Реакция якоря синхронной машины кратко

Обновлено: 02.07.2024

Реакция якоря – это воздействие поля статора (якоря) на магнитное поле машины, создаваемое обмоткой возбуждения на роторе. Характер реакции якоря зависит от вида нагрузки. При чисто активной нагрузке имеет место поперечная реакция якоря (векторы магнитных полей обмоток ротора и статора расположены под углом 90°). При чисто индуктивной нагрузке реакция якоря продольная размагничивающая (векторы магнитных полей направлены навстречу друг другу и результирующее магнитное поле уменьшается). При чисто емкостной нагрузке реакция якоря продольная намагничивающая (векторы магнитных полей имеют одинаковое направление и результирующее магнитное поле увеличивается).

Принцип действия синхронного двигателя. Механическая характеристика. Особенности пуска в ход синхронного двигателя.

Двигательный режим.Принцип действия синхронного двигателя основан на взаимодействии вращающегося магнитного поля якоря и магнитного поля полюсов индуктора. Обычно якорь расположен на статоре, а индуктор — на роторе. В мощных двигателях в качестве полюсов используются электромагниты (ток на ротор подаётся через скользящий контакт щетка - кольцо), в маломощных — постоянные магниты.

Механическая характеристика. N2=f(M)

Скажешь прямая линия ,параллельная оси М, на линии написано,чтоn2=n1=const

Особенности пуска в ход синхронного двигателя.

Получил распространение асинхронный пуск, когда ротор синхронного двигателя, кроме обмотки возбуждения, снабжается специальной пусковой короткозамкнутой обмоткой типа беличьей клетки асинхронного двигателя. При этом способе пуска, вначале двигатель начинает работать как асинхронный (обмотка возбуждения синхронного двигателя замыкается на пусковой реостат). Когда, при разгоне, частота вращения ротора достигает 95% частоты вращения поля статора n0, пусковой реостат отключают, а обмотку возбуждения ротора включают на постоянное напряжение сети и двигатель втягивается в синхронизм.

Понятие промышленная электроника. Элементная база современных электронных устройств: полупроводниковые диоды, биполярные и полевые транзисторы, тиристоры. ВАХ полупроводниковых приборов. Интегральные микросхемы.

Электроника – область науки, изучающая физические явления в электровакуумных и полупроводниковых приборах, их электрические характеристики, параметры, свойства устройств и систем, основанных на применении этих приборов.

Диоды- полупроводниковый прибор с двумя выводами,связанными с полупроводниками различных типов проводимости,электронной (n) и дырочной(p), образующих электроно-дырочный переход.

Биполярные транзисторы – электропреобразовательный прибор, состоящий из трех областей с чередующимися типами электропроводности, пригодный для усиления мощности. Средний слой назся базой,наружный,являющийся источником носителей заряда,- ээмиттер, другой наружный слой – коллектор. Он принимает носителей заряда,поступающих от эмиттера.

Полевой транзистор – электропреобразовательный прибор, в котором ток канала управляется электрическим полем, возникающем с приложением напряжения между затвором и истоком. Исток- электрод,изкоторого в канал входят основные носители заряда. Сток – это электрод,через который основные нсоители уходят из канала. Электрод,служащий для регулирования поперечного сечения канала,назют затвором.

Тиристор – полупроводниковый прибор с тремя или более p-n переходами.

Скажешь ВАХ змейка в середине в начаале координат.

Интегральная микросхема- (ИС) - это совокупность электрически связанных компонентов (транзисторов, диодов, резисторов и др.), изготовленных в едином технологическом цикле на единой полупроводниковой основе

Источники вторичного электропитания. Основные функциональные узлы. Классификация ИВЭП.

Представляют собой средство, обеспечивающее электрическим питанием самостоятельные приборы или отдельные цепи комплекса потребителя. К ИВЭП относят выпрямители и инверторы.

Выпрямители-такие электрические устройства, которые обеспечивают преобразование электрической энергии переменного тока в эл. эн. пульсирующего, однонаправленного тока с той или иной степенью приближения к постоянному. Бывают управляемые(тиристоры) и неуправляемые.

Инверторы -устройства, осуществляющиепроцесс преобразования энергии постоянного тока в энергию переменного.

· По типу первичного источника

-питающиеся от переменного тока

-питающиеся от постоянного тока

· По значению выходного напряжения Uвых.

-низкого (до 100В)

-высокого (более 1кВ)

· По выделяемой мощности на нагрузке

-малой (до 100 Вт)

-средней (100-1000 Вт)

-высокой (более 1 кВт)

© 2014-2022 — Студопедия.Нет — Информационный студенческий ресурс. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав (0.004)

Реакция якоря синхронной машины – воздействие магнитодвижущей силы обмотки якоря на магнитодвижущую силу обмотки возбуждения.

Какое влияние оказывает реакция якоря на работу синхронной машины?

От его влияния напрямую будут зависеть рабочие показатели машины. Это связано с тем, что изменения магнитного поля приведут к изменениям ЭДС в обмотке статора, а также ряде других важных показателей. От показателей нагрузки зависит то, насколько сильно влияет реакция якоря на работоспособность синхронной машины.


Чтобы оценить реакцию якоря на синхронную машину необходимо рассмотреть вариант функционирования генератора при больших его нагрузках.

Синхронные машины вне зависимости от режима работы состоят из двух основных частей: неподвижного статора, выполняющего функции якоря и ротора, вращающегося внутри статора и служащего индуктором (рис. 4.1).

Статор трехфазной синхронной машины аналогичен статору трехфазного асинхронного двигателя. Он состоит из корпуса /, цилиндрического сердечника 2, набранного из отдельных пластин электротехнической стали, и трехфазной обмотки 3, уложенной в пазы сердечника.

Ротор синхронной машины представляет собой электромагнит постоянного тока, который создает магнитное поле, вращающееся вместе с ротором. Ротор имеет обмотку возбуждения 4, которая через специальные контактные кольца 5 питается постоянным током от выпрямителя или от небольшого генератора постоянного тока, называемого возбудителем.

Роторы синхронных машин бывают двух типов: с явно выраженными и неявно выраженными полюсами.

Роторы с явно выраженными полюсами (рис. 4.1) применяются в сравнительно тихоходных машинах (80 – 1000 об/мин), например гидрогенераторах; они имеют значительноечисло полюсов. Конструктивно роторы этого типа (рис. 4.2) состоят из вала 6, ступицы 7, полюсов 8, укрепляемых в шлицах ступицы, полюсных катушек 4 возбуждения, размещенных на полюсах.

Поверхность полюсного наконечника полюсов имеет такой профиль, что магнитная индукция в воздушном зазоре машины распределяется примерно по синусоидальному закону. Для быстроходных машин (турбогенераторы, синхронные двигатели, турбокомпрессоры и т. п.) явнополюсная конструкция ротора неприменима из-за сравнительно большого диаметра ротора и возникающих в связи с этим недопустимо больших центробежных сил.

Большей механической прочностью обладает ротор с неявно выраженными полюсами. Он состоит (рис. 4.3) из сердечника 1 и обмотки возбуждения 2. Сердечник изготовляется из стальной поковки цилиндрической формы. На его внешней поверхности фрезеруются пазы, в которые закладывается обмотка возбуждения.

Обмотка возбуждения распределяется в пазах сердечника так, чтобы создаваемое ею магнитное поле было распределено в пространстве по закону, близкому к синусоидальному.

Принцип работы и ЭДС синхронного генератора.

Работа синхронного генератора основана на явлении электромагнитной индукции. При холостом ходе обмотка якоря (статора) разомкнута, и магнитное поле машины образуется только обмоткой возбуждения ротора (рис. 4.4).


При вращении ротора синхронного генератора от проводного двигателя ПД с постоянной частотой nо магнитное поле ротора, пересекая проводники фазных обмоток статора AX, BY, CZ (рис.4.4,а) наводит в них ЭДС , где B – магнитная индукция в воздушном зазоре между статором и ротором; l – активная длина проводника; – линейная скорость пересечения проводников магнитным полем.

Выше отмечалось, что индукция В в воздушном зазоре распределена по синусоидальному закону , где — угол, отсчитываемый от нейтральной линии, поэтому ЭДС в одном проводнике .

Обозначив , получим , т.е. ЭДС в проводниках обмоток статора изменяется по синусоидальному закону.

ЭДС отдельных проводников каждой обмотки статора сдвинуты по фазе относительно друг друга, поэтому они суммируются геометрически (аналогично ЭДС статора асинхронного двигателя – см. п. 3.8.1). Действующее значение ЭДС одной фазы определяется выражением:

где – обмоточный коэффициент; – частота синусоидальных ЭДС; — число витков одной фазы обмотки статора; — число пар полюсов; – максимальный магнитный поток полюса ротора; – синхронная частота вращения.

Катушки отдельных фаз статора сдвинуты в пространстве на электрический угол, равный 120 0 , и их ЭДС образуют симметричную трёхфазную систему.

Изменяя ток возбуждения , можно регулировать магнитный поток ротора и пропорциональную ему ЭДС генератора. На рис. 4.5 представлена зависимость , снятая при номинальной частоте вращения .

Эта зависимость называется характеристикой холостого хода. Форма характеристики напоминает форму кривой намагничивания ферромагнитного сердечника. Характерной особенностью её является отсутствие пропорциональности между магнитным потоком и током возбуждения , что обусловлено явлением насыщения магнитной системы машины.

Принцип действия и вращающий момент синхронного двигателя.


Принцип действия синхронного двигателя основан на явлении притяжения разноименных полюсов двух магнитных полей – статора и ротора. Вращающееся поле статора с полюсами N и S создается при питании обмоток статора от трёхфазной сети аналогично вращающемуся полю асинхронного двигателя (на рис. 4.6 полюсы статора N и S показаны штриховкой, вращаются они против часовой стрелки с частотой ). Поле ротора создается постоянным током, протекающим по обмотке ротора.

В режиме идеального холостого хода (момент сопротивления ) оси магнитных полей статора и ротора совпадают (рис. 4.6.а). При этом на полюсы ротора действуют радиальные силы и , которые не создают ни вращающего момента, ни момента сопротивления.


Если к валу машины приложить механическую нагрузку, которая создает момент сопротивления , ось ротора и его полюсов , сместится в сторону отставания на угол (рис. 4.6,б). Теперь вращающее поле статора как бы “ведёт” за собой поле ротора и сам ротор. Тангенциальные составляющие и создают вращающий момент , где — радиус ротора.

Машина работает в двигательном режиме, её вращающий момент преодолевает момент сопротивления механической нагрузки.

При увеличении момента механической нагрузки на валу ротора угол увеличивается (до некоторого предела), что приводит к увеличению вращающегося момента двигателя , причем частота вращения ротора остается неизменной и равной .

Противодействующий момент и противо-ЭДС.

При работе синхронной машины в режиме нагруженного генератора (на схеме рис. 4.4,б нагрузка Zн подключена к обмоткам статора через выключатель Q) по обмоткам статора протекает ток, который создает своё вращающееся магнитное поле. В генераторном режиме, в отличие от двигательного режима, полюсы ротора опережают на угол полюсы магнитного поля статора.

В результате взаимодействия разноименных полюсов статора и ротора на ротор действует момент, направленный против вращения, т.е. тормозной момент . В установившемся режиме момент уравновешивает вращающийся момент приводного двигателя: .


При работе синхронной машины в режиме двигателя поле ротора пересекает витки трехфазной обмотки статора и в ней индуцируется ЭДС, которая согласно правилу Ленца действует навстречу току статора. По этой причине её называют противо-ЭДС. В установившемся режиме противо-ЭДС почти полностью уравновешивает напряжение сети .

Таким образом, при работе синхронной машины на нагрузку (электрическую или механическую) в обмотке статора индуцируется ЭДС Е и возникает момент ротора .

Реакция якоря в синхронной машине.

Реакция якоря – это воздействие поля якоря (статора) на магнитное поле машины. При работе синхронной машины на нагрузку (электрическую в режиме генератора и механическую в режиме двигателя) по обмоткам статора (якоря) протекают синусоидальные токи, которые создают вращающееся магнитное поле статора. Ротор имеет частоту вращения , поэтому частота ЭДС и тока статора , где — число пар полюсов машины.

Частота вращения магнитного поля статора .

Следовательно, поля ротора и статора вращаются с одной и той же частотой ; они взаимодействуют между собой и образуют результирующее вращающееся магнитное поле машины. Взаимодействие полей зависит от характера нагрузки и режима работы машины.


Рассмотрим реакцию якоря на примере двухполюсного синхронного генератора с неявно выраженными полюсами ротора, работающего на различную по характеру нагрузку .

При активной нагрузке с сопротивлением R ЭДС фазы обмотки статора и её ток совпадают по фазе и достигают максимума в тот момент, когда ось mm1 магнитного потока ротора Ф0 перпендикулярна оси nn1 катушки обмотки статора (например, АX на рис. 4.7,а).

Магнитный поток статора Фя замыкается по сердечникам статора и ротора через воздушный зазор. Таким образом, в случае активной нагрузки ось потока ротора Ф0 опережает ось потока статора Фя на электрический угол, равный 90 0 (поперечная реакция якоря).

При этом результирующий магнитный поток машины (ось qq1) поворачивается относительно потока ротора Ф0 на угол в направлении, противоположном направлению вращению ротора.

При чисто индуктивной нагрузке XL ток в обмотке статора отстаёт от ЭДС на 90 0 и поэтому достигает максимума в тот момент времени, когда полюс ротора повернётся на 90 0 по направлению вращения (рис. 4.7,б). В этом случае магнитный поток статора оказывается направленным навстречу магнитному потоку ротора и размагничивает машину ( ).

При емкостной нагрузке XC ток в фазе статора опережает ЭДС на 90 0 и поэтому достигает максимума в тот момент, когда полюс ротора не доходит на 90 0 до оси mm1 (рис. 4.7,в). Магнитный поток статора в этом случае оказывается направленным согласно с магнитным потоком ротора и намагничивает машину ( ).

При работе синхронной машины в режиме двигателя ток в статоре при том же направлении вращения имеет противоположное направление. Ось результирующего потока двигателя оказывается повернута относительно потока ротора на угол , но не против направления вращения, как у генератора, а по направлению вращения.

Таким образом, реакция якоря в синхронной машине изменяет как поток машины, так и его направление (в отличие от асинхронной машины, у которой ). Изменение Фрез приводит к изменению ЭДС, что неблагоприятно сказывается на работе потребителей электроэнергии при работе машины в режиме генератора.

Уменьшение неблагоприятного влияния реакции якоря достигается уменьшением магнитного потока статора за счёт увеличения воздушного зазора между ротором и статором синхронной машины.

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Тема урока: Цели урока: Обучающая: Развивающая : Воспитательная: - Сформиров.

Описание презентации по отдельным слайдам:

Тема урока: Цели урока: Обучающая: Развивающая : Воспитательная: - Сформиров.

Тема урока: Цели урока: Обучающая: Развивающая : Воспитательная: - Сформировать основные понятия о процессе работы синхронных машин под нагрузкой - Расширитьпредставления об принципе работы синхронноймашины - Содействовать формированию профессиональных навыков техника Реакция якоря синхронной машины.

При нагрузке обмотки якоря синхронной машины током она создает собственное ма.

При нагрузке обмотки якоря синхронной машины током она создает собственное магнитное поле, которое называется полем реакции якоря. Реакция якоря синхронной машины оказывает весьма значительное влияние на характеристики и поведение синхронной машины как при установившихся, так и при переходных режимах работы. Работа нагруженного синхронного генератора В процессе работы нагруженного синхронного генератора в нем одновременно действуют МДС возбуждения Fв0 и якоря F1, при этом МДС якоря воздействует на МДС возбуждения, усиливая или ослабляя поле возбуждения или же искажая его форму. Воздействие МДС обмотки якоря на МДС обмотки возбуждения называется реакцией якоря. зависит Значения и характера нагрузки Активная нагрузка Реактивная нагрузка Смешанная нагрузка Индуктивная нагрузка Емкостная нагрузка Активно-индуктивная нагрузка Активно-емкостная нагрузка Векторные диаграммы МДС – Вектор Э.Д.С. индуцируемый магнитным потоком возбуждения в обмотке статора отстает от вектора магнитного потока по фазе на угол 900. Вектор тока может занимать различное положение по отношению к вектору Э.Д.С. в зависимости от нагрузки.

Читайте также: