Сигнальная фаза апоптоза кратко

Обновлено: 30.06.2024

АПОПТОЗ НЕЙРОНА — ОБЩИЙ МЕХАНИЗМ ПАТОГЕНЕЗА ПРИ ЗАБОЛЕВАНИЯХ НЕРВНОЙ СИСТЕМЫ

И. А. Завалишин, М. Н. Захарова НИИ неврологии РАМН, Москва

На современном этапе исследование патогенеза заболеваний и повреждений нервной системы осуществляется с общебиологических позиций. В результате сложилось мнение об общих механизмах формирования патологического процесса при этих состояниях. Следует отметить, что многие изученные пути поражения нервной системы являются избыточным выражением существующих в рамках нормального гомеостаза реакций, что может быть обусловлено как экзогенными, так и эндогенными причинами. Обращает на себя внимание, что общие механизмы заболеваний нервной системы могут реализоваться на разных этапах патологического процесса. Следует также отметить, что большинство из этих данных получено в экспериментальных условиях, в связи с чем перенос их на патологию человека ограничен и требует чрезвычайной осторожности.

В настоящее время является общепризнанным то, что ключевой фактор патогенеза заболеваний нервной системы — гибель нейрона, может быть двух видов: программированная клеточная смерть (апоптоз) и патологическая клеточная смерть (некроз). При этом прекращение жизнедеятельности клетки в процессе апоптоза и некроза имеют четкие морфологические различия.

Примером программированной смерти нейронов служит их гибель в процессе эмбриогенеза. Все более очевидной становится роль апоптоза как при острых заболеваниях и повреждениях нервной системы (ишемия, травма), так и при нейродегенеративных болезнях (болезнь Альцгеймера, боковой амиотрофический склероз, болезнь Паркинсона).

Регуляция апоптоза в нервной системе осуществляется многочисленными сигнальными системами. Причем пути реализации этого процесса могут быть различными: модуляция активности ферментов, модуляция факторов транскрипции (р 53, АР-1, NF -кВ), прямая активация генов раннего немедленного ответа ( c - jun , c - fos ).

В настоящее время выделены три фазы апоптоза: инициации (индукции), эффекторная и деградации. В качестве инициирующих апоптоз факторов могут выступать: глутамат, (3-амилоид, депривация ростковых факторов, свободнорадикальные соединения, гипогликемия.

Первичная реакция со стороны нервной клетки на апоптотическое воздействие, по-видимому, реализуется генами раннего немедленного ответа. Активация этих генов рассматривается как один из основных, сохранившихся в эволюции, компонентов нейронального ответа на повреждение. Эти гены относятся к протоонкогенам, причем наиболее постоянно в центральной нервной системе отмечается экспрессия c - jun . Его продуктом является регуляторный протеин с- Jun , который относится к факторам транскрипции, реализующим клеточный ответ на повреждение через активацию или репрессию генов. Белок c - Jun участвует в регуляции клеточного цикла, дифференцировки, органогенеза, опухолевой трансформации, апоптоза. В последние годы установлено, что активация протоонкогена c - jun с повышенной экспрессией его продукта — протеина c - Jun

происходит при нейродегенеративных заболеваниях (болезнь Альцгеймера, боковой амиотрофический склероз). Современные авторы рассматривают c - jun как ранний маркер активации сигнальных систем при апоптозе [4]. Протеин c - Jun образует димеры с другими белками — D - Jim , c - Fos , ATF (активизирующий фактор транскрипции), в результате чего образуется АР-1 комплекс. При этом механизм активации апоптоза протоонкогенами c - jun и c - fos , а также их продуктом — фактором транскрипции АР-1, по-видимому, обусловлен либо синтезом патологических белков, либо индукцией образования гипотетического апоптотического фактора. Активизация генов немедленного ответа в нейроне может осуществляться через протеинкиназный каскад p 21 ras - MAPK или сфингомиелиназо-церамидный сигнальный путь. В результате повышается транскрипция этих генов, что способствует развитию апоптоза.

За реализацию эффекторной фазы апоптоза в любой клетке, в частности, в нейроне, ответственны так называемые каспазы. К последним у человека относится, например, интерлейкин-1р-конвертирующая протеаза ( ICE ) или каспа-за-1 [13]. В настоящее время выделены 3 класса каспаз ( ICE , CED -3 и N EDD -2/ ICH ) [9]. В норме каспазы находятся в неактивном состоянии в виде проэнзимов. Индукторы в этой ситуации выступают лишь в качестве триггеров, запуская реакции аутокатализа каспаз, т. е. самоактивации. Следует отметить, что каспазы, расщепляя как ядерные, так и цитоплазматические белковые структуры нейрона, участвуют не только в эффекторной стадии, но и в фазе деградации апоптоза, выступая в качестве основного повреждающего фактора в этом процессе.

Регуляция апоптоза во II стадии (эффекторной) осуществляется преимущественно белками семейства Вс1-2, причем выделяют два класса этих белков: тормозящие апоптоз ( Bcl -2, bc ! — xl Bcl - w , Bfl -1, Brag -1, Mcl -1, A - l ) и индуцирующие этот процесс (Вах, Bak , Bcl - Xs , Bad , Bid , Bik , Hrk ). Все белки этого семейства во многом гомологичны между собой, что позволяет им взаимодействовать между собой. Соотношение белков Вс1-2 агонистов и антагонистов апоптоза определяет способность клетки, в том числе и нейрона, отвечать на апоптотические сигналы [7].

Допускается, что антиапоптотическое действие Вс1-2 связано с нормализацией функции митохондрий, которые участвуют в реализации апоптоза [15,16]. Конкретными механизмами этого процесса являются: 1) блокирование высвобождения из митохондрий цитоохрома-Ц; 2) участие белков Вс1-2 в формировании трансмембранных митохондриальных пор, что определяет трансмембранный потенциал, а также высвобождение различных активных соединений и ионов из митохондрий; 3) возможность проникновения этих белков в липидные структуры мембран и формирование ионных каналов, что имеет значение в субклеточном распределении Са 2+ между ядром, митохондриями и эндоплазматическим ретикулумом.

Гены семейства Вс1-2 и каспаз экспрессируются нейронами как в онтогенезе, так и в зрелой нервной системе. Опыты Martinou J. С . et al. (1994) показали, что у трансгенных мышей с избыточной экспрессией Вс1-2 мотонейроны устойчивы к апоптозу. Однако при неонатальной аксонотомии они значительно атрофируются, но выживают [8]. Повышенная экспрессия Вах выявлена при боковом амиотрофическом склерозе и болезни Альцгеймера. Вс1-2 оказывает выраженное влияние на выживание любых нейронов и, в частности, мотонейронов.

Исследование Вс1-2 иммунохимическими методами в нейронах гиппокампа при болезни Альцгеймера в зависимости от степени тяжести, клинических симптомов и нейропатологических изменений (аутопсийные исследования) показало, что в целом экспрессия Вс1-2 в нейронах нарастала по мере прогрессирования и тяжести заболевания. Однако в нейронах, в которых идентифицированы нейрофибриллярные изменения, отмечено снижение Вс1-2, то есть синтез Вс1-2 резко снижается в этих дегенерирующих нейронах. Повышение Вс1-2 выявлено в астроцитах и эндотелии сосудов при болезни Альцгеймера. Повышение Вс1-2 рассматривается авторами как защитный механизм, тормозящий апоптоз в сохранных нейронах [12].

Выявлены отличия антиапоптотического действия Вс1-2 от эффектов фактора роста нервов ( nerve growth factor , NGF ): 1) NGF вызывает морфологическую дифференцировку клеток, а Вс1-2 нет; 2) период выживания клеток под действием Вс1-2 короче, чем соответственно с NGF . Однако не продемонстрирована экспрессия Вс1-2 в ответ на NGF . Вместе с тем, Вс1-2 не подавляет апоптоз, вызванный дефицитом цилиарного нейротрофического фактора ( ciliary neurotrophic factor , CNTF ) в отличие от NGF . Это предполагает существование различных механизмов апоптоза.

Недавние исследования выявили частичную делецию гена, ответственного за экспрессию белка, ингибирующего нейрональный апоптоз, при спинальной мышечной атрофии ( NIAP , neuronal inhibitory apoptosis protein ) [13]. Этот белок гомологичен белку IAP вирусного происхождения ( baculo virus ). Установлено двойное действие полиовируса: индуцирование апоптоза за счет блока макромолекулярного синтеза, а при определенных условиях, наоборот, — проявление антиапоптотической активности. В связи с этим следует отметить, что существует гипотеза в отношении фрагментации ДНК, сопровождающей апоптоз, которая, возможно, возникла как механизм противовирусной защиты чтобы не допустить репликации вируса в клетке. В настоящее время показано, что ряд вирусных белков тормозит апоптоз в нейроне.

В 1993 г. был идентифицирован новый ген, индуцирующий апоптоз исключительно в нервной системе — это ген низкоаффинного рецептора к фактору роста нервов ( pTSNGFR ) [11].

Следует отметить, что в нейронах зрелой нервной ткани нет экспрессии Р15 NGFR , который относится к семейству, включающему и гены рецепторов к Факторам некроза опухоли, однако при болезни Альцгеймера и боковом амиотрофическом склерозе выявлена его повышенная экспрессия, соответственно, в базальных холинергических нейронах и в мотонейронах спинного мозга. Пред полагается, что повышенная экспрессия p 75 NGFR способствует образованию арахидоновой кислоты, активации перекисного окисления липидов и развитию окислительного стресса. [2]

Большое значение в развитии апоптоза отводится цитозольному фактору транскрипции ( NF -кВ), который регулирует экспрессию генов, кодирующих белки, которые участвуют в формировании иммунного ответа и реакций воспаления. NF -кВ существует в двух формах: индуцибельный (в цитоплазме и синапсах) и конститутивной (в ядре). Этот фактор выявлен в синапсах коры больших полушарий, мозжечка и гиппокампа. Установлена возможность ретроградного транспорта NF -кВ из синапса в ядро. Это новая сигнальная система для ядра. Экспрессия NF -кВ имеет важное значение в нейрональной пластичности и синаптической активности [10].

Накапливаются данные в пользу участия NF -кВ в развитии болезни Альцгеймера: (3-амилоид активирует NF -кВ через образование активных метаболитов 02, tau -белки также активируют NF -кВ. При этом NF -кВ активируется вокруг бляшек на самых ранних стадиях болезни путем взаимодействия с RAGE -рецептором, общим для tau и А (3. В свою очередь активированный NF -кВ совместно с метаболитами tau индуцирует экспрессию гена-предшественника амилоидного пептида. Вместе с тем следует отметить, что наряду с апоптотическим эффектом NF -кВ при определенных условиях может оказывать и нейропротективное действие [3].

Некроз клетки — тип клеточной смерти, принципиально отличный от упорядоченного прекращения жизнедеятельности в процессе апоптоза развивающихся нейронов. Причиной этого процесса могут стать различные патогенные факторы: гипоксия, токсемия, гипертермия и др. При некрозе наблюдаются вакуолизация, резкое набухание клеток, завершающееся лизисом.

В последние годы установлено, что гены, имеющие значение в механизмах развития апоптоза, участвуют и при формировании нейронального некроза. Так, показано, что Вс1-2 ингибирует некроз [2]. Предполагается, что этот ген регулирует внутриклеточные процессы, в одних случаях приводящие к апоптозу, в других — к некрозу. Другой антиапоптотический ген Bcl - X L подавляет не только апоптоз, но и некротическую гибель нейронов при гипоксии. Ингибиторы ICE протеаз также способны затормозить развитие не только апоптоза, но и некоторые формы некроза. Это предполагает наличие общих механизмов гибели клетки как при апоптозе, так и некрозе [14].

В нейрональной культуре повышенная экспрессия p 75 NGFR вызывается введением (3-амилоидного пептида ((3-АР), морфологически при этом наблюдается картина в большей степени похожая на некроз, чем на апоптоз. Допускается, что этот механизм может быть одним из звеньев патогенеза болезни Альцгеймера.

Выраженной нейрональной токсичностью обладают и некоторые амилоидогенные пептиды, в частности, (3-АР 1-40 и (3-АР 25-35, а также пептид прионного белка Р^Р 106-126. От концентрации, например, пептидов (3-АР зависит механизм гибели клетки — некроз или апоптоз, pr ? 106-126 индуцирует апоптоз. Сложилось мнение, что различные факторы, приводящие клетку к гибели, вызывают либо некроз (большие концентрации за короткое время), либо апоптоз (малые дозы за длительный период) [2, 14]. К этим факторам относятся активные метаболиты кислорода, концентрация внутриклеточного Са 2+ , нарушение формирования Са 2 +-каналов и Са 2+ гомеостаза, повышение чувствительности к глутамату его рецепторов, блок тахикининовых рецепторов и т. д.

Все эти исследования убеждают в существовании сложной системы регуляции апоптоза и некроза. Предполагается наличие и других пока не идентифицированных генов, регулирующих эти процессы в нервной системе.

Современный уровень знаний о молекулярных механизмах гибели нейрона при болезнях Альцгеймера, Паркинсона и Гентингтона, боковом амиотрофическом склерозе, эпилепсии, ишемии и гипогликемии явно недостаточен для понимания всех аспектов их патогенеза. Тем не менее, представляется весьма вероятным, что в повреждении нервных клеток при этих различных по этиологии заболеваниях принимают участие два стандартных механизма — окислительный стресс и эксайтотоксичность, которые могут индуцировать развитие некроза или апоптоза нейрона [1].

Таким образом, механизмы гибели нервной клетки при нейродегенеративных заболеваниях осуществляются, главным образом, по механизму апоптоза; при острых заболеваниях и повреждениях нервной системы в основном по пути некроза. Реализация этих эффектов связана с изменением экспрессии ряда онкогенов в связи с развитием реакций окислительного стресса и эксайтотоксичности, являющихся одним из общих механизмов повреждения нервной системы при различных патологических состояниях.

1. Завалишин И. А., Захарова М. Н. Оксидантный стресс — общий механизм повреждения при заболеваниях центральной нервной системы // Ж. Неврологии и психиатрии им. С. С. Корсакова. 1996, № 2, с . 111-114.

2. Bredesen D. E. Neuronal apoptosis: genetic and biochemical modulatio n. //In. Apoptosis II: The molecular basis of apoptosis in disease. Ed Tomei L. D., Cope F. 0. 1994. Cold Spring Harbor Lab. Press p. 397-421.

3. Cebollos-Picot I. The role ofoxidative stress in Neuronal Death. 1997. Springer. 203 P.

4. Herdegen F., Skene P, Bauhr M. The c-Jun transcription factor-bipotential mediator ofneuronal death, survival and regeneration// TINS, 1997. v. 20, p. 227-231.

5. Holtzman D. M., Deshmukh M. Caspases: a treatement target for neurodegenerative disease.//Nature Medicine 1997, v. 3, p. 954-955.

6. Kim T-W, Warren H. P, Jung Y-K. Alternative cleavage of Alsheimer-associated Presenilins during apoptosis by a caspase — 3 family protease.//Science 1997, v. 277, p. 373-376.

7. Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis.// Nature Medicine 1997, v. 3, p. 614-620.

8. Martinou J. K-., Dubois-Dauphin V., Staple J. K. Overexepression of bcl-2 in transgenic

mice protects neurons from naturally occurring cell death and experimental ishemia.// Neuron. 1994, v. 13, P. 1017-1030.

9 McCarthy N. J., Whyte M. K., Gilbert C. S. Inhibition of ced-3/ICE related proteases does not prevent cell death induced by oncogenes, DNA damage or the Bcl-2 Homologue Bak//J. Cell. 1997, v. 36 p. 215-227.

10. ONeill L. A. J., Kaltschmidt C. NF- кВ : a crucial transcription factor for glial and neuronal cell function.//TINS. 1997, v. 20 p. 252-258.

11- Rabizadeh S., Ohj., Zhong 1. et al. Induction ofapoptosis by the low-affinity NGF receptor.//Science 1993, v.,261, p. 345-348.

12. Satou Т ., Cummung s B. J., Cotman C. W. Immunoreactivity for Bcl-2 protein within neurons in the Alzheimers disease brain increases with disease severity. // Brain. Res. 1995, v.697, p. 35-43.

13. Schwartz L. M., Milligan С . Е . Cold thoughts of death: The role of ICE prote ases in neuronal cell death. //TINS 1996 v. 19, p. 555-562.

14. Shimizu S., Eguchi Y., Kamiike W. et al./ Retardation of chemical hypoxia-induced necrotic cell common mediators in apoptotic and necrotic sig nal transductions.// Oncogene. 1996, v. 12, p. 2045-2050.

15. Yang J., LinX., BhallaK. etal. Prevention of apoptosis by Bel-2: release of cytochrome С from mitochondria-bio blocked. //Science 1997, v. 275, p. 1129-1132.

16. ZamzamiN., SusinS., MacchettiP. Mitochondrial control of nuclear apoptosis. //J. Exp. Med.1996, v.183, p. 1533-1544.


Апоптоз - программированная клеточная гибель, энергетически зависимый, генетически контролируемый процесс, который запускается специфическими сигналами и избавляет организм от ослабленных, ненужных или повреждённых клеток. Ежедневно, примерно около 5% клеток организма подвергаются апоптозу, а их место занимают новые клетки. В процессе апоптоза клетка исчезает бесследно в течение 15-120 минут.

Запрограммированная клеточная гибель это биохимически специфический тип гибели клетки, который характеризуется активацией нелизосомных эндогенных эндонуклеаз, которые расщепляют ядерную ДНК на маленькие фрагменты. Морфологически апоптоз проявляется гибелью единичных, беспорядочно расположенных клеток, что сопровождается формированием округлых, окруженных мембраной телец (“апоптотические тельца”), которые тут же фагоцитируются окружающими клетками.

Апоптоз ­– энергозависимый процесс, посредством которого удаляются нежелательные и дефектные клетки организма. Он играет большую роль в морфогенезе и является механизмом постоянного контроля размеров органов. При снижении апоптоза происходит накопление клеток, пример – опухолевый рост. При увеличении апоптоза наблюдается прогрессивное уменьшение количества клеток в ткани, пример – атрофия.

Морфологические проявления апоптоза.

Апоптоз имеет свои отличительные морфологические признаки, как на светооптическом, так и на ультраструктурном уровне. При окраске гематоксилином и эозином апоптоз определяется в единичных клетках или небольших группах клеток. Апоптотические клетки выглядят как округлые или овальные скопления интенсивно эозинофильной цитоплазмы с плотными фрагментами ядерного хроматина. Поскольку сжатие клетки и формирование апоптотических телец происходит быстро и также быстро они фагоцитируются, распадаются или выбрасываются в просвет органа, то на гистологических препаратах он обнаруживается в случаях его значительной выраженности. К тому же апоптоз – в отличие от некроза – никогда не сопровождается воспалительной реакцией, что также затрудняет его гистологическое выявление.

Наиболее четко морфологические признаки выявляются при электронной микроскопии. Для клетки, подвергающейся апоптозу характерно:

Сжатие клетки. Клетка уменьшается в размерах; цитоплазма уплотняется; органеллы, которые выглядят относительно нормальными, располагаются более компактно. Предполагается, что нарушение формы и объема клетки происходит в результате активации в апоптотических клетках трансглютаминазы. Этот фермент вызывает прогрессивное образование перекрестных связей в цитоплазматических белках, что приводит к формированию своеобразной оболочки под клеточной мембраной, подобно ороговевающим клеткам эпителия.

Конденсация хроматина. Это наиболее характерное проявление апоптоза. Хроматин конденсируется по периферии, под мембраной ядра, при этом образуются четко очерченные плотные массы различной формы и размеров. Ядро же может разрываться на два или несколько фрагментов. Механизм конденсации хроматина изучен достаточно хорошо. Он обусловлен расщеплением ядерной ДНК в местах, связывающих отдельные нуклеосомы, что приводит к развитию большого количества фрагментов, в которых число пар оснований делится на 180-200. При электрофорезе фрагменты дают характерную картину лестницы. Эта картина отличается от таковой при некрозе клеток, где длина фрагментов ДНК варьирует.

Формирование в цитоплазме полостей и апоптотических телец. В апоптотической клетке первоначально формируются глубокие впячивания поверхности с образованием полостей, что приводит к фрагментации клетки и формированию окруженных мембраной апоптотических телец, состоящих из цитоплазмы и плотно расположенных органелл, с или без фрагментов ядра.

Фагоцитоз апоптотических телец. Фагоцитоз апоптотических клеток или телец осуществляется окружающими здоровыми клетками, или паренхиматозными, или макрофагами. Апоптотические тельца быстро разрушаются в лизосомах, а окружающие клетки либо мигрируют, либо делятся, чтобы заполнить освободившееся после гибели клетки пространство. Фагоцитоз апоптотических телец макрофагами или другими клетками активируется рецепторами на этих клетках: они захватывают и поглощают апоптотические клетки. Один из таких рецепторов на макрофагах – рецептор витронектина, который является β3-интегрином и активирует фагоцитоз апоптотических нейтрофилов.

Участие апоптоза в физиологических и патологических процессах

Запрограммированном разрушении клеток во время эмбриогенеза (включая имплантацию, органогенез). Несмотря на то, что при эмбриогенезе апоптоз не всегда является отражением “запрограммированной смерти клетки”, это определение апоптоза широко используют различные исследователи.

Гормон-зависимой инволюции органов у взрослых, например, отторжение эндометрия во время менструального цикла, атрезии фолликулов в яичниках в менопаузе и регрессия молочной железы после прекращения лактации.

Удалении некоторых клеток при пролиферации клеточной популяции.

Гибели отдельных клеток в опухолях, в основном при ее регрессии, но также и в активно растущей опухоли.

Гибели клеток иммунной системы, как В -, так и Т-лимфоцитов, после истощения запасов цитокинов, а также гибели аутореактивных Т-клеток при развитии в тимусе.

Патологической атрофии гормон-зависимых органов, например, атрофии предстательной железы после кастрации и истощении лимфоцитов в тимусе при терапии глюкокортикоидами.

Патологической атрофии паренхиматозных органов после обтурации выводных протоков, что наблюдается в поджелудочной и слюнных железах, почках.

Гибели клеток, вызванных действием цитотоксических Т-клеток, например, при отторжении трансплантата и болезни “трансплантат против хозяина”.

Повреждении клеток при некоторых вирусных заболеваниях, например, при вирусном гепатите, когда фрагменты апоптотических клеток обнаруживаются в печени, как тельца Каунсильмана.

Гибели клеток при действии различных повреждающих факторов, которые способны вызвать некроз, но действующих в небольших дозах, например, при действии высокой температуры, ионизирующего излучения, противоопухолевых препаратов.

Биохимия апоптоза.

Кроме того, в апоптозе принимают участие и другие протеазы, прежде всего, кальпаины, или Са2+-зависимые протеазы и убиквитин (протеаза, ковалентно связывающаяся с белком-мишенью). Эти протеазы — обязательный компонент каскада протеолитических ферментов. Так, ингибиторы кальпаина блокируют апоптоз. Убиквитин-протеосомный путь деградации белков активируется при апоптозе.

Роль каспаз в апоптозе разнообразна. Результатом активности протеаз являются характерные изменения в морфологии клеток при апоптозе.1. Гидролиз белков ламинов, армирующих ядерную мембрану. Это ведет к распаду ядерной оболочки и конденсации хроматина. Мишенями протеаз при апоптозе являются также белки ядрышек, гистоны и негистоновые белки и топоизомераза. Топоизомераза — связующее звено между ДНК хроматина и белковыми структурами ядра, с помощью которого хроматин прикрепляется к ядерному матриксу. Расщепление топоизомеразы — это этап образования высокомолекулярных фрагментов ДНК.

2. Расщепление антиапоптозных белков — протеолиз ингибитора ДНКазы, ответственной за фрагментацию ДНК. В нормальных клетках апоптозная ДНКаза CAD (caspase-activated DNase) образует неактивный комплекс с ингибитором 1CMiwm DFF (DNA fragmentation factor). При апоптозе ингибитор Гмс участием каспаз 3 и 7 инактивируется и свободная CAD, вызывая нуклеосомные разрывы хроматина, ведет к образованию фрагментов ДНК с молекулярной массой кратной молекулярной массе ДНК в нуклеосомных частицах — 180-200 пар нуклеотидов. Эти фрагменты и дают характерную лесенку ДНК при электрофоретическом разделении в агарозном геле. Апоптоз возможен и без фрагментации ДНК. Обнаружен ядерный белок ACCINVS (apoptotic chromatin condensation inducer in the nucleus), который при комбинированном действии каспазы 3 и неидентифицированной протеазы расщепляется на фрагменты. Один из них в присутствии дополнительных неядерных факторов вызывает апоптотическую конденсацию хроматина и фрагментацию ядра (кариорексис) без фрагментации ДНК. Кроме непосредственной активации нуклеаз, протеазы (путем ограниченного протеолиза) устраняют структурное разобщение между нуклеазами и ДНК в составе хроматина, удаляют белки, защищающие ДНК.3. Угнетение репарации ДНК: инактивирование и нарушение регуляции белка, участвующего в репарации ДНК, а также в сплайсинге мРНК, репликации ДНК. Мишенью каспаз является поли-(АДФ-рибозо)-полимераза (ПАРП), которая участвует в репарации ДНК (катализирует полиАДФ-рибозилирование белков, связанных с ДНК). Донором АДФ-рибозы является NAD'. Активность ПАРП-полимеразы возрастает в 500 раз и более при связывании с участками разрыва ДНК. ПАРП участвует в репарации поврежденной ДНК, регуляции активности эндонуклеаз, поддержании структуры хроматина посредством АДФ-рибозилирования. Апоптотическая гибель клетки сопровождается расщеплением ПАРП каспазами. При массированных разрывах ДНК чрезмерная активация ПАРП, сильно снижая содержание внутриклеточного NAD*, ведет к подавлению гликолиза и митохондриального дыхания и вызывает гибель клетки по пути некроза.4. Разрушение белков цитоскелета. Деградация структурных и функциональных белков митотического аппарата.5. Участие в экспрессии генов. Эта функция связана с протеолизом репрессоров и с образованием пептидов, регулирующих транскрипцию (модификация факторов транскрипции). Субстратом протеаз является, например, гистон, выступающий репрессором генов.6. Одна из функций протеаз — передача апоптозного сигнала от индукторов апоптоза. Сигналы могут быть трансмембранными, рецептор-зависимыми. Рецепторами служат трансмембранные белки. Протеазы принимают участие либо непосредственно при взаимодействии индукторов апоптоза с рецепторами, либо через активацию протеинкиназ, играющих важную роль в передаче трансмембранного сигнала с целого ряда рецепторов.Локализация протеаз в различных отделах (компартментах) клетки способствует эффективной трансмембранной передаче сигналов программируемой клеточной гибели. Часть протеаз связаны с мембранами (цитоплазматической, ядерной, мембранами органелл или вакуоли) — это мембраносвязанные протеазы. Другие — находятся в матриксе ядра, цитоплазмы или органелл. Аспарагиновая протеаза растений, по всей видимости, локализована в вакуоли. Предполагается, что сериновые протеазы локализуются в цитоплазме и в ядре. Известно, что в ядрах протеазы могут быть прочно ассоциированы с хроматином и, в том числе, непосредственнно с гистонами. Перемещение протеаз в клетке может сопровождаться их активацией. Например, повышение концентрации Ca2+ внутри клетки способствует перемещению Са2+-зависимой протеазы и протеинкиназы из цитоплазмы в мембрану. При этом происходит автокаталитическая активация неактивных форм протеазы.Так, активация некоторых протеаз может быть обусловлена увеличением концентрации кальция в клетках, наблюдаемой при разных типах апоптоза (раздел выше). АФК также могут быть непосредственными индукторами активации протеаз. Появление локальных участков однонитевой ДНК активирует, например, ядерные ДНК-зависимые сериновые протеазы, специфичные к гистону.

Множество ветвей сигнальной трансдукции перепроверяет правильность выбранного алгоритма событий на пути к апоптозу, уберегая клетку от бессмысленной гибели. Выявлено несколько механизмов, ограждающих клетку от случайного самоуничтожения с участием протеаз.

Во-первых, протеазы синтезируются в клетке в неактивной форме, а процессинг неактивных форм протеаз происходит путем автолиза или путем протеолиза другими протеазами. Например, каспазы синтезируются в клетке в виде прокаспазы — неактивного мономера с молекулярной массой 30-50 кДа. Активные формы — тетрамеры, содержащие по две субъединицы: (р 10 — р20)2 (рис. 9.7). Прокаспазы обладают незначительной протеолитической активностью, составляющей 1-2% активности зрелой каспазы. Механизм протеолитического само- или перекрестного расщепления (ауто- или транс-процессинга), а затем пространственного сближения ведет к образованию активных каспаз. От прокаспазы отделяется регуляторный N-концевой домен (продомен), а оставшаяся часть молекулы разделяется на большую (около 20 кДа) и малую (около 10 кДа) субъединицы. Затем происходит ассоциация большой и малой субъединиц. Два гетеродимера образуют тетрамер с двумя каталитическими центрами, работающими независимо. Первоначально концентрация каспаз в клетке ничтожна. Благодаря свойству автокатализа, концентрация активных каспаз может возрастать лавинообразно.Во-вторых, протеазы обратимо взаимодействуют с эндогенными белковыми ингибиторами, образуя неактивные комплексы (латентные комплексы описаны для цистеиновых, Са2+-зависимых и некоторых других протеаз). При действии различных индукторов апоптоза происходит диссоциация неактивных комплексов протеаза-ингибитор. Обратимое взаимодействие Са2+-зависимых протеаз с эндогенными ингибиторами регулируется кальцием. Цистеиновая протеаза связывается ковалентно с ингибитором через дисульфидную связь. Высвобождение и активация каспазы происходит в результате тиол-дисульфидного обмена и сопряжена с окислительно-восстановительным состоянием клетки и метаболизмом глюкозы.В-третьих, протеазы могут быть компонентами специальных рецептор-зависимых систем. Так, [рецептор + лиганд + адаптер + прокаспаза] формируют специфический агрегат, в котором происходит активация каспаз. Такой агрегат называют апоптосомой или апоптозным шапероном. Самое интересное, что выявлены консервативные области гомологии (в том числе NB-область) белка адаптера у животных и продуктов генов резистентности у растений, включая томат, арабидопсис и табак. Более того, белки похожи структурно. Предполагается, что продукты гена резистентности могут играть роль адаптеров в апоптосоме. Таким образом, при узнавании продукта авирулентности, по всей видимости, происходит диссоциация апоптосомы и развертывание программы апоптоза.

Продукты генов резистентности, по-видимому, ответственны за эффективность гибели клеток при заражении — узнавание факторов и запуск машины самоуничтожения, за первые (самые важные) шаги на пути к стремительной гибели клетки.Существует несколько путей реализации программы ПКГ. Путь передачи сигнала: индукторы — рецепторы — адаптеры — каспазы первого эшелона — регуляторы — каспазы второго эшелона. Рецептор взаимодействует с лигандом. Насколько обратима гибель клетки? На этапе активации каспаз первого эшелона жизнь клетки еще можно сохранить. Существуют регуляторы, которые блокируют или, напротив, усиливают разрушительное действие каспаз первого эшелона. После активации каспазами первого эшелона каспаз второго эшелона путем протеолиза из прокаспаз процесс, запушенный программой смерти, становится необратим. Эти каспазы способны в дальнейшем к самоактивации (автокатализу или автопроцессингу) и активируют фактор фрагментации ДНК на нуклеосомные фрагменты. Вернемся к митохондриям. Апоптотическое изменение митохондрии может индуцироваться окислительным стрессом, повышением концентрации Ca2+. При апоптозе из межмембранного пространства митохондрий высвобождаются белки — апоптогенные факторы:

AIF (Apoptosis Inducing Factor) — флавопротеин с молекулярной массой 57 кДа. Будучи добавлен к изолированным ядрам, он вызывает конденсацию хроматина и фрагментацию ДНК, а при добавлении к изолированным митохондриям — высвобождение цитохрома С и каспазы 9. Высвобождаемый цитохром С вместе с цитоплазматическим фактором APAF-1 (apoptosis protease activating factor-1) образует комплекс с прокаспазой. APAF-I играет роль арматуры, на которой происходит аугокаталитический процессинг каспазы 9 (мультимерная арматура APAF1-цитохром-С-комплексов напоминает пропеллер). Обнаружены ингибиторы высвобождения цитохрома С, блокирующие апоптоз, например, белок Bel.

Список используемой литературы:

Гордеева А.В., Лабас Ю.А., Звягильская Р.А.Апоптоз одноклеточных организмов: механизмы и эволюция Биохимия, 2004, том 69, вып. 10, с. 1301—1313

Голубев А.М., Москалева Е. Ю., Северин С.Е., Веснянко Т.П., Кузовлев А.Н., Алкадарский А.С., Порошенко Г.Г. Апоптоз при критических состояниях


Каждый день в организме погибает большое количество клеток, а на смену им образуется равное количество новых: таково условие для поддержания клеточного гомеостаза. Удалить необходимо ненужные, старые и потенциально опасные. Одним из известных механизмов клеточной гибели является апоптоз, представляющий собой программируемый процесс.

Когда активируется апоптоз?

Физиологические ситуации:

  • Разрушение клеток в процессе эмбриогенеза. Начальный этап развития организма сопровождается образованием избыточного клеточного материала, уничтожение которого происходит путем апоптоза в строго определённых местах и времени. Иначе говоря, гистогенез и органогенез тесно связаны с активацией апоптоза. Пример: удаление перепонок между зачатками пальцев.
  • Инволюция гормонозависимых тканей после прекращения гормональной стимуляции. Пример: разрушение эндометрия во время менструального цикла, атрофия яичников в период менопаузы, постлактационное уменьшение молочной железы и атрофия простаты после кастрации.
  • Ликвидация потенциально опасных лимфоцитов, которые могут реагировать на собственные ткани.
  • Смерть клеток, которые уже послужили во благо организму. Например, гибель нейтрофилов при остром воспалительном ответе и лимфоцитов в конце иммунного ответа.

Патологические ситуации:

Внутриклеточный протеолитический каскад

Существует два класса каспаз: инициаторные (каспазы-2, -8, -9 и -10) и эффекторные (каспазы-3, -6 и -7). Первые отвечают за начало апоптоза, вторые же регулируют расщепление клеточных компонентов. Процесс развивается, как каскад, то есть состоит из нескольких ферментативных реакций. Субстратом на каждой стадии является белок, который в результате реакции превращается в активный фермент. Этот фермент в свою очередь использует другой белок в качестве субстрата, превращая его в активный фермент. И так повторяется несколько раз.

Каспазами разрушается множество белков, среди которых белки ядерной пластинки и белок-ингибитор активности эндонуклеазы. Расщепление последнего ведет к тому, что эндонуклеаза начинает разрезать ДНК. Разрушаются белки цитоскелета и клеточной адгезии, которые соединяют клетки друг с другом. Такой каспазный каскад необратим.


Рисунок 1 | Разрушение каспазой ингибитора эндонуклеазы и последствия. Апоптоз может протекать по двум различным путям — по внешнему и внутреннему (митохондриальному)

Внешний путь апоптоза

Этот путь запускается при связывании лиганда с рецептором смерти, находящимся на плазматической мембране различных клеток. Рецепторы смерти (death receptors — DR) бывают нескольких видов: TNF-R1, FAS (CD95), DR3, TRAIL-R1, TRAIL-R2 и др. Все они трансмембранные белки, содержащие внеклеточную часть — лиганд-связывающий домен — и внутриклеточную часть — домен смерти.

Иллюстрация такого пути — взаимодействие Fas рецептора на поверхности многих типов клеток с Fas-лигандом на цитотоксическом лимфоците. Домен смерти активированного рецептора объединяется с внутриклеточными белками FADD (Fas-associated death domain). Они в свою очередь объединяются с инициаторными каспазами, образуя сигнальный комплекс, вызывающий смерть (death-inducing signaling complex — DISC). Этот комплекс активирует инициаторные каспазы, которые затем включают в работу эффекторные каспазы, что дает начало апоптозу.

Существует ингибиторный белок, ограничивающий внешний путь. Этот белок называется FLIP. Он похож на инициаторную каспазу, но не обладает ее функцией. FLIP с каспазой-8 образует DISC, однако каспаза-8 не становится активной и апоптотический сигнал блокируется. Этот тормозный механизм помогает предотвратить нежелательную активацию внешнего пути.



Рисунок 2 | Внешний путь апоптоза

Внутренний путь апоптоза зависит от митохондрий

Этот путь может быть запущен в ответ на повреждение ДНК, активацию онкогенов, избыток Ca 2+ в клетке, отсутствие факторов роста (пептидный или стероидный гормон, стимулирующий рост и дифференцировку клетки), неправильно сложенные белки.

Активация пути ведет к повышению проницаемости наружной мембраны митохондрий. Из-за этого в цитоплазму выходят цитохром c и другие митохондриальные белки, которые инициируют апоптоз.

В норме они находятся в межмембранном пространстве этих органелл. Ключевой белок во внутреннем пути — цитохром с (компонент электрон-транспортной цепи). Выйдя в цитоплазму, он приобретает новые функции и присоединяется к фактору апоптотической протеазы 1 (apoptotic protease activating factor-1 — Apaf1).

Так образуется колесоподобная структура — апоптосома. Апоптосома активирует инициаторные каспазы-9, в свою очередь активирующие эффекторные каспазы, что дает начало апоптозу.


Рисунок 3 | Внутренний путь апоптоза

Апоптоз-регулируемый процесс

За внутренний путь апоптоза отвечают белки семейства Bcl2. Они контролируют выход проапоптотических белков из митохондрий (например, цитохром c). Название дано в честь гена белка Bcl2, который сверхэкспрессирован в некоторых лимфомах В-клеток (B cell lymphoma). В это семейство входят более 20 белков, которые могут быть разделены в три группы на основании их функций и количестве гомологичных доменов (Bcl2 Homology).

Первая группа — проапоптотические белки, которые увеличивают выход митохондриальных белков и запуск апоптоза.

Вторая группа — антиапоптотические белки, которые подавляют апоптоз, блокируя выход митохондриальных белков. Оба вида могут связываться друг с другом в различных комбинациях, подавляя свои функции. Баланс между активностью двух видов белков определяет, выживет ли клетка или погибнет по внутреннему пути апоптоза.

Антиапоптотическая группа представлена белками Bcl2 и BclXL, которые имеют четыре BH домена (BH1-4). Эти белки находятся на наружной мембране митохондрий и сохраняют ее непроницаемость. Таким образом это предотвращает утечку цитохрома c и других белков.

Проапоптотические белки — Bax и Bak. У них есть три BH домена (BH1-3). После своей активации Bax и Bak повышают проницаемость внешней мембраны митохондрий. Возможно, это происходит путем образования канала, что позволяет белкам выходить из межмембранного пространства в цитоплазму. Bak даже в отсуствие апоптотического сигнала связан с наружной мембраной митохондрий, а Bах локализован в цитозоле и транспортируется к митохондрии только после апоптотического сигнала.

Третья группа содержит (тоже проапототические) белки Bad, Bim, Bid, Puma и Noxa. Они имеют один BH домен (BH3), третий из четырех доменов BH, поэтому и получили название BH3 only proteins. Белки BH3-only играют ключевую роль в регулировании и стимулировании апоптоза и, таким образом, служат привлекательной целью терапевтического вмешательства. Следует отметить, что BH3 домен является единственным общим доменом для всех членов семейства Bcl2. Он опосредует взаимодействия между проапоптотическими и антиапоптотические белками.

Как происходит регуляция?

Факторы роста и другие сигналы выживания стимулируют выработку антиапоптотических белков. Они ингибируют апоптоз путем связывания проапоптотических белков на митохондриальной мембране. BH3-only белки, напротив, нейтрализуют активность антиапоптотических белков, таким образом способствуя собиранию проапоптотических белков Вах и Вак на поверхности митохондрии. Это приводит к выходу митохондриальных белков наружу.

Белок ВН3-only Bid связует оба пути апоптоза. В норме он неактивен. Но при активации внешнего пути каспаза-8 переводит белок Bid в активную форму. Bid перемещается к наружной мембране митохондрии и ингибирует антиапоптотические белки, тем самым увеличивая сигнал смерти.


Рисунок 4 | Схема регуляции внутреннего пути апоптоза

Другие способы регуляции

Клетка использует надежные механизмы от ненужной активации каспаз. Например, защитником служит семейство белков-ингибиторов апоптоза (inhibitors of apoptosis — IAPs). У человека они представлены следующими видами: cIAP1 (BIRC2), cIAP2 (BIRC3), X-связанный IAP (XIAP) и др.

Одни из этих белков связывают и ингибируют активированные каспазы. Другие - помечают каспазы для разрушения протеосомами. Функция ингибиторов заключается в установлении порога, который каспазы должны преодолеть для активации апоптоза. Активность IAP может быть подавлена белками из межмембранного пространства митохондрий, такими как Omi/HtrA2 и Smac/DIABLO, высвобождающимися во время апоптоза.

И еще о факторах выживания

Межклеточные сигналы регулируют деятельность клеток, в том числе и апоптоз. Необходим контроль, гарантирующий, что отдельные клетки ведут себя во благо всего организма, в противном случае их нужно удалить. Например, сигнальные белки, такие как Fas-лиганд, активируют рецепторы смерти и тем самым инициируют внешний путь апоптоза. Напротив, существуют факторы выживания — внеклеточные сигнальные молекулы, которые ингибируют апоптоз. Некоторые клетки требуют непрерывной сигнализации от других клеток, чтобы выживать. И это, по-видимому, помогает обеспечить жизнь только нужных клеток.


Рисунок 5 | (А) — Некоторые факторы выживания подавляют апоптоз, стимулируя выработку антиапоптотических белков, таких как Bcl2 или BclXL. (В) — Другие факторы активируют серин/треонин-протеинкиназу Akt (протеинкиназа B), которая путем фосфорилирования аминокислот серина и треонина приводит к инактивации проапоптотического белка Bad (он способствует апоптозу, так как он связывает и ингибирует Bcl2). После фосфорилирования Bad высвобождает Bcl2, который подавляет апоптоз. Активация этой протеинкиназы связана со многими злокачественными новообразованиями

Гибель нервной ткани

Нервные клетки вырабатываются избыточно в развивающейся нервной системе, а затем конкурируют за ограниченное количество факторов выживания. Эти факторы секретируются клетками-мишенями, к которым подходят нейроны. Нервные клетки, получающие достаточно сигналов выживания, живут, в то время как другие, не получающие нужного количества, умирают. Таким образом, число выживших нейронов соответствует количеству клеток-мишеней, с которыми они соединяются.
Жизнь и смерть у нервных клеток.


Рисунок 6 | Роль факторов выживания в гибели лишних нервных клеток

Каскады жизни и смерти

Каскад жизни

Факторы выживания для нейронов называются нейротрофическими факторами. Активация рецепторов нейротрофических факторов на пресинаптической мембране аксона приводит к увеличению факторов транскрипции, которые отвечают за образование антиапоптотических белков (Bcl-2, Bcl-xL), супероксиддисмутазы (подавляет повреждение клетки в результате окисления) и белков-ингибиторов апоптоза (IAP).

Каскад смерти

Апоптоз наблюдается в ходе процесса, который называется эксайтотоксичность. Этот процесс происходит при чрезмерной активации глутаматных рецепторов, в результате чего повышается приток Ca 2+ в постсинаптические области дендритов. Са 2+ , попадая в цитоплазму через ионные каналы на плазматической мембране и на эндоплазматическом ретикулуме, индуцирует апоптотический каскад, который активирует проапоптотическое белки Bax, Bad и p53. Эти белки действуют на митохондрии так, что повышается ее проницаемость, а в цитоплазму выделяется цитохром С. Это приводит к апоптозу.


Рисунок 7 | Каскады жизни и смерти

Как убрать апоптотическую клетку?

Апоптоз — очень аккуратный процесс клеточной смерти. Апоптотическая клетка и ее фрагменты не разрываются и не выделяют свое содержимое, а вместо этого остаются нетронутыми. Они съедаются без следов, поэтому воспалительного ответа нет. Апоптотическую клетку поглощают фагоциты. Процесс поглощения зависит от наличия химических изменений на поверхности мембраны клетки.

К таким изменениям относится наличие фосфатидилсерина, который служит сигналом для фагоцитарных клеток. Этот фосфолипид обычно расположен только на внутренней поверхности плазматической мембраны, а при апоптозе переворачивается на наружную поверхность. Макрофаги не фагоцитируют здоровые клетки, хотя у здоровых клеток на их поверхности есть некоторый фосфатидилсерин.


Рисунок 8 | Фагоциты удаляют апоптотическую клетку или ее части

Уклонение от апоптоза

Нарушение механизма клеточной смерти ключевой признак онкологического заболевания. Опухолевые клетки могут использовать различные механизмы для подавления апоптоза и приобретения устойчивости к апоптотическим агентам. Например, может наблюдается повышенная экспрессия антиапоптотических белков (Bcl-2) или мутации в генах проапоптотических белков (Вах).

Дефекты апоптоза могут позволить эпителиальным клеткам выживать во взвешенном состоянии без прикрепления к внеклеточному матриксу, что способствует метастазированию. Они также способствуют устойчивости перед цитолитическими Т-клетками и натуральными киллерами (NK), атакующими опухоли. Эти дефекты играют важную роль в устойчивости к лечению химиотерапией и лучевой терапией, увеличивая порог смерти клеток и требуя более высоких доз агентов, убивающих опухоль.

Успешное удаление раковых клеток с помощью нехирургических средств в конечном итоге достигается путем индукции апоптоза. Все цитотоксические противораковые средства, которые в настоящее время используются в клинических целях, вызывают апоптотическую гибель злокачественных клеток.



Рисунок 9 | Схематическое представление различных способов, из-за которых апоптотические пути могут быть нарушены

Терапия онкологических заболеваний и апоптоз

Ингибирование апоптоза лежит в основе развития всех опухолей. А значит, наиболее очевидной стратегией лечения является нацеленность на причины, которые подавляют гибель клеток. Для преодоления антиапоптотического эффекта белков Bcl-2 и Bcl-xL в опухолевых заболеваниях существует три стратегии:

  • прекращение транскрипции их генов,
  • разрушение мРНК с помощью антисмысловых олигонуклеотидов,
  • атака мелкомолекулярными препаратами.

Стратегия первая

Следовательно, антиэстрогены, такие как тамоксифен, ингибируют экспрессию Bcl-2 в клеточных линиях рака молочной железы, способствуя развитию чувствительности к цитотоксическим противоопухолевым препаратам, таким как доксорубицин.

Стратегия вторая

Антисмысловые олигонуклеотиды — цель на мРНК. Антисмысловые олигонуклеотиды (Antisense oligonucleotides) представляют собой короткие последовательности одноцепочечной ДНК, которые могут связываться с мРНК, что сопровождается ее разрушением.

Один из перспективных препаратов - облимерсен натрия. Он представляет собой натриевую соль фосфоротиоатного антисмыслового олигонуклеотида. Препарат ингибирует мРНК гена Bcl-2. Он был успешно протестирован в сочетании с другими противораковыми агентами при различных типах рака, таких как множественная миелома, мелкоклеточный рак легких, меланома и неходжкинская лимфома.

Модификация искусственных нуклеотидов делает нуклеотидную цепь устойчивой к расщеплению нуклеазами и повышают период полувыведения в организме. В данном случае использовалось добавление фосфоротиоата (PS) в основную цепь (замена одного из кислородных остатков фосфатной цепи на серу)

Стратегия третья

BH3 миметики — это вещества, связывающиеся с рецепторами белков, на которые действуют сами BH3. Они необходимы для активации апоптоза. Эти белки нейтрализуют антиапоптотическое белки Bcl2 или активируют Bak и Bax. Разработаны BH3-имитирующие молекулы, выполняющие те же функции, что и BH3 белки.

Например, вещество ABT-737, которое ингибирует Bcl2-белки. BH3-белки, взаимодействуют с длинной гидрофобной канавкой в белке Bcl2, тем самым инактивируя последние. Препарат ABT-737 был спроектирован с помощью кристаллической структуры этой канавки.

Р53 в качестве лекарственной цели

Ген белка р53 отключен из-за мутаций примерно у 50% всех злокачественных опухолей. Повышение производства белка р53 в клетке может быть методом противораковой терапии. В нормальных клетках белок p53 обычно поддерживается на низком уровне, поскольку он подвержен ингибированию белком MDM2. В ответ на повреждения ДНК p53 видоизменяется.

Это позволяет ему избежать контроля MDM2 и начать накапливаться в клетке. Содержание гена MDM2 увеличено в некоторых типах опухолей, поэтому активного белка р53 становится меньше. Взаимодействие между p53 и MDM2 является мишенью в противораковой терапии. С этой целью были разработаны препараты, которые блокируют белок-белковые взаимодействия. Среди них Nutlin-3, ингибирующий взаимодействие p53/MDM2.

Большая часть того, что известно об апоптозе, стала понятна только недавно. Основная идея разработки терапевтических препаратов для лечения рака основана на том факте, что поврежденные клетки обычно встают на путь апоптоза, поддерживая нормальное для ткани количество клеток. Однако это явление сильно нарушается в раковых клетках. Обнаружение ключевых участников апоптоза и их взаимодействие с другими значимыми участниками создает условия для поиска новых методов терапии рака.


С морфологической точки зрения параметры апоптоза включают в себя конденсацию хроматина и разложение ДНК на 180bp интернуклеосомальные фрагменты из-за эндонуклеазы, активированной каспазами. Во время апоптоза в клетке присутствуют фрагменты ДНК с большой молекулярной массой (50-300 kbp), отражающие активацию факторов, разрушающих ДНК, например, фактора, индуцирующего апоптоз.

С точки зрения психиатрии и неврологии представляет интерес тот факт, что некоторые субпопуляции нейронов могут иметь признаки апоптоза после различных повреждений (некроз после инсульта). Одновременное сочетание признаков некроза и апоптоза (разрушенные мембраны, фрагментированные ДНК) могут быть обнаружены в одном и том же нейроне. Более того, одни и те же химические вещества, например, каиновая кислота, стимулирующая глутаматные рецепторы нейронов и вызывающая эксайтотоксичность, могут привести как к апоптозу, так и к некрозу клетки. Вариант исхода в данном случае зависит от времени воздействия, концентрации активно действующего вещества, возраста организма и самого нейрона. Вообще нейронам свойственно подвергаться апоптозу, когда в наличие имеется достаточное количество энергии. Однако этот процесс может быть прекращен вследствие воздействия различных факторов, таких, как АТФ и функционирование митохондрий.

Уровень свободных радикалов (активных форм кислорода — АФК) играет большую роль в регуляции апоптоза с помощью вовлечения клеточных органелл, включая митохондрии. Образование АФК и оксидантный стресс участвуют в развитии нейродегенеративных заболеваний (болезнь Альцгеймера). При травме головного мозга описана парадоксальная реакция ингибирования выработки АФК одновременно с увеличением числа клеток, подвергнувшихся апоптозу.

Читайте также: