Сера для растений значение кратко

Обновлено: 05.07.2024

Сера и ее роль в питании сельскохозяйственных культур

16.01.2020

Среди наиболее необходимых элементов, играющих жизненно важную роль в питании сельскохозяйственных культур, сера (S) занимает особое место. Хотя количество потребления ее растениями не столь велико по сравнению с азотом, фосфором и калием, все же ее значение для полноценного роста и развития культур трудно переоценить. В растительном организме сера присутствует в виде органических и минеральных соединений и составляет около 0,2 – 1% сухой массы растений, но по своему биохимическому воздействию приравнивается к макроэлементам. Заменить ее другими элементами минерального питания невозможно.


Сера активно участвует в азотном и углеводном обмене веществ, в процессах дыхания и синтезе жиров. Она усиливает рост и развитие растений, стимулирует образование клубеньковых бактерий на корнях у бобовых культур, а также интенсифицирует поглощающую деятельность корневой системы, благодаря чему повышает эффективность применения NPK-удобрений, способствует мобилизации из почвы питательных элементов (кальций, магний, железо, микроэлементы) и снижает поступление в растения радионуклидов. Вместе с тем, отмечается повышение устойчивости сельскохозяйственных культур к неблагоприятным климатическим условиям (повышенные или пониженные температуры, засуха, действие радиации).

Дефицит серы

Сера в культурах является незаменимым компонентом белковых соединений (аминокислот метионина, цистина, цистеина), витаминов В1 (тиамина) и Н (биотина), липоевой кислоты, глютатиона, коэнзима А, сульфолипидов, хлорофилла, поэтому ее дефицит вызывает нарушения в процессах синтеза белка, приводит к снижению (до 40%) интенсивности процесса фотосинтеза и накоплению растворимых азотистых соединений (нитритов и нитратов).

Сера участвует в формировании многих ферментов и эфирных масел (горчичное, луковое, чесночное и пр.). Достаточное обеспечение растений серным питанием – одно из условий получения высококачественных урожаев. Сера обеспечивает высокий уровень накопления в продуктах сахаров и крахмала, увеличивает содержание масла в семенах рапса, подсолнечника, сои, повышает долю клейковины в зерне пшеницы.


Потребность различных культур в сере неодинакова. Наиболее нуждаются в этом элементе такие культуры как рапс, репа, редис, чеснок, лук, кочанная капуста, брокколи, горчица. Вынос серы при средней их урожайности составляет от 40 до 80 кг/га. Менее зависимы от серосодержащих веществ свекла, кукуруза, лен, хлопчатник, табак и бобовые (соя, горох, люцерна, клевер и пр.). Они потребляют за сезон от 20 до 40 кг/га серы. Картофель, зерновые (пшеница, рожь, ячмень, тритикале), подсолнечник и травы составляют группу культур, значение серы в питании которых невелико, и количество усваиваемого ими элемента не превышает 15 – 20 кг/га.

Также динамика потребления серы у растений меняется в зависимости от фазы их развития. К примеру, рапс испытывает наибольшую зависимость от элемента в период цветения и формирования стручков. Для пшеницы дефицит серы наиболее ощутим в фазе кущения и в период молочной спелости зерна. Потребление серы кукурузой в течение всего вегетационного периода культуры происходит более равномерно.

Серная недостаточность у пшеницы

Поступление серы в растения осуществляется как из почвенных запасов, где общее содержание элемента составляет 0,005 – 0,04%, так и из атмосферы (SO2). Основное количество (до 80 – 90%) почвенной серы находится в органической форме (гумус, растительные остатки), практически недоступной для культур, и лишь 10 – 20% – в минеральной. Чтобы корни растений могли усваивать элемент, необходима минерализация органических серосодержащих веществ до сульфатов (сульфат калия, магния, кальция, натрия). В природе этот процесс осуществляется микроорганизмами и протекает достаточно медленно, поэтому сельскохозяйственные культуры, отличающиеся интенсивным ростом, чаще всего испытывают серное голодание.

Еще одна из причин возникновения дефицита серы в питании растений – широкое внедрение высокопроцентных минеральных комплексов (с макроэлементами), не содержащих серы. Если до недавнего времени сера неизменно входила в качестве сопутствующего компонента в большинство минеральных комплексов, предназначенных для обеспеспечения полноценного питания культур, то сегодня рынок производства удобрений делает ставку на увеличение количества выпуска основных макроэлементов с низким включеним примесей (в т. ч. серы).

Внекорневая подкормка серой

Особенностью проявления нехватки серного питания у растений является то, что симптомы можно наблюдать на молодых, растущих листьях или точках роста (пожелтение, некроз, мелколиственность, вытянутость черешков, приостановка роста, задержка созревания и т. п.). Связано это с тем, что сера малоподвижна в растениях и не реутилизируется культурами, т. е. не может мигрировать от одних органов растений к другим (например, от нижних листьев к верхним). Известно, что максимальное ее количество сосредоточено в семенах и тканях листьев, а минимальное – в стеблях и корнях. Именно поэтому ликвидировать последствия при обнаружении симптомов серного дефицита в кратчайшие сроки (4 – 5 дней) лучше всего путем внекорневых подкормок растений.

С этой целью применяются серосодержащие удобрения, обладающие высокой водорастворимостью и не содержащие вредных примесей и свободной серной кислоты. Хорошую эффективность в ликвидации серного голодания продемонстрировал продукт украинской компании "Долина", жидкое микроудобрение "Оракул сера актив", содержащее 760 г/л серы в полисульфидной форме, что позволяет растениям включать ее в биосинтез аминокислот и белков с меньшими затратами энергии. При поглощении препарата непосредственно клетками листьев происходит полное восстановление физиологических и биохимических процессов жизнедеятельности культур.

Агрохимикаты , статья из раздела: Питательные элементы


Сера – химический элемент, жизненно необходимый растениям. Он входит в состав всех белков, содержится в некоторых аминокислотах. Является компонентом сложных удобрений. Серосодержащие удобрения вносят осенью под зяблевую вспашку или ранней весной под предпосевную культивацию. Зарубежный опыт предусматривает рядковое внесение серы и некорневые подкормки.

Сера

Содержание:

Этот элемент можно добыть не только путем сложных химических реакций, но и непосредственно из мест его природного скопления в горных породах и геологических отложениях. По этой причине люди были знакомы с серой еще задолго до того, как они начали понимать, что это такое. На протяжении своей древней истории сера очень часто применялась при совершении различных обрядов, в том числе, и религиозных. Куски самородной серы использовали экзорцисты, изгоняющие бесов, а серным дымом окуривали помещения храмов. Согласно легенде, даже Одиссей, вернувшись домой из дальних странствий, перво-наперво приказал окурить свое жилище серой. Во времена Средневековья алхимики считали, что любой металл состоит из серы и ртути, причем, чем меньше серы в нем содержится, тем он лучше и благородней.

Словом, сера как элемент и как химическое вещество длительное время была окружена многочисленными домыслами. И лишь в XIII-XIV веке, когда ее стали целенаправленно использовать в опытах при получении других соединений, она стала выглядеть в глазах человека куда менее загадочно. Киноварь и порох стали первыми примерами практического применения серы. Сейчас же спектр ее использования расширился еще больше: она необходима для изготовления серной кислоты, вулканизации каучука и протекания других реакций органического синтеза, в производстве красителей, сельскохозяйственных удобрений, реактивов для проведения лабораторных проб и др. [7]

Сера - Кристаллы серы

Кристаллы серы

Сера - Кристаллы серы

Физические и химические свойства

Сера (Sulfur), S – элемент главной подгруппы VI группы периодической системы Менделеева. Атомный номер – 16, атомная масса – 3,07.

Сера при обычных условиях – хрупкие кристаллы желтого цвета.

  • Плотность – 2,07 г/см 3 ,
  • Температура плавления – +112,8 °С,
  • Температура кипения – +444,6 °С.

Сера нерастворима в воде, однако хорошо растворяется в сероуглероде и бензоле. При испарении данных жидкостей можно получить ромбическую серу, кристаллы которой имеют форму октаэдров со срезанными углами или ребрами.

Встречается также моноклинная модификация серы с температурой плавления + 119,3 °С и плотностью 1,96 г/см 3 . Она устойчива только при температуре выше +96 °С. При более низкой температуре превращается в ромбическую серу.

Различия в свойствах кристаллических модификаций вызваны неодинаковой структурой кристаллов.

Сера обладает свойствами типичных неметаллов. Со многими металлами сера способна соединяться непосредственно. Реакции сопровождаются выделением большого количества теплоты. Сера вступает в реакции соединения и со всеми неметаллами, но гораздо труднее, чем с металлами. [3]

Сера – фунгицид и акарицид

Сера также является фунгицидом и акарицидом

Содержание в природе

В природе сера встречается и в свободном состоянии, и в различных соединениях.

Широко распространены соединения серы с различными металлами. Многие из них считаются ценными рудами (свинцовый блеск, цинковая обманка, медный блеск) и являются источниками получения цветных металлов. [3]

Сера принадлежит к широко распространенным в природе элементам. Встречается в горных породах, минералах, углях, нефти, почвах, присутствует и содержится во всех живых организмах. В геологических отложениях насчитывается около 40 минералов группы сульфидов и столько же минералов группы сульфатов.

В глубоких горизонтах почвы сера представлена в форме пирита, марказита; в сульфатах – в сочетаниях со щелочными и щелочноземельными металлами. [2]

Содержание серы в различных типах почв

Главным источником серы в почвах служат почвообразующие породы. Среднее содержание серы в почве составляет 0,04 %, реже это значение достигает 0,2–0,3 %. В верхних горизонтах серы содержится больше, поскольку она входит в состав перегнойных кислот.

Сульфофиксация

До 80–90 % серы в почве присутствует в органических формах, а 10–20 % – в минеральных. Как правило, это сульфаты калия, натрия, кальция и магния.

Большое количество серы поступает в почву с атмосферными осадками. В форме органических соединений сера совершает долгий путь в цикле почвообразования и становится доступной растениям при разложении органических веществ и образовании минеральных соединений. [1] Этот процесс и называют сульфофикацией. Он имеет сезонный характер – минимальный весной, максимальный летом и затихающий к осени. Высвобождение серы идет в том же соотношении, в котором она находится в органических остатках и гумусе. [5]

Потребность с/х культур в сере и симптомы её недостатка, согласно данным: [6] [5]

Культура

П

Симптомы недостатка

Бобовые

Вся листовая пластинка молодых листьев, в том числе жилки, светло-зеленой или желтой окраски;

На поздних стадиях старые листья желтеют;

Содержание белков низкое

Горчица

Замедление развития растений;

Уменьшение размера листьев, стебли удлиняются, листья и черешки деревянистые;

В отличие от азотного голодания, при серном листья не отмирают, хотя цвет их становиться бледным

Капуста

и другие крестоцветные

Замедляется развитие растений;

Уменьшается размер листьев, стебли удлиняются, листья и черешки деревянистые;

В отличие от азотного голодания, при серном листья не отмирают, хотя цвет их становиться бледным

Томаты

Нижние листья желтовато-зеленые;

Стебли твердые, деревянистые;

Корневая система хорошо развита в длину и сильно ветвится, но диаметр корней и стеблей мал;

Стебли томатов удлиняются без увеличения диаметра;

В растении много углеводов и иногда азота

Огурцы

Рост растений ограничен;

Листья маленькие, загнуты вниз, бледно-зеленые до желтого, на старых листьях желтизны меньше;

Края молодых листьев зазубрены

Круговорот серы в почве

Растения перехватывают минеральную серу и возвращают в верхние слои почвы снова в виде органических веществ. Таким образом, совершается непрерывное преобразование форм серы в процессах обмена веществ между растениями и почвой. [2]

Содержание сульфатов в почве меняется в течение сезона. Больше всего сульфатов в почве в летнее время. Именно тогда, когда минерализация (сульфофикация) идет наиболее активно. [1]

Торфяные почвы, солонцы и солончаки

Супесчаные и песчаные почвы Нечерноземной зоны

Дерново-подзолистые почвы

характеризуются наличием доступной для растений сульфатной серы в количестве от 30 до 90 кг/га. Дефицит серы в данном типе почв ощутим на легких малогумусных и переувлажненных почвах. [1]

Роль в растении

Биохимические функции

Основные функции серы

Сера активно участвует в окислительно-восстановительных процессах, активировании энзимов, белковом обмене. Она способствует фиксации азота из атмосферы путем усиления образования клубеньков у бобовых. [5]

Формы и соединения серы в тканях растений

Сера является составной частью белков и содержится в важнейших аминокислотах – цистине и метионине. Встречается данный элемент и в других органических соединениях – в аллил-горчичном масле из горчичных семян, в чесночном масле. Сера входит также в состав гликозидов, витамина В, биотина, некоторых антибиотиков (пенициллина). [2]

Важнейшее соединение, содержащее серу и участвующее в окислительно-восстановительных реакциях – глутатион. В его состав сера входит в виде производного цистина – цистеина. Цистин содержит серу в виде дисульфидной группы, цистеин – в виде сульфгидрильной. [2]

В растущих органах растений с преобладанием синтетических процессов сера обнаруживается в восстановленной форме. По мере старения, когда процессы гидролиза начинают преобладать над процессами синтеза, в растении возрастает количество окисленной формы соединений серы. [5]

Сера поглощается растениями из почвы только в виде аниона серной кислоты (в окисленной форме). Однако во всех выше указанных соединениях она содержится в восстановленной форме (восстановителями сульфатов в растениях выступают углеводы). И именно в таком виде элемент участвует в окислительно-восстановительных процессах, связанных с дыханием. [2]

С органическими веществами сера связана дисульфидной (-S-S-) или сульфгидрильной (-SH) группами. Эти группы выполняют важные функции в процессе окислительно-восстановительных реакций. В частности, сульфгидрильная группа при окислении теряет водород и превращается в дисульфидную группу. [5]

Источники питания серой

Источником питания серой для растений служат соли серной кислоты. Частично сера в виде сернистого газа (SO2) поглощается растениями из воздуха. Окисленная форма серы – исходный продукт для синтеза белков. Эта же форма является и конечным продуктом при распаде белковой молекулы. [5]

Сера и вегетация растений - фото

Азот, фосфор и калий являются основными компонентами удобрений сельхозкультур. Но для достижения урожайности и более питательных продуктов сельскохозяйственным культурам нужна сера. Этот элемент все чаще называют четвертым по значимости за ту роль, которую сера играет в вегетации растений.

Роль серы в росте и развитии растений

Сера является одним из 17 основных питательных веществ для растений. Сера участвует в образование хлорофилла, производстве белка, синтезе масел и других важных процессах вегетации растений. Ее недостаток сказывается на количестве и качестве урожая. Диагностировать визуально дефицит серы в растении сложно, поскольку внешне он аналогичен азотному голоданию: пожелтение листьев, вытягивание и утончение стеблей, замедленное развитие культуры. Типичные визуальные признаки дефицита серы представлены в таблице 1.


Хлороз на молодых листьях и точках роста при дефиците серы объясняется тем, что этот элемент не может перемещаться с нижних ярусов к молодым листьям, как азот. При недостатке азота нижние листья отпадают, а при серная недостаточность приводит только к побледнению и пожелтению, но не к опадению листьев. Поскольку на многих полевых культурах сложно зрительно различить дефицит серы и азота, рекомендуется провести анализ тканей растения.

Сера в почве

Сера составляет в органическом веществе почвы приблизительно 1/8 от содержания азота. В среднем, на каждые 77 кг органического вещества почвы приходится чуть меньше 0,5 кг серы. Для серы важны не только количество, но и форма, в которой находится это вещество. Известно, что сера становится доступной для растений только в процессе минерализации микроорганизмами. Дефицит серы наблюдается на разных типах почв и зависит не только от выращиваемых культур, но и от технологии, которые используются в конкретном хозяйстве.

В последние годы все чаще наблюдается дефицит серы на полях с системой обработки no-­till. При использовании безотвальной системы земледелия каждый сельскохозяйственный сезон минерализуется меньше органического вещества, особенно в начальный период применения no-­till. В это время поверхностные остатки накапливаются, и содержание органического вещества начинает медленно увеличиваться из-­за снижения механического воздействия на почву. Но минерализация серы замедляется. Комбинация снижения минерализации и увеличения посевов приводит к возникновению дефицита серы.

Дефицит серы приводит к тому, что растение плохо усваивает азот. И даже на подкормленных азотными удобрениями полях с дефицитом серы азот просто вымывается. В итоге сельхозпроизводитель впустую тратит деньги, так как урожайность не увеличивается, а кроме этого, страдает окружающая среда. Немецкие исследователи подсчитали: из-за недостатка серы в почве ежегодно теряется до 300 млн кг азота или около 10 % используемых в стране азотных удобрений.

В России лишь 10 % пашен сдержат достаточный процент серы (более 12 мг/кг). Средний уровень сохраняется на 30 % угодий. Примерно три четверти пахотных угодий России нуждаются в применении серосодержащих удобрений.

Влияние серы на растения

Белки и протеины растения содержат 90% серы, которая находится в растении. Масла растений семейства горчичных и луковых особенно богаты серой. Своевременное внесение удобрений серы увеличивает содержание масла в семенах.

Кроме того, сера является составной частью аминокислот (цистин, цистеин и метионин). Эти аминокислоты играют важную роль в формировании белков растения. Сера также активирует некоторые энзимы и входит в состав коэнзима ­А, глютатиона и некоторых витаминов. Поскольку сера и азот необходимы для построения белков в растениях, между ними существует тесная взаимосвязь.

Потребность растений в сере представлена в таблице 2.


Восполнение дефицита серы

Дефицит серы на зерновых культурах наблюдается в почвах с низким содержанием органического вещества или на почвах с его медленной минерализацией. Однако почвы, расположенные около промышленных городов, могут получать достаточно серы из атмосферы, которой может хватить для формирование урожая. Чаще недостаток серы восполняется внесением удобрений.

На российском рынке представлен довольно широкий спектр серосодержащих удобрений в сухом и жидком видах. Кроме этого, используется гипс, который является источником серы, а также мелиорантом для почвы. Поскольку сера подвержена выщелачиванию, вносить ее с удобрениями необходимо ежегодно. При появлении бледно-­зеленой, желтой окраски листьев на зерновых культурах необходимо срочно сделать анализ почвы и тканей пораженных растений. И по результатам анализа восполнить дефицит серы с помощью удобрения.

Удобрения с серой — эффективность питания растений

Сера (Sulfur, или S), образующая целый ряд аллотропных модификаций, является значимым элементом питания для растений:

  • способствующим улучшению усвояемости применяемых азотистых соединений;
  • принимающим активное участие в синтезировании углеводных составляющих;
  • являющимся структурной составляющей аминокислот, белков, ферментов.

Компонент является стандартной составляющей незаменимой аминокислоты, или метионина, активизирующего процессы синтезирования любых белков у любых эукариот.

Понижение попадания серы в почвенные слои с удобрениями напрямую связано с тем, что все чаще используются азотсодержащие составы и фосфорного типа удобрения, не содержащие такого элемента, включая мочевину и аммиачную селитру.

  1. Органика – это вполне самодостаточный источник пополнения грунта серой, поэтому нужно в этом плане рассчитывать на такую составляющую, как 1 кг/тонна. Сельхозугодия, стабильно применяющие органику на эксплуатируемых посевных площадях, чаще всего, отмечают очень выраженную недостаточность содержания серы.
  2. В условиях появлении симптоматики дефицита серы (хлороза) вполне возможно проведения внекорневой подкормки при помощи раствора сульфата магния вместе с мочевиной в количестве 3-4 кг на каждый гектар или на 20 кг массы, что позволяет:
  • нейтрализовать биурет в карбамиде, провоцирующий ожоговое состояние на листве;
  • дополнить источник серных составляющих;
  • увеличить общее количество протеина в зерновых культурах.

В условиях 7-водного сульфата магния отмечается наличие SO2 – 32,0 MgO – 16,2%. При этом, в кристаллической форме достаточное содержание варьирует согласно данным, предоставленным производителем подкормки.

Читайте также: