Режим короткого замыкания трансформатора кратко

Обновлено: 05.07.2024

Всем доброго времени суток! В первой части статье о режимах работы трансформатора я рассказал о холостом ходе и расчете параметров в этом режиме. Кроме данного режима трансформатор может оказаться в аварийном режиме – режиме короткого замыкания. Кроме того одним из этапов испытания и проверки параметров трансформатора является опыт короткого замыкания, при котором на первичную обмотку подают такое напряжение, при котором в замкнутой вторичной обмотке протекает номинальный ток. Данный опыт и опыт короткого замыкания позволяют определить КПД трансформатора. Об этом пойдет речь в данной статье.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Назначение опыта короткого замыкания

Испытание на обрыв при отсутствии нагрузки выполняется для определения потерь в сердечнике без нагрузки по току.

Суть испытания заключается в том, что обмотка высокого напряжения остаётся разомкнутой в то время, как выходная обмотка подключается к обычной сети потребителя. Туда же подсоединяются и необходимые измерительные приборы – ваттметр, амперметр и вольтметр. В результате такого соединения, внешнее напряжение, которое прикладывается к устройству, медленно увеличивается от нуля до своего номинального значения.

С этой целью в цепь подключается дополнительный автотрансформатор со скользящими контактами.

Трансформатор

Показания всех приборов фиксируются в момент, когда напряжение тестирования достигает необходимого значения в выходной цепи. Физическая сущность результатов замеров такова:

Амперметр






Виды КЗ у трансформаторов

При возникновении короткого замыкания, трансформатор вплотную подходит к предельному рабочему режиму. В этом случае на первичную обмотку поступает какое-то напряжение, а вторичная оказывается замкнутой.

Короткое замыкание трансформатора может быть аварийным или испытательным. В первом случае опасная ситуация возникает в режиме эксплуатации устройства, при подключении его к номинальному первичному напряжению. В обмотках появляется ток короткого замыкания, многократно превышающий номинал, и прибор выходит из строя. Как правило, основные детали сгорают, и вся схема просто разваливается на части.

Режим короткого замыкания трансформатора

Избежать подобных негативных последствий возможно с помощью защитной аппаратуры – автоматов, предохранителей, реле и т.д. Она производит отключение в максимально короткие сроки со стороны первичной обмотки и тем самым сохраняет устройство от разрушения.

В испытательном режиме, известном в качестве опыта короткого замыкания, подобная ситуация создается искусственным путем. С этой целью на первичную обмотку подается пониженное напряжение. При этом, токи в каждой обмотке не выходят за пределы номинала. Данный опыт позволяет точно установить наиболее важные параметры и характеристики трансформаторного устройства. Каждое из коротких замыканий следует рассмотреть более подробно, с точки зрения его физического воздействия на трансформатор.



Как проводится

Для высоковольтной обмотки задаётся паспортное значение холостого хода. Оно устанавливается по рекомендуемым величинам угла сдвига фаз (sinΦ0 и cosΦ0; индекс указывает на то, что мощность трансформатора определяется в режиме холостого хода).

Далее согласно показаниям вольтметра выполняется измерение параметров шунтирующих эквивалентных цепей. Они относятся к низковольтной обмотке, поэтому тестирование разомкнутой цепи устанавливает и потери в сердечнике, и параметры шунта эквивалентной цепи.

Правильная схема испытания предполагает, что при низком напряжения трансформатор находится в режиме КЗ. Ваттметр, вольтметр и амперметр подключены с высоковольтной стороны. Сигнал подается в силовую схему и увеличивается от нуля до тех пор, пока показания амперметра не будут равны номинальному току. В этот момент снимаются показания всех приборов, причём на амперметре будет показано значение первичного эквивалента тока полной нагрузки, а на ваттметре – потери мощности в проводниках и сердечнике.

опыта короткого замыкания трансформатора

а) Определения

Опыт короткого замыкания (КЗ) служит для проверки потерь и напряжения КЗ. Опытом КЗ называют испытание, при котором одну из обмоток трансформатора, обычно низшего напряжения, замыкают накоротко, а другую питают от источника переменного (периодического) тока при номинальной частоте (допустимое отклонение частоты от номинальной не более 1%) и пониженном (против номинального) напряжении при разомкнутых остальных обмотках и при токах в паре обмоток, не превышающих существенно их номинальные значения [Л. 2-1].

Напряжение, которое нужно подвести при опыте КЗ к одной из обмоток пары, чтобы в этой обмотке установился ток, соответствующий меньшей из номинальных мощностей обмоток пары, называют напряжением КЗ и выражают в процентах номинального напряжения питаеМОй обмотки

Режим короткого замыкания - такой предельный режим работы трансформатора, когда к первичной обмотке подводится определенное напряжение, а вторичная обмотка замкнута накоротко.

Различают два вида короткого замыкания - аварийное и испытательное.

Аварийное короткое замыкание происходит в условиях эксплуатации трансформатора, когда он включен на номинальное первичное напряжение. Это опасный аварийный режим, при котором токи в обмотках трансформатора во много раз превышают их номинальные значения. Такие токи приводят обычно к выходу трансформатора из строя (обмотки обугливаются, разрываются). От такого режима трансформатор защищает специальная аппаратура (предохранители, автоматические выключатели, реле), которая в возможно короткий срок должна отключить питание с первичной стороны и предохранить трансформатор от разрушения.

Испытательный режим короткого замыкания или опыт короткого замыкания, создается искусственно путем подведения к первичной обмотке трансформатора специально пониженного напряжения U = Uк, при котором токи в обеих обмотках не превышают номинальных значений. По данным опыта короткого замыкания определяют ряд важных параметров и характеристик трансформатора.

Напряжением короткого замыкания двухобмоточного трансформатора называется напряжение, которое при номинальной частоте следует подвести к зажимам одной из обмоток при замкнутой накоротко другой обмотке, чтобы в них установились номинальные токи. Обычно напряжение короткого замыкания выражается в процентах от номинального напряжения

Обычно uк= 5,5 - 10% от U и не зависит от того, которая из двух обмоток трансформатора замыкается накоротко. Это важный эксплуатационный параметр, указываемый на щитке трансформатора или в его технической документации.

Поскольку в опыте uк мало, то и поток в магнитопроводе тоже мал, следовательно, потерями в стали, пропорциональными квадрату магнитной индукции, можно пренебречь, считая, что вся потребляемая мощность идет на покрытие тепловых потерь (потерь в меди) в обмотках, т.е.

Режим короткого замыкания трансформатора обычно исследуют опытным путем, когда вторичная обмотка трансформатора закорачивается на амперметр, а к первичной обмотке подводится пониженное напряжение, измеряемое вольтметром, при котором токи в первичной и вторичной цепях не превосходят их номинальных значений. Величина мощности, потребляемой трансформатором из сети в режиме короткого замыкания, измеряется ваттметром.

В опыте короткого замыкания определяются:

а) напряжение короткого замыкания (по показаниям вольтметра U1кн и показаниям амперметров I и I)

б) активные потери при коротком замыкании трансформатора, которые примерно равны потерям в меди обмоток (по показаниям ваттметра)

в) коэффициент мощности cosjк (по показаниям ваттметра), вольтметра и амперметра в первичной цепи);

г) параметры схемы замещения трансформатора при коротком замыкании:

Таким образом, проделав опыты холостого хода и короткого замыкания, можно определить полные потери трансформатора при его работе под нагрузкой, а следовательно, определить и его коэффициент полезного действия.

Режим короткого замыкания - такой предельный режим работы трансформатора, когда к первичной обмотке подводится определенное напряжение, а вторичная обмотка замкнута накоротко.

Различают два вида короткого замыкания - аварийное и испытательное.

Аварийное короткое замыкание происходит в условиях эксплуатации трансформатора, когда он включен на номинальное первичное напряжение. Это опасный аварийный режим, при котором токи в обмотках трансформатора во много раз превышают их номинальные значения. Такие токи приводят обычно к выходу трансформатора из строя (обмотки обугливаются, разрываются). От такого режима трансформатор защищает специальная аппаратура (предохранители, автоматические выключатели, реле), которая в возможно короткий срок должна отключить питание с первичной стороны и предохранить трансформатор от разрушения.

Испытательный режим короткого замыкания или опыт короткого замыкания, создается искусственно путем подведения к первичной обмотке трансформатора специально пониженного напряжения U = Uк, при котором токи в обеих обмотках не превышают номинальных значений. По данным опыта короткого замыкания определяют ряд важных параметров и характеристик трансформатора.




Напряжением короткого замыкания двухобмоточного трансформатора называется напряжение, которое при номинальной частоте следует подвести к зажимам одной из обмоток при замкнутой накоротко другой обмотке, чтобы в них установились номинальные токи. Обычно напряжение короткого замыкания выражается в процентах от номинального напряжения

Обычно uк= 5,5 - 10% от U и не зависит от того, которая из двух обмоток трансформатора замыкается накоротко. Это важный эксплуатационный параметр, указываемый на щитке трансформатора или в его технической документации.

Поскольку в опыте uк мало, то и поток в магнитопроводе тоже мал, следовательно, потерями в стали, пропорциональными квадрату магнитной индукции, можно пренебречь, считая, что вся потребляемая мощность идет на покрытие тепловых потерь (потерь в меди) в обмотках, т.е.

Режим короткого замыкания трансформатора обычно исследуют опытным путем, когда вторичная обмотка трансформатора закорачивается на амперметр, а к первичной обмотке подводится пониженное напряжение, измеряемое вольтметром, при котором токи в первичной и вторичной цепях не превосходят их номинальных значений. Величина мощности, потребляемой трансформатором из сети в режиме короткого замыкания, измеряется ваттметром.

В опыте короткого замыкания определяются:

а) напряжение короткого замыкания (по показаниям вольтметра U1кн и показаниям амперметров I и I)

б) активные потери при коротком замыкании трансформатора, которые примерно равны потерям в меди обмоток (по показаниям ваттметра)

в) коэффициент мощности cosjк (по показаниям ваттметра), вольтметра и амперметра в первичной цепи);

г) параметры схемы замещения трансформатора при коротком замыкании:

Таким образом, проделав опыты холостого хода и короткого замыкания, можно определить полные потери трансформатора при его работе под нагрузкой, а следовательно, определить и его коэффициент полезного действия.

Всем известно, что при подключении вторичной трансформаторной обмотки к нагрузке, она принимает на себя и сопротивление этой нагрузки. Ток, установившийся во вторичной цепи, находится в пропорциональной зависимости от подключенной нагрузки. Если же имеет место большое количество потребителей, то в результате повышения нагрузки возрастает вероятность нарушения изоляционного слоя соединительных проводников. В случае их возможного соприкосновения возникает режим короткого замыкания трансформатора.

Провода, расположенные перед приемником электроэнергии, замыкаются вместе со вторичной обмоткой. Энергия из первичной обмотки будет продолжать свое движение во вторичную обмотку и далее – во вторичную цепь. Эта цепочка, образовавшаяся в результате короткого замыкания будет включать в себя лишь обмотку и частично – соединительные провода.

Виды КЗ у трансформаторов

При возникновении короткого замыкания, трансформатор вплотную подходит к предельному рабочему режиму. В этом случае на первичную обмотку поступает какое-то напряжение, а вторичная оказывается замкнутой.

Режим короткого замыкания трансформатора

Короткое замыкание трансформатора может быть аварийным или испытательным. В первом случае опасная ситуация возникает в режиме эксплуатации устройства, при подключении его к номинальному первичному напряжению. В обмотках появляется ток короткого замыкания, многократно превышающий номинал, и прибор выходит из строя. Как правило, основные детали сгорают, и вся схема просто разваливается на части.

Избежать подобных негативных последствий возможно с помощью защитной аппаратуры – автоматов, предохранителей, реле и т.д. Она производит отключение в максимально короткие сроки со стороны первичной обмотки и тем самым сохраняет устройство от разрушения.

В испытательном режиме, известном в качестве опыта короткого замыкания, подобная ситуация создается искусственным путем. С этой целью на первичную обмотку подается пониженное напряжение. При этом, токи в каждой обмотке не выходят за пределы номинала. Данный опыт позволяет точно установить наиболее важные параметры и характеристики трансформаторного устройства. Каждое из коротких замыканий следует рассмотреть более подробно, с точки зрения его физического воздействия на трансформатор.

Физические процессы при аварийном замыкании

С технической точки зрения любой трансформатор должен обязательно разрушиться в результате замыкания и действия высоких токов. Основной причиной выступает незначительное сопротивление проводов и обмоток, которое многократно превышается сопротивлением подключенной нагрузки.

Следует учитывать и резкое повышение температуры в обмотках, достигающей 500-600 градусов в течение 1-2 секунд. Этого вполне достаточно, чтобы они полностью сгорели. Нельзя забывать о механических усилиях, возникающих между обмотками во время работы, и стремящихся сдвинуть их в осевом и радиальном направлениях. Эти усилия существенно увеличиваются при возрастании силы тока, что теоретически должно привести к мгновенному разрушению трансформатора. Тем не менее, на практике все происходит по-другому.


Трансформаторные устройства оказываются способными выдержать токи коротких замыканий в течение малого временного промежутка, пока не сработает защита и они не будут отключены от сети. Было выявлено какое-то дополнительное сопротивление, ограничивающее высокие токи в обмотках. Оно образуется благодаря магнитным потокам рассеяния, отходящим от основного потока и замыкающимся вокруг витков соответствующей обмотки.

Величина и разница этого рассеяния практически не поддается точному измерению, в основном, из-за различных путей, используемых для замыкания магнитных потоков. В связи с этим, его оценка производится по влиянию, оказываемому на ток и напряжение в обмотках. Была выявлена закономерность, в соответствии с которой при возрастании тока в обмотках, увеличиваются и магнитные потоки. В нормальном рабочем режиме они составляют незначительную часть основного потока, поскольку лишь частично связаны с витками. Основной же поток оказывает влияние на все без исключения витки обмоток.

Таким образом, действие дополнительного сопротивления позволяет свести до минимума потери КЗ трансформатора. Все негативные параметры снижаются во много раз и не наносят вреда. То есть, прибор сам способен защититься от высоких токов, возникающих при замыканиях. Подобные ситуации возникают достаточно редко, но все равно к ним нужно готовиться заранее, своевременно осуществляя необходимые защитные мероприятия.

Испытание трансформатора в режиме КЗ

Для проверки работоспособности трансформатора в особых условиях, создается режим холостого хода и короткого замыкания с подводом к обмоткам соответствующего напряжения. В этом случае одна из них оказывается коротко замкнутой, а к другой через клеммы подводится напряжение, чтобы получить номинальный ток. Напряжение, полученное в результате короткого замыкания, в среднем составляет от 5,5 до 10% от номинала и не зависит от того, какая из обмоток окажется замкнутой. Данный параметр играет важную роль в эксплуатации устройства, отображается в его техническом паспорте или наносится непосредственно на корпус.


Во время проведения испытания трансформатора в режиме короткого замыкания напряжение будет незначительным, поэтому магнитный поток в магнитопроводе тоже небольшой. В связи с этим, потери в стальных пластинках можно не учитывать, а сосредоточиться на потребляемой мощности, которая перекрывает тепловые потери в медных обмотках.

В режиме замыкания вторичная обмотка соединяется с амперметром, а в первичную поступает пониженное напряжение, контролируемое с помощью вольтметра. Мощность, потребляемая из сети трансформаторным устройством, замеряется ваттметром.

Основными целями исследований является определение следующих показателей:

  • Напряжение и токи КЗ, определяемое вольтметром и амперметрами, подключаемыми поочередно к первичной и вторичной обмоткам.
  • Активные потери короткого замыкания, которая приблизительно равны потерям в медных обмотках.
  • Показания амперметра, вольтметра и ваттметра, подключенных к первичной цепи, позволяют установить коэффициент мощности и саму мощность короткого замыкания.
  • Показатели и работоспособность схемы замещения трансформаторного устройства в режиме короткого замыкания.
  • с опытами КЗ проверяется холостой ход, где устанавливается величина полных потерь при работе трансформатора под нагрузкой. Полученные данные дают возможность точно определить коэффициент полезного действия устройства.

Короткое замыкание трансформатора в условиях эксплуатации

Режим КЗ трансформатора может возникнуть практически в любой электроустановке, при наличии определенных негативных факторов. Это могут быть механические повреждения изоляции, электрический пробой из-за перенапряжения и т.д. Иногда серьезные ошибки допускаются обслуживающим персоналом.

Под влиянием высоких токов температура обмотки резко повышается, и целостность изоляции находится под угрозой разрушения. Большой ток короткого замыкания, примерно в 20 раз превышающий номинальный, приводит к росту потерь в обмоточных проводах более чем в 400 раз. Огромная мощность, выделяемая в обмотках в короткий промежуток времени, приводит к их резкому нагреву, от чего изоляция разрушается и трансформатор выходит из строя.


В связи с этим, каждое устройство обеспечивается защитой с высоким быстродействием, выполняющей отключение при замыкании. До момента отключения, вторичная обмотка трансформатора, находящегося в аварийном режиме, просто не успевает разогреться до опасной температуры.

Опасность КЗ состоит еще и в возможном механическом разрушении прибора. Дело в том, что провода, обтекаемые током, физически взаимодействуют между собой. Если токи в параллельных проводах протекают в одном и том же направлении, между ними возникает взаимное притяжение. Если же течение токов происходит в разных направлениях, провода будут отталкиваться друг от друга. В трансформаторах таких проводов очень много, и расположены они в витках параллельно между собой. Поэтому в них периодически возникают взаимные притяжения или отталкивания, а слишком большие механические силы рано или поздно приведут к деформации трансформаторных обмоток, резкому снижению их электрической прочности.

В связи с этим, заранее принимаются меры по усилению конструкции. Это достигается путем неоднократной осевой запрессовки обмоток, предотвращением возможной усадки изоляции. При соблюдении всех технических условий, короткое замыкание не сможет нанести трансформатору серьезных повреждений.


Опыт короткого замыкания трансформатора

Напряжение короткого замыкания трансформатора

Режим короткого замыкания

Как рассчитать ток короткого замыкания

Что такое ток короткого замыкания

Что такое короткое замыкание (КЗ): в чем причина, виды, защита, определение для чайников

Всем доброго времени суток! В первой части статье о режимах работы трансформатора я рассказал о холостом ходе и расчете параметров в этом режиме. Кроме данного режима трансформатор может оказаться в аварийном режиме – режиме короткого замыкания. Кроме того одним из этапов испытания и проверки параметров трансформатора является опыт короткого замыкания, при котором на первичную обмотку подают такое напряжение, при котором в замкнутой вторичной обмотке протекает номинальный ток. Данный опыт и опыт короткого замыкания позволяют определить КПД трансформатора. Об этом пойдет речь в данной статье.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Режим короткого замыкания

В процессе работы трансформатора иногда возникают ситуации, когда его вторичная обмотка оказывается замкнутой. В этом случае в ней возникает ток, превышающий номинальный в десятки раз. В этом случае говорят о работе трансформатора в режиме короткого замыкания. Данный режим является аварийным и недопустимым, так как вследствие перегрева обмоток трансформатора происходит их разрушение. Таки образом, режим короткого замыкания характеризуется следующими параметрами напряжения и тока


Для испытания трансформатора и определения некоторых его параметров проводят опыт короткого замыкания, при котором вторичную обмотку замыкают, а на первичную обмотку подают такое напряжение, что во вторичной обмотке устанавливается номинальный ток. В таком случае напряжение на первичной обмотке называется нормальным напряжением короткого замыкания. Величину данного напряжения в параметрах трансформатора обычно выражают в процентах от номинального напряжения первичной обмотки


где UКЗ – нормальное напряжение короткого замыкания,

UH – номинальное напряжение на первичной обмотки.

Так как мощность, подводимая к трансформатору, тратится в основном на преодоление сопротивления провода обмоток, то параметры магнитного контура трансформатора можно не учитывать. Тогда параметры трансформатора можно описать следующими выражениями


где РКЗ – мощность при коротком замыкании,

IКЗ – ток короткого замыкания,

RК – суммарное сопротивление первичной и вторичной обмоток.

Так как в данном режиме по обмоткам протекают номинальные токи, то и температура обмоток также будет соответствовать рабочей, поэтому для определения реальной величины сопротивления обмоток необходимо сопротивление короткого замыкания полученное опытным путем пересчитать с учетом температурного коэффициента сопротивления и условной температуры 75 °С.

Опыт короткого замыкания

Как я уже говорил в предыдущей статье, изготовленный трансформатор подвергают двум основным испытаниям: опыту холостого хода и опыту короткого замыкания. Первое испытание я рассмотрел в предыдущей статье, а для второго собирают схему изображенную ниже

Схема опыта короткого замыкания


Схема опыта короткого замыкания.

Как видно на схеме в цепь первичной обмотки трансформатора включены вольтметр PV1, амперметр РА1 и ваттметр PW1, а вторичная обмотка замкнута накоротко. Для снятия характеристик трансформатора в этом режиме на первичную обмотку трансформатора подают такое напряжение UКЗ, при котором ток IКЗ в обмотке соответствовал номинальному току. После того как трансформатор прогреется в течении нескольких минут снимают показания с приборов.

Для построения графической характеристики короткого замыкания снимают параметры при изменении напряжения на первичной обмотке от 30 до 110 % UКЗ.

При проведении опыта короткого замыкания определяют следующие параметры трансформатора:

— процентное отношение напряжения короткого замыкания UКЗ%


UН – номинальное напряжение первичной обмотки.

— активное сопротивление обмоток трансформатора RК


где РКЗ – мощность, снимаемая с ваттметра PW1,

IКЗ – ток короткого замыкания, снимаемая с амперметра РА1.

— полное сопротивление обмоток трансформатора ZK


— реактивное сопротивление обмоток трансформатора ХК


— коэффициент мощности короткого замыкания cos φКЗ


Мощность, подводимая к трансформатору при проведении опыта короткого замыкания для силовых трансформаторов, составляет 1 – 4 % от номинальной мощности трансформатора. При этом, чем больше номинальная мощность трансформатора, тем меньше мощность при проведении опыта короткого замыкания, то есть меньше потери в обмотках.

Коэффициент полезного действия трансформатора

Одной из основных характеристик любого преобразовательного устройства и трансформатора, в частности, является коэффициент полезного действия или сокращенно КПД.

Коэффициентом полезного действия трансформатора (КПД) η называется отношение активной мощности отдаваемой трансформатором Р2 к активной мощности подаваемой на трансформатор Р1


КПД трансформатора можно определить несколькими способами: прямым измерением мощностей и косвенным.

Прямой метод вычисления КПД заключается в измерении отдаваемой Р2 и поступаемой Р1 мощностей при полной нагрузке трансформатора и взятии их отношения. Однако такой метод не нашёл применения из-за неэкономичности, так как необходимо использовать большое количество энергии при испытаниях трансформаторов.

На практике чаще используют косвенный метод, заключающийся в определении потерь в сердечнике РС из опыта холостого хода, а потерь в обмотке (потерь в меди) РМ из опыта короткого замыкания. Тогда подводимая к трансформатору мощность составит


Соответственно КПД определяют по следующему выражению


Так как отдаваемая мощность Р2 трансформатора имеет как активную так и реактивную составляющую, соотношение между которыми определяется коэффициентом мощности cos φ, то КПД трансформатора составит


где U2 – номинальное напряжение вторичной обмотки, определяемое из опыта холостого хода,

I2 – номинальный ток вторичной обмотки, определяемое из опыта короткого замыкания,

РС – потери мощности в сердечнике трансформатора,

РМ – потери мощности в обмотках трансформатора.

Стоит отметить, что потери мощности в опыте холостого хода и опыте короткого замыкания желательно измерять у предварительно прогретого трансформатора или пересчитывать токи и напряжения с учётом нормальной температуры работы Т = 75 °С.

Со следующей статьи я буду рассказывать, как рассчитывать различные типы трансформаторов, которые чаще всего используют.

Теория это хорошо, но необходимо отрабатывать это всё практически ПОПРОБЫВАТЬ МОЖНО ЗДЕСЬ

Трансформатор, как любое электромагнитное устройство, имеет несколько устойчивых режимов, в которых может (и должен) работать неограниченно долго.

Режимы работы трансформатора

Существует пять характерных режимов работы трансформатора:

  1. Рабочий режим;
  2. Номинальный режим;
  3. Оптимальный режим;
  4. Режим холостого хода;
  5. Режим короткого замыкания;

Рабочий режим

Режим характеризуется следующими признаками:

  • Напряжение первичной обмотки близко к номинальному значению или равно ему \(\dot_1 ≈ \dot_\);
  • Ток первичной обмотки меньше своего номинального значения или равен ему \(\dot_1 ≤ \dot_1ном\).

В рабочем режиме эксплуатируются большинство трансформаторов. Например, силовые трансформаторы работают с напряжениями и токами обмоток отличными от номинальных. Так происходит из-за переменчивого характера их нагрузки.

Измерительные, импульсные, сварочные, разделительные, выпрямительные, вольтодобавочные и другие трансформаторы, также обычно эксплуатируются в рабочем режиме просто из-за того, что напряжение сети к которой они подключены отличается от номинального.

Номинальный режим работы

Характерные признаки режима:

  • Напряжение первичной обмотки равно номинальному \(\dot_1 = \dot_\);
  • Ток первичной обмотки равен номинальному \(\dot_1 = \dot_\).

Оптимальный режим работы

Режим характеризуется условием:

Где \(P_\) - потери холостого хода;
\(P_\) - потери короткого замыкания;
\(k_\) - коэффициент нагрузки трансформатора, определяемый по формуле:

Где \(P_2\) - ток нагрузки вторичной обмотки;
\(P_\) - номинальный ток вторичной обмотки.

В оптимальном режиме работы трансформатор работает с максимальным КПД, поэтому выражение (1) по существу представляет собой условие максимального КПД [2, с.308] (Смотри "Трансформаторы. Оптимальный режим работы").

Режим холостого хода

Характерные признаки режима:

  • Вторичная обмотка трансформатора разомкнута или к ней подключена нагрузка с сопротивлением гораздо большим сопротивления номинальной нагрузки обмотки (1) трансформатора;
  • К первичной обмотке приложено напряжение \(\dot_ = \dot_\);
  • Ток вторичной обмотки \(\dot_2 ≈ 0\) (для трехфазного трансформатора - \(\dot_ ≈ \dot_ ≈ 0\).

На рисунке 1 изображена схема опыта холостого хода однофазного, а на рисунке 2 - трехфазного двухобмоточных трансформаторов.


Рисунок 1 - Схема опыта холостого хода однофазного двухобмоточного трансформатора


Рисунок 2 - Схема опыта холостого хода трехфазного двухобмоточного трансформатора

По существу в режиме холостого хода трансформатор представляет собой катушку на магнитопроводе, к которой подключен источник напряжения. Режим холостого хода является рабочим для трансформаторов напряжения. Кроме того, этот режим служит для определения тока \(i_х\), мощности \(ΔQ_хх\) холостого хода и ряда других параметров [2, c. 291][3, с. 207] (смотри "Опыт холостого хода трансформатора").

    Примечание:
  1. Под сопротивлением номинальной нагрузки обмотки понимается величина \(R_\), равная отношению номинального напряжения обмотки \(U_\) к её номинальному току обмотки \(I_\)

Режим короткого замыкания

Режим короткого замыкания характеризуется:

  • Вторичная обмотка замкнута накоротко или к ней подключена нагрузка сопротивлением гораздо меньшим внутреннего сопротивления трансформатора;
  • К первичной обмотке приложена такая величина напряжения \(\dot_1\), что ток первичной обмотки равен её номинальному току \(\dot_1 = \dot_\)
  • Напряжение вторичной обмотки \(\dot_2 = 0\) (для трехфазного трансформатора - \(\dot_ = \dot_ = 0\).

Схема опыта короткого замыкания изображена на рисунке 3 для однофазного, а на рисунке 4 - для трехфазного двухобмоточных трансформаторов.


Рисунок 3 - Схема опыта короткого замыкания однофазного двухобмоточного трансформатора


Рисунок 4 - Схема опыта короткого замыкания трехфазного двухобмоточного трансформатора

Режим короткого замыкания является рабочим режимом для трансформаторов тока и сварочных трансформаторов, в тоже время являясь аварийным для других трансформаторов. Также он используется для определения напряжения \(u_к\), мощности \(ΔP_кз\) короткого замыкания и других параметров трансформатора [2, c. 294][3, с. 209] (смотри "Опыт короткого замыкания трансформатора").

Читайте также: