследования ионизирующих излучений.

На рисунке 6 . 5 . 2 проиллюстрирован счетчик Гейгера, прибор, использующийся для регистрации заряженных частиц.

Данное устройство состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод), и тонкой нити, идущей вдоль оси трубки (анод). Трубка заполняется инертным газом, обычно в его качестве выступает аргон, при низком давлении. Заряженная частица в процессе перемещения в газе вызывает ионизацию молекул.

Возникающие в результате ионизации свободные электроны ускоряются электрическим полем между анодом и катодом до энергий, при которых начинается явление ударной ионизации. Появляется лавина ионов, и через счетчик проходит короткий разрядный импульс тока.

Еще одним обладающим чрезвычайной важностью для исследования частиц прибором является камера Вильсона, в которой быстрая заряженная частица оставляет след или, как его еще называют, трек.

Траекторию частицы можно фотографировать или наблюдать непосредственно. Фундаментом действия созданной в 1912 году камеры Вильсона является явление конденсации перенасыщенного пара на ионах, которые образуются в рабочем объеме камеры вдоль траектории заряженной частицы. При помощи камеры Вильсона появляется возможность наблюдения искривления траектории заряженной частицы в электрическом и магнитном полях.

В своих экспериментах Дж. Чедвик наблюдал в камере Вильсона следы испытавших столкновение с бериллиевым излучением ядер азота. Основываясь на данных опытах, ученый оценил энергию γ -кванта, способного сообщить ядрам азота наблюдаемую в эксперименте скорость. Полученное значение равнялось 100 – 150 М э В . Настолько огромной энергией не могли обладать испущенные бериллием γ -кванты. Исходя из этого факта, Чедвик заключил, что из бериллия при воздействии α -частиц вылетают не безмассовые γ -кванты, а достаточно тяжелые частицы. Данные частицы обладали немалой проникающей способностью и непосредственно не ионизировали газ в счетчике Гейгера, соответственно, они были электронейтральны. Таким образом было доказано существование нейтрона – частицы, которую предсказал Резерфорд более чем за 10 лет до опытов Чедвика.

Нейтрон представляет собой элементарную частицу. Ошибочным будет ее представление в виде компактной протон-электронной пары, как изначально предполагал Резерфорд.

Исходя из результатов современных измерений, мы можем сказать, что масса нейтрона m n = 1 , 67493 · 10 – 27 к г = 1 , 008665 а . е . м .

В энергетических единицах масса нейтрона эквивалентна 939 , 56563 М э В . Масса нейтрона примерно на две электронные массы превосходит массу протона.

Сразу же после открытия нейтрона российский ученый Д. Д. Иваненко на пару с немецким физиком В. Гейзенберг выдвинул гипотезу о протонно-нейтронном строении атомных ядер, которая полностью подтвердилась последующими исследованиями.

Протоны и нейтроны принято называть нуклонами.

Для характеристики атомных ядер вводится ряд обозначений.

Число протонов, входящих в состав атомного ядра, обозначают символом Z и называют зарядовым числом или атомным номером (это порядковый номер в периодической таблице Менделеева).

Заряд ядра равен Z e , где e – элементарный заряд. Число нейтронов обозначают символом N .

Общее число нуклонов (т. е. протонов и нейтронов) называют массовым числом ядра A :

Определение понятия изотопа

Ядра химических элементов обозначают символом X Z A , где X – химический символ элемента. Например,
H 1 1 – водород, He 2 4 – гелий, C 6 12 – углерод, O 8 16 – кислород, U 92 238 – уран.

Число нейтронов в ядрах одного и того же химического элемента может быть различным. Такие ядра называются изотопами.

Большая часть химических элементов обладает несколькими изотопами. Например, у водорода их три: H 1 1 – обычный водород, H 1 2 – дейтерий и H 1 3 – тритий. У углерода – 6 изотопов, у кислорода – 3 .

Химические элементы в природных условиях чаще всего представляют собой смесь изотопов. Существование изотопов определяет значение атомной массы природного элемента в периодической системе Менделеева. Так, к примеру, относительная атомная масса природного углерода равняется 12 , 011 .

Строение атомного ядра. Ядерные силы

Сразу же после того, как в опытах Чедвика был открыт нейтрон, советский физик Д. Д. Иваненко и немецкий ученый В. Гейзенберг в 1932 г. предложили протонно-нейтронную модель ядра.
Она была подтверждена последующими исследованиями ядерных превращений и в настоящее время является общепризнанной.

Протонно-нейтронная модель ядра

Согласно протоннонейтронной модели ядра состоят из элементарных частиц двух видов — протонов и нейтронов.

Так как в целом атом электрически нейтрален, а заряд протона равен модулю заряда электрона, то число протонов в ядре равно числу электронов в атомной оболочке.
Следовательно, число протонов в ядре равно атомному номеру элемента Z в периодической системе элементов Д. И. Менделеева.

Сумму числа протонов Z и числа нейтронов N в ядре называют массовым числом и обозначают буквой А:

A = Z + N

Массы протона и нейтрона близки друг к другу, и каждая из них примерно равна атомной единице массы.
Масса электронов в атоме много меньше массы его ядра.
Поэтому массовое число ядра равно округленной до целого числа относительной атомной массе элемента.
Массовые числа могут быть определены путем приближенного измерения массы ядер приборами, не обладающими высокой точностью.

Изотопы представляют собой ядра с одним и тем же значением Z, но с различными массовыми числами А, т. е. с различными числами нейтронов N.

Ядерные силы

Так как ядра весьма устойчивы, то протоны и нейтроны должны удерживаться внутри ядра какими-то силами, причем очень большими.
Это не гравитационные силы, которые слишком слабые.
Устойчивость ядра не может быть объяснена также электромагнитными силами, так как между одноименно заряженными протонами действует электрическое отталкивание.
А нейтроны не имеют электрического заряда.

Значит, между ядерными частицами — протонами и нейтронами, их называют нуклонами — действуют особые силы, называемые ядерными силами.

Каковы основные свойства ядерных сил? Ядерные силы примерно в 100 раз превышают электрические (кулоновские) силы.
Это самые мощные силы из всех существующих в природе.
Поэтому взаимодействия ядерных частиц часто называют сильными взаимодействиями.

Сильные взаимодействия проявляются не только во взаимодействиях нуклонов в ядре.
Это особый тип взаимодействий, присущий большинству элементарных частиц наряду с электромагнитными взаимодействиями.

Другая важная особенность ядерных сил — их коротко- действие.
Электромагнитные силы сравнительно медленно ослабевают с увеличением расстояния.
Ядерные силы заметно проявляются лишь на расстояниях, равных размерам ядра (10 -12 —10 -13 см), что показали уже опыты Резерфорда по рассеянию α-частиц атомными ядрами.
Законченная количественная теория ядерных сил пока еще не разработана.
Значительные успехи в ее разработке были достигнуты совсем недавно — в последние 10—15 лет.

Ядра атомов состоят из протонов и нейтронов. Эти частицы удерживаются в ядре ядерными силами.

Изотопы

Изучение явления радиоактивности привело к важному открытию: была выяснена природа атомных ядер.

В результате наблюдения огромного числа радиоактивных превращений постепенно обнаружилось, что существуют вещества, тождественные по своим химическим свойствам, но имеющие совершенно различные радиоактивные свойства (т. е. распадающиеся по-разному).
Их никак не удавалось разделить ни одним из известных химических способов.
На этом основании Содди в 1911 г. высказал предположение о возможности существования элементов с одинаковыми химическими свойствами, но различающихся, в частности, своей радиоактивностью.
Эти элементы нужно помещать в одну и ту же клетку периодической системы Д. И. Менделеева.
Содди назвал их изотопами (т. е. занимающими одинаковые места).

Предположение Содди получило блестящее подтверждение и глубокое толкование год спустя, когда Дж. Дж. Томсон провел точные измерения массы ионов неона методом отклонения их в электрическом и магнитном полях.
Он обнаружил, что неон представляет собой смесь двух видов атомов.
Бо́льшая часть их имеет относительную массу, равную 20.
Но существует незначительная часть атомов с относительной атомной массой 22.
В результате относительная атомная масса смеси была принята равной 20,2.
Атомы, обладающие одними и теми же химическими свойствами, различались массой.

Оба вида атомов неона, естественно, занимают одно и то же место в таблице Д. И. Менделеева и, следовательно, являются изотопами.
Таким образом, изотопы могут различаться не только своими радиоактивными свойствами, но и массой.
Именно поэтому у изотопов заряды атомных ядер одинаковы, а значит, число электронов в оболочках атомов и, следовательно, химические свойства изотопов одинаковы.
Но массы ядер различны.
Причем ядра могут быть как радиоактивными, так и стабильными.
Различие свойств радиоактивных изотопов связано с тем, что их ядра имеют различную массу.

В настоящее время установлено существование изотопов у большинства химических элементов.
Некоторые элементы имеют только нестабильные (т. е. радиоактивные) изотопы.
Изотопы есть у самого тяжелого из существующих в природе элементов — урана (относительные атомные массы 238, 235 и др.) и у самого легкого — водорода (относительные атомные массы 1, 2, 3).

Особенно интересны изотопы водорода, так как они различаются по массе в 2 и 3 раза.
Изотоп с относительной атомной массой 2 называется дейтерием.
Он стабилен (т. е. не радиоактивен) и входит в качестве небольшой примеси (1 : 4500) в обычный водород.
При соединении дейтерия с кислородом образуется так называемая тяжелая вода.
Ее физические свойства заметно отличаются от свойств обычной воды.
При нормальном атмосферном давлении она кипит при 101,2 °С и замерзает при 3,8 °С.

Изотоп водорода с атомной массой 3 называется тритием.
Он β-радиоактивен, и его период полураспада около 12 лет.

Существование изотопов доказывает, что заряд атомного ядра определяет не все свойства атома, а лишь его химические свойства и те физические свойства, которые зависят от периферии электронной оболочки, например размеры атома.
Масса же атома и его радиоактивные свойства не определяются порядковым номером в таблице Д. И. Менделеева.

Примечательно, что при точном измерении относительных атомных масс изотопов выяснилось, что они близки к целым числам.
А вот атомные массы химических элементов иногда сильно отличаются от целых чисел.
Так, относительная атомная масса хлора равна 35,5.
Это значит, что в естественном состоянии химически чистое вещество представляет собой смесь изотопов в различных пропорциях.
Целочисленность (приближенная) относительных атомных масс изотопов очень важна для выяснения строения атомного ядра.

Большинство химических элементов имеют изотопы.
Заряды атомных ядер изотопов одинаковы, но массы ядер различны.

Физика атомного ядра. Физика, учебник для 11 класса - Класс!ная физика

Количественные показатели в радиоэкологии.

Особенностью радиоактивного загрязнения в отличие от загрязнения другими поллютантами является то, что вредное воздействие на человека и объекты окружающей среды оказывает не сам радионуклид (поллютант), а излучение, источником которого он является.

Однако бывают случаи, когда радионуклид – токсичный элемент. Например, после аварии на Чернобыльской АЭС в окружающую среду с частицами ядерного топлива были выброшены плутоний 239, 242 Рu. Кроме того, что плутоний – альфа-излучатель и при попадании внутрь организма представляет значительную опасность, плутоний сам по себе – токсичный элемент.

По этой причине используют две группы количественных показателей: 1) для оценки содержания радионуклидов и 2) для оценки воздействия излучения на объект.
Активность – количественная мера содержания радионуклидов в анализируемом объекте. Активность определяется числом радиоактивных распадов атомов в единицу времени. Единицей измерения активности в системе СИ является Беккерель (Бк) равный одному распаду в секунду (1Бк = 1 расп/с). Иногда используется внесистемная единица измерения активности – Кюри (Ки); 1Ки = 3,7 ×1010 Бк.

Доза излучения – количественная мера воздействия излучения на объект.
В связи с тем, что воздействие излучения на объект можно оценивать на разных уровнях: физическом, химическом, биологическом; на уровне отдельных молекул, клеток, тканей или организмов и т. д., используют несколько видов доз: поглощенную, эффективную эквивалентную, экспозиционную.

Основной норматив для человека – основной дозовый предел (1 мЗв/год) – вводится в единицах, эффективной эквивалентной дозы. Существуют нормативы и в единицах активности, уровни загрязнения земель, ВДУ, ПГП, СанПиН и др.

Строение атомного ядра.

Атом – это мельчайшая частица химического элемента, сохраняющая все его свойства. По своей структуре атом представляет сложную систему, состоящую из находящегося в центре атома положительно заряженного ядра очень малого размера (10 -13 см) и отрицательно заряженных электронов, вращающихся вокруг ядра на различных орбитах. Отрицательный заряд электронов равен положительному заряду ядра, при этом в целом оказывается электрически нейтральным.

Число нуклонов Ам (массовое число) представляет собой сумму чисел протонов и нейтронов: Ам = Z+ N.

Протон – элементарная частица любого атома, он имеет положительный заряд, равный заряду электрона. Число электронов в оболочке атома определяется числом протонов в ядре.

Нейтрон – другой вид ядерных частиц всех элементов. Его нет лишь в ядре легкого водорода, состоящего из одного протона. Он не имеет заряда, электрически нейтрален. В атомном ядре нейтроны являются стабильными, а в свободном состоянии они неустойчивы. Число нейтронов в ядрах атомов одного и того же элемента может колебаться, поэтому число нейтронов в ядре не характеризует элемент.

Нуклоны (протоны + нейтроны) удерживаются внутри атомного ядра ядерными силами притяжения. Ядерные силы в 100 раз сильнее электромагнитных сил и поэтому удерживает внутри ядра одноименно заряженные протоны. Ядерные силы проявляются только на очень малых расстояниях (10 -13 см), они составляют потенциальную энергию связи ядра, которая при некоторых превращениях частично освобождается, переходит в кинетическую энергию.

Нуклидами называют атомы или ядра с данным числом нуклонов и данным зарядом ядра (обозначение нуклида А Х).




Нуклиды, имеющие одинаковое число нуклонов (Ам = соnst), называются изобарами. Например, нуклиды 96 Sr, 96 Y, 96 Zr принадлежат к ряду изобаров с числом нуклонов Ам = 96.

Нуклиды, имеющие одинаковое число протонов (Z = соnst), называются изотопами. Они различаются только числом нейтронов, поэтому принадлежат одному и тому же элементу: 234 U, 235 U, 236 U, 238 U.

Изотопы – нуклиды с одинаковым числом нейтронов (N = Ам -Z = const). Нуклиды: 36 S, 37 Cl, 38 Ar, 39 K, 40 Ca принадлежат к ряду изотопов с 20 нейтронами.

Изотопы принято обозначать в виде ZХ М , где X – символ химического элемента; М – массовое число, равное сумме числа протонов и нейтронов в ядре; Z – атомный номер или заряд ядра, равный числу протонов в ядре. Поскольку каждый химический элемент имеет свой постоянный атомный номер, то его обычно опускают и ограничиваются написанием только массового числа, например: 3 Н, 14 С, 137 Сs, 90 Sr и т. д.

Нуклиды могут быть стабильными (если их ядра устойчивы и не распадаются) и нестабильными (если их ядра неустойчивы и подвергаются изменениям, приводящим в конечном итоге к увеличению стабильности ядра). Неустойчивые атомные ядра, способные самопроизвольно распадаться, называют радионуклидами. Явление самопроизвольного распада ядра атома, сопровождающееся излучением частиц и (или) электромагнитного излучения, называется радиоактивностью.

В результате радиоактивного распада может образоваться как стабильный, так и радиоактивный изотоп, в свою очередь, самопроизвольно распадающийся. Такие цепочки радиоактивных элементов, связанные серией ядерных превращений, называются радиоактивными семействами.

В настоящее время IUРАС (Международный союз теоретической и прикладной химии) официально дал название 109 химическим элементам. Из них только 81 имеет стабильные изотопы, наиболее тяжелым из которых является висмут (Z = 83). Для остальных 28 элементов известны только радиоактивные изотопы, причем уран (U ~ 92) является самым тяжелым элементом, встречающимся в природе. Самый большой из природных нуклидов имеет 238 нуклонов. В общей сложности в настоящее время доказано существование порядка 1700 нуклидов этих 109 элементов, причем число изотопов, известных для отдельных элементов, колеблется от 3 (для водорода) до 29 (для платины).

Количественные показатели в радиоэкологии.

Особенностью радиоактивного загрязнения в отличие от загрязнения другими поллютантами является то, что вредное воздействие на человека и объекты окружающей среды оказывает не сам радионуклид (поллютант), а излучение, источником которого он является.

Однако бывают случаи, когда радионуклид – токсичный элемент. Например, после аварии на Чернобыльской АЭС в окружающую среду с частицами ядерного топлива были выброшены плутоний 239, 242 Рu. Кроме того, что плутоний – альфа-излучатель и при попадании внутрь организма представляет значительную опасность, плутоний сам по себе – токсичный элемент.

По этой причине используют две группы количественных показателей: 1) для оценки содержания радионуклидов и 2) для оценки воздействия излучения на объект.
Активность – количественная мера содержания радионуклидов в анализируемом объекте. Активность определяется числом радиоактивных распадов атомов в единицу времени. Единицей измерения активности в системе СИ является Беккерель (Бк) равный одному распаду в секунду (1Бк = 1 расп/с). Иногда используется внесистемная единица измерения активности – Кюри (Ки); 1Ки = 3,7 ×1010 Бк.

Доза излучения – количественная мера воздействия излучения на объект.
В связи с тем, что воздействие излучения на объект можно оценивать на разных уровнях: физическом, химическом, биологическом; на уровне отдельных молекул, клеток, тканей или организмов и т. д., используют несколько видов доз: поглощенную, эффективную эквивалентную, экспозиционную.

Основной норматив для человека – основной дозовый предел (1 мЗв/год) – вводится в единицах, эффективной эквивалентной дозы. Существуют нормативы и в единицах активности, уровни загрязнения земель, ВДУ, ПГП, СанПиН и др.

Строение атомного ядра.

Атом – это мельчайшая частица химического элемента, сохраняющая все его свойства. По своей структуре атом представляет сложную систему, состоящую из находящегося в центре атома положительно заряженного ядра очень малого размера (10 -13 см) и отрицательно заряженных электронов, вращающихся вокруг ядра на различных орбитах. Отрицательный заряд электронов равен положительному заряду ядра, при этом в целом оказывается электрически нейтральным.

Число нуклонов Ам (массовое число) представляет собой сумму чисел протонов и нейтронов: Ам = Z+ N.

Протон – элементарная частица любого атома, он имеет положительный заряд, равный заряду электрона. Число электронов в оболочке атома определяется числом протонов в ядре.

Нейтрон – другой вид ядерных частиц всех элементов. Его нет лишь в ядре легкого водорода, состоящего из одного протона. Он не имеет заряда, электрически нейтрален. В атомном ядре нейтроны являются стабильными, а в свободном состоянии они неустойчивы. Число нейтронов в ядрах атомов одного и того же элемента может колебаться, поэтому число нейтронов в ядре не характеризует элемент.

Нуклоны (протоны + нейтроны) удерживаются внутри атомного ядра ядерными силами притяжения. Ядерные силы в 100 раз сильнее электромагнитных сил и поэтому удерживает внутри ядра одноименно заряженные протоны. Ядерные силы проявляются только на очень малых расстояниях (10 -13 см), они составляют потенциальную энергию связи ядра, которая при некоторых превращениях частично освобождается, переходит в кинетическую энергию.

Нуклидами называют атомы или ядра с данным числом нуклонов и данным зарядом ядра (обозначение нуклида А Х).

Нуклиды, имеющие одинаковое число нуклонов (Ам = соnst), называются изобарами. Например, нуклиды 96 Sr, 96 Y, 96 Zr принадлежат к ряду изобаров с числом нуклонов Ам = 96.

Нуклиды, имеющие одинаковое число протонов (Z = соnst), называются изотопами. Они различаются только числом нейтронов, поэтому принадлежат одному и тому же элементу: 234 U, 235 U, 236 U, 238 U.

Изотопы – нуклиды с одинаковым числом нейтронов (N = Ам -Z = const). Нуклиды: 36 S, 37 Cl, 38 Ar, 39 K, 40 Ca принадлежат к ряду изотопов с 20 нейтронами.

Изотопы принято обозначать в виде ZХ М , где X – символ химического элемента; М – массовое число, равное сумме числа протонов и нейтронов в ядре; Z – атомный номер или заряд ядра, равный числу протонов в ядре. Поскольку каждый химический элемент имеет свой постоянный атомный номер, то его обычно опускают и ограничиваются написанием только массового числа, например: 3 Н, 14 С, 137 Сs, 90 Sr и т. д.

Нуклиды могут быть стабильными (если их ядра устойчивы и не распадаются) и нестабильными (если их ядра неустойчивы и подвергаются изменениям, приводящим в конечном итоге к увеличению стабильности ядра). Неустойчивые атомные ядра, способные самопроизвольно распадаться, называют радионуклидами. Явление самопроизвольного распада ядра атома, сопровождающееся излучением частиц и (или) электромагнитного излучения, называется радиоактивностью.

В результате радиоактивного распада может образоваться как стабильный, так и радиоактивный изотоп, в свою очередь, самопроизвольно распадающийся. Такие цепочки радиоактивных элементов, связанные серией ядерных превращений, называются радиоактивными семействами.

В настоящее время IUРАС (Международный союз теоретической и прикладной химии) официально дал название 109 химическим элементам. Из них только 81 имеет стабильные изотопы, наиболее тяжелым из которых является висмут (Z = 83). Для остальных 28 элементов известны только радиоактивные изотопы, причем уран (U ~ 92) является самым тяжелым элементом, встречающимся в природе. Самый большой из природных нуклидов имеет 238 нуклонов. В общей сложности в настоящее время доказано существование порядка 1700 нуклидов этих 109 элементов, причем число изотопов, известных для отдельных элементов, колеблется от 3 (для водорода) до 29 (для платины).


В этом видеоуроке мы дадим строгие определения зарядовому и массовому числу. Также вы узнаете, каково общее название протонов и нейтронов в ядре атома. Познакомитесь с изотопами и научитесь объяснять их существование на основе протонно-нейтронной модели ядра. А также узнаете, как называются силы, действующие между протонами и нейтронами в ядре, и каковы их характерные особенности.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Состав атомного ядра. Ядерные силы"

Общее число нуклонов в ядре называют массовым числом и обозначают буквой А. Оно ставится вверху перед буквенным обозначением химического элемента.

Например, массовое число кислорода равно 16, а углерода — 12.

Мы уже говорили о том, что массовое число принято выражать в атомных единицах массы (сокращённо, а. е. м.) и округлять до целых чисел. Напомним также, что атомную единицу массы выражают через массу атома углерода; она равна 1/12 части массы атома углерода:

Число протонов в ядре соответствует порядковому или атомному номеру элемента в таблице Менделеева и называется зарядовым числом, поскольку оно определяет заряд ядра. Обозначается зарядовое число буквой Z.

В наших примерах, зарядовое число кислорода равно восьми, а углерода — 6.

Как видно из приведённых примеров, зарядовое число ставится внизу перед буквенным обозначением элемента.

Напомним, что заряд протона положителен и равен элементарному электрическому заряду. Следовательно, зарядовое число численно равно заряду ядра, выраженному в элементарных электрических зарядах.

Так как атом в целом электрически нейтрален, то зарядовое число определяет одновременно и число электронов в атоме.

Число нейтронов в ядре обозначают большой буквой N. Нетрудно догадаться, что оно равно разнице между массовым и зарядовым числом:

Таким образом, ядро любого атома обозначается буквенным символом элемента. Вверху указывается значение его массового числа, а внизу — зарядового.

В общем случае любой химический элемент периодической таблицы Дмитрия Ивановича Менделеева можно представить в виде:

где под X подразумевается символ химического элемента.

Ещё раз уточним, каким образом определяется число протонов, электронов и нейтронов в ядре атома любого химического элемента. Во-первых, необходимо посмотреть в таблице Менделеева порядковый номер интересующего нас химического элемента. Таким образом мы найдём зарядовое число, то есть количество протонов и электронов в ядре. Затем, всё в той же таблице, необходимо посмотреть атомную массу этого элемента и округлить её до целых. Тем самым мы найдём массовое число, то есть общее количество нуклонов в ядре. И наконец, чтобы определить количество нейтронов в ядре атома, мы должны будем вычесть из массового числа зарядовое.

На основании многих экспериментов, было установлено, что изотопы одинаково вступают в химические реакции и образуют одинаковые соединения. Это говорило о том, что число электронов в электронных оболочках, а, значит, и заряд ядра у изотопов одинаковы. Следовательно, ядра изотопов различаются только числом нейтронов. Иными словами, химические свойства элементов определяются не атомной массой, а зарядовым числом ядра. Действительно, например, нуклиды водорода-три и гелия-три имеют близкие по величине атомные массы, но принципиально разные химические свойства.

Из всех известных на сегодняшний день изотопов (а они есть у всех химических элементов) только изотопы водорода имеют названия:

Протий является самым распространённым изотопом в природе, а его ядро содержит только один протон. Изотоп дейтерия (его ещё называют тяжёлой водой), содержит в своём ядре один протон и один нейтрон. Соответственно, у трития — один протон и два нейтрона. В настоящее время в лабораториях получены изотопы водорода и с большим числом нейтронов: тремя, четырьмя, пятью и даже шестью.

Следует отметить, что у разных атомов существует разное количество изотопов. Например, у урана их 26, но самыми распространёнными в природе являются два — это уран-235 (около 0,7 %), и уран-238 (чуть более 99 %). Вы, наверное, обратили внимание на то, что мы не называли зарядового числа изотопов урана. Дело в том, что обычно изотопы называют по их массовым числам, так как зарядовые числа у них одинаковые.

Отметим, что изотопы бывают устойчивые (или стабильные) и неустойчивые (то есть радиоактивные). Стабильные изотопы сохраняются сколь угодно долго.

А нестабильные изотопы со временем превращаются в другие химические элементы в результате радиоактивных превращений.

В настоящее время известно около 280 стабильных изотопов химических элементов и более 2 тыс. радиоактивных изотопов.

Как правило, природные элементы представляют собой смесь нескольких изотопов, поэтому возникает задача их разделения. Как мы уже знаем, магнитное поле искривляет траекторию движения заряженных частиц. На этом свойстве магнитного поля основано действие устройства, называемого масс-спектрографом, который используется для разделения изотопов по массовому числу.

Закрепления материала.

В заключении отметим, что предложенная Иваненко и Гейзенбергом протонно-нейтронная модель строения ядра впоследствии полностью была подтверждена экспериментально. Однако оставался нерешённым ещё один вопрос: почему ядра атомов не распадаются на отдельные нуклоны? Действительно, ведь мы знаем, что ядра атомов являются весьма устойчивыми образованиями, хотя в их состав входят одинаково заряженные частицы — протоны. А поскольку размеры ядер очень малы, то между протонами должны существовать огромные силы электрического отталкивания — порядка 230 ньютонов, что для частиц с массой порядка 10 –27 степени килограмм является очень большой силой. Поэтому возникает вопрос: какое взаимодействие препятствует взаимному отталкиванию между одноимённо заряженными частицами?

Мы знаем, что, кроме электромагнитных сил, в природе существуют также гравитационные силы. Может быть, стабилизирующую роль в ядрах играет именно гравитационное взаимодействие между нуклонами?

Нет, так как расчёты показывают, что сила гравитационного притяжения между двумя протонами в ядре пренебрежимо мала по сравнению с силой электростатического отталкивания. Этот результат позволяет сделать вывод о том, что между ядерными частицами, по-видимому, действуют силы особой природы, радикально отличающиеся от гравитационных и электромагнитных сил. Эти силы принято называть ядерными силами. А так как ядерное взаимодействие во много раз превосходит электромагнитное, то его ещё называют сильным взаимодействием.

Другой особенностью ядерных сил является то, что они очень быстро убывают с увеличением расстояния между ядерными частицами. Проще говоря, они действуют на расстояниях, сравнимыми с размерами самих ядер.

Читайте также: