Схемы замещения электрических цепей кратко

Обновлено: 28.06.2024

Электромагнитные процессы, протекающие в электротехнических устройствах, как правило, достаточно сложны. Однако во многих случаях, их основные характеристики можно описать с помощью таких интегральных понятий, как: напряжение, ток, электродвижущая сила (ЭДС). При таком подходе совокупность электротехнических устройств, состоящую из соответствующим образом соединенных источников и приемников электрической энергии, предназначенных для генерации, передачи, распределения и преобразования электрической энергии и (или) информации, рассматривают как электрическую цепь. Электрическая цепь состоит из отдельных частей (объектов), выполняющих определенные функции и называемых элементами цепи. Основными элементами цепи являются источники и приемники электрической энергии (сигналов). Электротехнические устройства, производящие электрическую энергию, называются генераторами или источниками электрической энергии, а устройства, потребляющие ее – приемниками (потребителями) электрической энергии.

У каждого элемента цепи можно выделить определенное число зажимов (полюсов), с помощью которых он соединяется с другими элементами. Различают двух –и многополюсные элементы. Двухполюсники имеют два зажима. К ним относятся источники энергии (за исключением управляемых и многофазных), резисторы, катушки индуктивности, конденсаторы. Многополюсные элементы – это, например, триоды, трансформаторы, усилители и т.д.

Все элементы электрической цепи условно можно разделить на активные и пассивные. Активным называется элемент, содержащий в своей структуре источник электрической энергии. К пассивным относятся элементы, в которых рассеивается (резисторы) или накапливается (катушка индуктивности и конденсаторы) энергия. К основным характеристикам элементов цепи относятся их вольт-амперные, вебер-амперные и кулон-вольтные характеристики, описываемые дифференциальными или (и) алгебраическими уравнениями. Если элементы описываются линейными дифференциальными или алгебраическими уравнениями, то они называются линейными, в противном случае они относятся к классу нелинейных. Строго говоря, все элементы являются нелинейными. Возможность рассмотрения их как линейных, что существенно упрощает математическое описание и анализ процессов, определяется границами изменения характеризующих их переменных и их частот. Коэффициенты, связывающие переменные, их производные и интегралы в этих уравнениях, называются параметрами элемента.

Если параметры элемента не являются функциями пространственных координат, определяющих его геометрические размеры, то он называется элементом с сосредоточенными параметрами. Если элемент описывается уравнениями, в которые входят пространственные переменные, то он относится к классу элементов с распределенными параметрами. Классическим примером последних является линия передачи электроэнергии (длинная линия).

Цепи, содержащие только линейные элементы, называются линейными. Наличие в схеме хотя бы одного нелинейного элемента относит ее к классу нелинейных.

Рассмотрим пассивные элементы цепи, их основные характеристики и параметры.

1. Резистивный элемент (резистор)

Условное графическое изображение резистора приведено на рис. 1,а. Резистор – это пассивный элемент, характеризующийся резистивным сопротивлением. Последнее определяется геометрическими размерами тела и свойствами материала: удельным сопротивлением r (Ом ´ м) или обратной величиной – удельной проводимостью (См/м).

В простейшем случае проводника длиной и сечением S его сопротивление определяется выражением

В общем случае определение сопротивления связано с расчетом поля в проводящей среде, разделяющей два электрода.

Основной характеристикой резистивного элемента является зависимость (или ), называемая вольт-амперной характеристикой (ВАХ). Если зависимость представляет собой прямую линию, проходящую через начало координат (см.рис. 1,б), то резистор называется линейным и описывается соотношением

где - проводимость. При этом R=const.

Нелинейный резистивный элемент, ВАХ которого нелинейна (рис. 1,б), как будет показано в блоке лекций, посвященных нелинейным цепям, характеризуется несколькими параметрами. В частности безынерционному резистору ставятся в соответствие статическое и дифференциальное сопротивления.

2. Индуктивный элемент (катушка индуктивности)

Условное графическое изображение катушки индуктивности приведено на рис. 2,а. Катушка – это пассивный элемент, характеризующийся индуктивностью. Для расчета индуктивности катушки необходимо рассчитать созданное ею магнитное поле.

Индуктивность определяется отношением потокосцепления к току, протекающему по виткам катушки,

В свою очередь потокосцепление равно сумме произведений потока, пронизывающего витки, на число этих витков , где .

Основной характеристикой катушки индуктивности является зависимость , называемая вебер-амперной характеристикой. Для линейных катушек индуктивности зависимость представляет собой прямую линию, проходящую через начало координат (см. рис. 2,б); при этом

Нелинейные свойства катушки индуктивности (см. кривую на рис. 2,б) определяет наличие у нее сердечника из ферромагнитного материала, для которого зависимость магнитной индукции от напряженности поля нелинейна. Без учета явления магнитного гистерезиса нелинейная катушка характеризуется статической и дифференциальной индуктивностями.

3. Емкостный элемент (конденсатор)

Условное графическое изображение конденсатора приведено на рис. 3,а.

Конденсатор – это пассивный элемент, характеризующийся емкостью. Для расчета последней необходимо рассчитать электрическое поле в конденсаторе. Емкость определяется отношением заряда q на обкладках конденсатора к напряжению u между ними

и зависит от геометрии обкладок и свойств диэлектрика, находящегося между ними. Большинство диэлектриков, используемых на практике, линейны, т.е. у них относительная диэлектрическая проницаемость =const. В этом случае зависимость представляет собой прямую линию, проходящую через начало координат, (см. рис. 3,б) и

У нелинейных диэлектриков (сегнетоэлектриков) диэлектрическая проницаемость является функцией напряженности поля, что обусловливает нелинейность зависимости (рис. 3,б). В этом случае без учета явления электрического гистерезиса нелинейный конденсатор характеризуется статической и дифференциальной емкостями.

Схемы замещения источников электрической энергии

Свойства источника электрической энергии описываются ВАХ , называемой внешней характеристикой источника. Далее в этом разделе для упрощения анализа и математического описания будут рассматриваться источники постоянного напряжения (тока). Однако все полученные при этом закономерности, понятия и эквивалентные схемы в полной мере распространяются на источники переменного тока. ВАХ источника может быть определена экспериментально на основе схемы, представленной на рис. 4,а. Здесь вольтметр V измеряет напряжение на зажимах 1-2 источника И, а амперметр А – потребляемый от него ток I, величина которого может изменяться с помощью переменного нагрузочного резистора (реостата) RН.

В общем случае ВАХ источника является нелинейной (кривая 1 на рис. 4,б). Она имеет две характерные точки, которые соответствуют:

а – режиму холостого хода ;

б – режиму короткого замыкания .

Для большинства источников режим короткого замыкания (иногда холостого хода) является недопустимым. Токи и напряжения источника обычно могут изменяться в определенных пределах, ограниченных сверху значениями, соответствующими номинальному режиму (режиму, при котором изготовитель гарантирует наилучшие условия его эксплуатации в отношении экономичности и долговечности срока службы). Это позволяет в ряде случаев для упрощения расчетов аппроксимировать нелинейную ВАХ на рабочем участке m-n (см. рис. 4,б) прямой, положение которой определяется рабочими интервалами изменения напряжения и тока. Следует отметить, что многие источники (гальванические элементы, аккумуляторы) имеют линейные ВАХ.

Прямая 2 на рис. 4,б описывается линейным уравнением

где - напряжение на зажимах источника при отключенной нагрузке (разомкнутом ключе К в схеме на рис. 4,а); - внутреннее сопротивление источника.

Уравнение (1) позволяет составить последовательную схему замещения источника (см. рис. 5,а). На этой схеме символом Е обозначен элемент, называемый идеальным источником ЭДС. Напряжение на зажимах этого элемента не зависит от тока источника, следовательно, ему соответствует ВАХ на рис. 5,б. На основании (1) у такого источника . Отметим, что направления ЭДС и напряжения на зажимах источника противоположны.

Если ВАХ источника линейна, то для определения параметров его схемы замещения необходимо провести замеры напряжения и тока для двух любых режимов его работы.

Существует также параллельная схема замещения источника. Для ее описания разделим левую и правую части соотношения (1) на . В результате получим

где ; - внутренняя проводимость источника.

Уравнению (2) соответствует схема замещения источника на рис. 6,а.

На этой схеме символом J обозначен элемент, называемый идеальным источником тока. Ток в ветви с этим элементом равен и не зависит от напряжения на зажимах источника, следовательно, ему соответствует ВАХ на рис. 6,б. На этом основании с учетом (2) у такого источника , т.е. его внутреннее сопротивление .

Отметим, что в расчетном плане при выполнении условия последовательная и параллельная схемы замещения источника являются эквивалентными. Однако в энергетическом отношении они различны, поскольку в режиме холостого хода для последовательной схемы замещения мощность равна нулю, а для параллельной – нет.

Кроме отмеченных режимов функционирования источника, на практике важное значение имеет согласованный режим работы, при котором нагрузкой RН от источника потребляется максимальная мощность

Условие такого режима

В заключение отметим, что в соответствии с ВАХ на рис. 5,б и 6,б идеальные источники ЭДС и тока являются источниками бесконечно большой мощности.

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  3. Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.1. К.М.Поливанов. Линейные электрические цепи с сосредоточенными постоянными. –М.: Энергия, 1972. –240 с.
  4. Каплянский А.Е. и др. Теоретические основы электротехники. Изд. 2-е. Учеб. пособие для электротехнических и энергетических специальностей вузов. –М.: Высш. шк., 1972. –448 с.

Контрольные вопросы и задачи

  1. Может ли внешняя характеристик источника проходить через начало координат?
  2. Какой режим (холостой ход или короткое замыкание) является аварийным для источника тока?
  3. В чем заключаются эквивалентность и различие последовательной и параллельной схем замещения источника?
  4. Определить индуктивность L и энергию магнитного поля WМкатушки, если при токе в ней I=20А потокосцепление y =2 Вб.


Электрическая схема — это документ, содержащий в виде условных изображений или обозначений составные части изделия, действующие при помощи электрической энергии, и их взаимосвязи. Зависимость тока, протекающего по сопротивлению, от напряжения на этом сопротивлении называют вольт-амперной характеристикой (ВАХ). По оси абсцисс на графике обычно откладывают напряжение, а по оси ординат — ток. Сопротивления, ВАХ которых являются прямыми линиями, называют линейными, электрические цепи только с линейными сопротивлениями — линейными электрическими цепями. Сопротивления, ВАХ которых не являются прямыми линиями, то есть они нелинейны, называют нелинейными, а электрические цепи с нелинейными сопротивлениями — нелинейными электрическими цепями.

Примерами линейных (как правило, в очень хорошем приближении) цепей являются цепи, содержащие только резисторы, конденсаторы и катушки индуктивности. Также как линейные в определенных диапазонах могут рассматриваться цепи, содержащие линейные усилители и некоторыми другими электронными устройствами, содержащими активные элементы, но имеющими в определенных диапазонах достаточно линейные характеристики.

  • Резистор. Идеальный резистор характеризуется только сопротивлением. Индуктивность, емкость, а также сопротивление выводов равны нулю.
  • Конденсатор. Идеальный конденсатор характеризуется только ёмкостью. Индуктивность, утечка, тангенс угла потерь, диэлектрическое поглощение а также сопротивление выводов равны нулю.
  • Катушка индуктивности. Идеальная катушка индуктивности характеризуется только индуктивностью. Емкость, сопротивление потерь, а также сопротивление выводов равны нулю.
  • Источник ЭДС. Идеальный источник ЭДС характеризуется только своим напряжением. Внутреннее сопротивление и сопротивление выводов равны нулю.
  • Источник тока. Идеальный источник тока характеризуется только своим током. Утечка равна нулю.
  • Проводники. Элементы эквивалентной схемы соединены идеальными проводниками, то есть индуктивность, емкость и сопротивление проводников равны нулю.

ОТВЕТЫ ПО ЭЛЕКТРОТЕХНИКЕ.




Электрическая схема — это документ, содержащий в виде условных изображений или обозначений составные части изделия, действующие при помощи электрической энергии, и их взаимосвязи. Зависимость тока, протекающего по сопротивлению, от напряжения на этом сопротивлении называют вольт-амперной характеристикой (ВАХ). По оси абсцисс на графике обычно откладывают напряжение, а по оси ординат — ток. Сопротивления, ВАХ которых являются прямыми линиями, называют линейными, электрические цепи только с линейными сопротивлениями — линейными электрическими цепями. Сопротивления, ВАХ которых не являются прямыми линиями, то есть они нелинейны, называют нелинейными, а электрические цепи с нелинейными сопротивлениями — нелинейными электрическими цепями.




Примерами линейных (как правило, в очень хорошем приближении) цепей являются цепи, содержащие только резисторы, конденсаторы и катушки индуктивности. Также как линейные в определенных диапазонах могут рассматриваться цепи, содержащие линейные усилители и некоторыми другими электронными устройствами, содержащими активные элементы, но имеющими в определенных диапазонах достаточно линейные характеристики.

В схеме на рис. Рассмотрим применение метода узловых напряжений для расчета электрических цепей более подробно на примере схемы, взятой из предыдущего раздела.


Участок, вдоль которого течет один и тот же ток, называется ветвью электрической цепи. Схемы параллельного соединения приемников лампы резисторами с сопротивлениями R1, R2, R3, получим схему, показанную на рис.

Зажимыab, к которым подключается внешняя часть цепи, называются выходными зажимами источника.
Как читать Элекрические схемы

Расчет сложных электрических цепей методом узловых напряжений производят в следующей последовательности: 1. При параллельном соединении ко всем резисторам приложено одинаковое напряжение U.

В цепи, где r, L, С соединены последовательно, может возникнуть резонанс напряжений, а в цепи, где r, L, С соединены параллельно,— резонанс токов.

Все эти параметры могут быть либо постоянными, либо зависящими от значений и направлений напряжений и токов или от времени.

Зная токи, нетрудно определить напряжение и мощности отдельных элементов.

По этим данным можно определить все параметры схемы замещения трансформатора сопротивления и проводимости , а также потери мощности в нем.

1 3 4 Комплексные схемы замещения идеализированных пассивных элементов

1.5. Режимы работы источника электрической энергии.

Если треугольник сопротивлений R1-R2-R3, включенных между узлами заменить трехлучевой звездой сопротивлений, лучи которой расходятся из точки 0 в те же узлы , эквивалентное сопротивление полученной схемы легко определяется. Удельные активные и реактивные сопротивления r0, х0 определяют по справочным таблицам, так же как и для ВЛ.

Индуктивным называют такой схемный элемент, в котором происходит только накопление магнитной энергии или только обмен магнитной энергией с цепью.

Рассмотрим явление резонанса напряжений на примере цепи рис. Как уже упоминалось выше, это значит, что реальное направление тока противоположно выбранному.

Для проведения расчетов электрических цепей сначала необходимо принципиальную электрическую схему преобразовать в схему замещения, в которой отсутствуют элементы, не влияющие на режим работы схемы.

Для упрощения исследования цепи ее заменяют схемой замещения, которая служит расчетной моделью реальной цепи.

Кабельные линии электропередачи представляют такой же П-образной схемой замещения, что и ВЛ рис. Принципиальная схема устройства и ее схема замещения В принципиальной схеме: Г — генератор электрической энергии, Пр — предохранители, Л — линия электропередачи, П1 — потребитель 1, П2 — потребитель 2, К — ключ, Р — рубильник, В — выключатель.

Если треугольник сопротивлений R1-R2-R3, включенных между узлами заменить трехлучевой звездой сопротивлений, лучи которой расходятся из точки 0 в те же узлы , эквивалентное сопротивление полученной схемы легко определяется.
Схема замещения сети

Как отмечалось, при резонансе ток и напряжение совпадают по фазе, т.

По закону сохранения энергии мощность Р, развиваемая источником, равна мощностиРН, отдаваемой во внешнюю цепь и мощности потерь в источнике Р, то есть. При параллельном соединении ко всем резисторам приложено одинаковое напряжение U.

На схеме выбирают и обозначают контурные токи, таким образом, чтобы по любой ветви проходил хотя бы один выбранный контурный ток исключая ветви с идеальними источниками тока.

В схеме замещения рисунок 4б генератор представлен источником ЭДС и внутренним сопротивлением , а потребители П1 и П2 представлены соответственно сопротивлениями и. Схема замещения эл. Для источника постоянного тока внешняя характеристика представляет собой прямую линию, параллельную оси напряжения рис.

Для проведения расчетов электрических цепей сначала необходимо принципиальную электрическую схему преобразовать в схему замещения, в которой отсутствуют элементы, не влияющие на режим работы схемы. Все эти параметры могут быть либо постоянными, либо зависящими от значений и направлений напряжений и токов или от времени. Для облегчения расчета составляется схема замещения электрической цепи или просто электрическая схема.



Поперечная ветвь схемы ветвь намагничивания состоит из активной и реактивной проводимостей gт и bт. Поэтому для упрощения задачи принимают ряд допущений, позволяющих создать простые математические модели при достаточной точности получаемых результатов.

Стрелка ЭДС указывает направление движения положительных зарядов внутри источника под действием сторонних сил. Ток в любой ветви можно рассчитать как алгебраическую сумму токов, вызываемых в ней каждым источником электрической энергии в отдельности.

Если управляющие воздействия таких зависимых источников равны нулю, то на их выходе будут равны нулю соответственно ЭДС или токи. Сложнее электрические цепи содержат азветвления 13 Идеальный источник ЭДС: Ид ист ЭДС — источник, напряжение на зажимах которого не зависит от тока 14 Идеальный источник тока: Источник энергии, ток через который не зависит от напряжения на его зажимах 15 Схемы замещения реальных источников энергии: Графическое изображение Эл. В общем случае под резонансом электрической цепи понимают такое состояние цепи, когда ток и напряжение совпадают по фазе, и, следовательно, эквивалентная схема цепи представляет собой активное сопротивление.

Обладает емкостью С, измеряемой в фарадах Ф. Зависимыми источниками ЭДС называют источники, электродвижущая сила которых зависит либо от тока, либо от напряжения на некотором участке цепи. Активная проводимость линии соответствует двум видам потерь активной мощности: от тока утечки через изоляторы и на корону.

Схемы замещения элементов электрических цепей В. Если все эти три процесса происходить при токах и напряжениях постоянных во времени, то такие цепи наз-ся цепями постоянного тока. Величины, которые определяют номинальный режим, заносятся в паспорт источника и называются номинальными, они берутся за основу при расчете электрических схем. Укажем произвольно направления токов.

Например: Если учесть сопротивление утечки реального конденсатора, сопротивление витков реальной индуктивной катушки и внутреннее сопротивление реального источника ЭДС, то можно составить соответствующие схемы замещения этих элементов: Отсюда следует, что все схемы по сути дела являются лишь более или менее точными схемами замещения реальных электрических цепей. Активное сопротивление проводов и кабелей при частоте 50 Гц обычно примерно равно омическому сопротивлению.

Для проведения расчетов электрических цепей сначала необходимо принципиальную электрическую схему преобразовать в схему замещения, в которой отсутствуют элементы, не влияющие на режим работы схемы. При этом следует иметь ввиду, что когда ведут расчет токов, вызванных одним из источников электрической энергии, то остальные источники ЭДС в схеме замещают короткозамкнутыми участками, а источники тока разомкнутыми участками. Преобразование звезды сопротивлений в эквивалентный треугольник Сопротивление стороны эквивалентного треугольника сопротивлений равно сумме сопротивлений двух прилегающих лучей звезды плюс произведение этих же сопротивлений, деленное на сопротивление оставшегося противолежащего луча. Этот метод позволяет уменьшить количество уравнений системы до величины: k-1 , где k — количество узлов сложной электрической цепи.

1. Схемы замещения и векторные диаграммы электрической цепи идеализированного дросселя

В схеме замещения рисунок 4б генератор представлен источником ЭДС и внутренним сопротивлением , а потребители П1 и П2 представлены соответственно сопротивлениями и. Схемы последовательного соединения приемников Последовательное соединение резисторов. Это означает, что действительное направление тока противоположно выбранному нами. Она состоит из совокупности различных идеализированных элементов, выбранных так, чтобы можно было с хорошим приближением описать процессы эл.

Пусть требуется определить токи в параллельных ветвях при известном суммарном токе рис. Цепи разветвленные; в по количеству источников электрической энергии — цепи с одним и несколькими источниками; г по виду вольтамперных характеристик элементов — цепи линейные, цепи нелинейные. ПОИСК Схема замещения электрической цепи Схема электрической цепи, которую составляют для расчета режима работы цепи, называют схемой замещения. Внешняя характеристика резистивного элемента, связывающая падение напряжения на нем с проходящим через него током, определяется законом Ома.
09 Расчёт токов короткого замыкания — Электроснабжение населённого пункта

Схемой электрической цепи называется ее графическое изображение с использованием обозначений идеальных элементов. Например:



Если учесть сопротивление утечки реального конденсатора, сопротивление витков реальной индуктивной катушки и внутреннее сопротивление реального источника ЭДС, то можно составить соответствующие схемы замещения этих элементов:




Отсюда следует, что все схемы по сути дела являются лишь более или менее точными схемами замещения реальных электрических цепей.

Представленный на рис.2 контур содержит три участка: участок с постоянным напряжением U = Е, не зависящим от тока источника, и участки с напряжениями RвхI и U на нагрузке Rн.

Направление ЭДС выбрано совпадающим с направлением тока, но оно противоположно напряжению на этом элементе.

Для определения параметров схемы замещения источника электрической энергии с линейной внешней характеристикой нужно провести два опыта - холостого хода (I=0; U=Uх=Е) и короткого замыкания (I=Iк; U=Е-RвнI).

Читайте также: