Расскажите о заряженных частицах вещества кратко

Обновлено: 25.06.2024

Тела или частицы, которые действуют на окружающие предметы электрическими силами, называют заряженными или наэлектризованными. Например, упомянутая выше стеклянная палочка после того, как её потереть о лист бумаги, становится наэлектризованной.

Частицы имеют электрический заряд, если они взаимодействуют друг с другом посредством электрических сил. Электрические силы уменьшаются с увеличением расстояния между частицами. Электрические силы во много раз превышают силы всемирного тяготения.

Электрический заряд – это физическая величина, которая определяет интенсивность электромагнитных взаимодействий. Электромагнитные взаимодействия – это взаимодействия между заряженными частицами или телами.

Электрические заряды делятся на положительные и отрицательные. Положительным зарядом обладают стабильные элементарные частицы – протоны и позитроны, а также ионы атомов металлов и т.д. Стабильными носителями отрицательного заряда являются электрон и антипротон.

Существуют электрически незаряженные частицы, то есть нейтральные: нейтрон, нейтрино. В электрических взаимодействиях эти частицы не участвуют, так как их электрический заряд равен нулю. Бывают частицы без электрического заряда, но электрический заряд не существует без частицы.

На стекле, потёртом о шёлк, возникают положительные заряды. На эбоните, потёртом о мех – отрицательные заряды. Частицы отталкиваются при зарядах одинаковых знаков (одноимённые заряды), а при разных знаках (разноимённые заряды) частицы притягиваются.

Все тела состоят из атомов. Атомы состоят из положительно заряженного атомного ядра и отрицательно заряженных электронов, которые движутся вокруг ядра атома. Атомное ядро состоит из положительно заряженных протонов и нейтральных частиц – нейтронов. Заряды в атоме распределены таким образом, что атом в целом является нейтральным, то есть сумма положительных и отрицательных зарядов в атоме равна нулю.

Электроны и протоны входят в состав любого вещества и являются наименьшими устойчивыми элементарными частицами. Эти частицы могут неограниченно долго существовать в свободном состоянии. Электрический заряд электрона и протона называется элементарным зарядом.

Элементарный заряд – это минимальный заряд, которым обладают все заряженные элементарные частицы. Электрический заряд протона равен по абсолютной величине заряду электрона:

Величина любого заряда кратна по абсолютной величине элементарному заряду, то есть заряду электрона. Электрон в переводе с греческого electron – янтарь, протон – от греческого protos – первый, нейтрон от латинского neutrum – ни то, ни другое.

Проводники и диэлектрики

Электрические заряды могут перемещаться. Вещества, в которых электрические заряды могут свободно перемещаться, называются проводниками. Хорошими проводниками являются все металлы (проводники I рода), водные растворы солей и кислот – электролиты (проводники II рода), а также раскалённые газы и другие вещества. Тело человека также является проводником. Проводники обладают высокой электропроводностью, то есть хорошо проводят электрический ток.

Вещества, в которых электрические заряды не могут свободно перемещаться, называются диэлектриками (от английского dielectric, от греческого dia – через, сквозь и английского electric – электрический). Эти вещества также называют изоляторами. Электропроводность диэлектриков очень мала по сравнению с металлами. Хорошими изоляторами являются фарфор, стекло, янтарь, эбонит, резина, шёлк, газы при комнатных температурах и другие вещества.

Разделение на проводники и изоляторы условно, так как проводимость зависит от различных факторов, в том числе от температуры. Например, стекло хорошо изолирует только в сухом воздухе и становится плохим изолятором при большой влажности воздуха.

Проводники и диэлектрики играют огромную роль в современном применении электричества.


Механизм передачи энергии заряженными частицами облучаемому веществу один и тот же.

При прохождении через вещество заряженная частица теряет свою энергию, вызывая ионизацию и возбуждение атомов до тех пор, пока общий запас энергии уменьшается настолько, что частица утратит ионизирующую способность.

В зависимости от знака заряда при пробеге частицы в веществе она, испытываяэлектростатическое взаимодействие, притягивается или отталкивается от положительно заряженных ядер.

Чем больше масса летящей частицы, тем меньше она отклоняется от первоначального направления.

Поэтому траектория протонов и более тяжелых ядерных частиц практически прямолинейна, а траектория электронов сильно изломана вследствие рассеяния (отклонения) на орбитальных электронах и ядрах атомов.

Этот вид взаимодействия легких частиц (электронов), при котором практически меняется лишь направление их движения, а не энергия, называютупругим рассеянием.

При этом взаимодействииэлектронпередает лишь небольшую часть своей энергии ядру и меняется первоначальное направление движения.

При прохождении электрона очень высокой энергии вблизи ядра наблюдаетсянеупругое рассеяние(торможение).

При этом скорость летящего электрона снижается, и часть его энергии испускается в видефотона тормозного излучения.

Тормозное излучение – это фотонное излучение, возникающее при уменьшении кинетической энергии заряженной частицы.

Ru). При неупругом рассеянии наблюдается также взаимодействие частиц с электронами облучаемого вещества, вызывающее ионизацию или возбуждение атомов.

Траектория электрона в веществе имеет сложный вид, связанный с характером взаимодействия.

На начальном участке траектория электрона рассеивается на небольшие углы и траектория его мало отличается от прямой линии.

С уменьшением энергии электрона (а она колеблется от 20 кэВ до 13, 5 МэВ) угол рассеяния увеличивается, иэлектронначинает двигаться по извилистой кривой.

Таким образом, основными результатами взаимодействия электронов высокой энергии с веществом являются следующие :

При неупругих столкновениях энергия затрачивается на ионизацию и возбуждение атомов среды, частично на преобразование в тормозное излучение.

2. При упругих столкновениях энергия преобразуется непосредственно в тепловое движение.

3. В легких веществах (Z≤ 13) тормозное излучение становится заметным при энергиях электрона больших чем 10 МэВ.

При меньших энергиях преобладают потери энергии на ионизацию.

4. Первичные электроны создают положительные ионы и вторичные электроны, последние могут обладать энергией, достаточной для ионизации.

На долю вторичных ионизаций приходится до 70% общей ионизации.

При замедлении вторичные электроны могут создавать отрицательные ионы.

5. Траектория электронов при больших энергиях близкая к линейной.

При уменьшении энергииэлектрониз - за рассеяния начинает двигаться по извилистой кривой.

6. Глубина проникновения электронов в веществе прямо пропорциональна их энергии и обратно пропорциональна плотности вещества.


Положительно заряженная частица потеряла один электрон ?

Положительно заряженная частица потеряла один электрон .

Изменится ли при этом заряд частицы и каким образом?


Какие заряженные частицы регистрирует камера Вильсона?

Какие заряженные частицы регистрирует камера Вильсона.


Почему с помощью радиоактивных веществ, излучающих положительно заряженные частицы, можно удалять пыль с поверхности?

Почему с помощью радиоактивных веществ, излучающих положительно заряженные частицы, можно удалять пыль с поверхности?


Магнитное электрическое поля одновременно можно обнаружить : А?

Магнитное электрическое поля одновременно можно обнаружить : А.

Возле неподвижной заряженной частицы Б.

Только вблизи движущейся заряженной частицы В.

Только вблизи потока заряженных частиц Г.

Возле неподвижной заряженной частицы и потока заряженных частиц.


Какие заряженные частицы Вы знаете?

Какие заряженные частицы Вы знаете.


Что представляет собой электрический ток?

Что представляет собой электрический ток?

А) движение по проводнику заряженных частиц б) упорядоченное движение частиц тела в) упорядоченное (однонаправленное) движение заряженных частиц.


Магнитное поле создается 1 любыми неподвижными заряженными частицами 2 только движущимся положительно заряженными частицами 3 только движущимся отрицательно заряженными частицами 4 любыми движ?

Магнитное поле создается 1 любыми неподвижными заряженными частицами 2 только движущимся положительно заряженными частицами 3 только движущимся отрицательно заряженными частицами 4 любыми движ.


Сила взаимодействия заряженных частиц с увеличением заряда любой из этих частиц ?

Сила взаимодействия заряженных частиц с увеличением заряда любой из этих частиц .


Радиоактивное излучение состоит из : 1?

Радиоактивное излучение состоит из : 1.

Положительно и отрицательно заряженных частиц и гамма - квантов 2.

Отрицательно заряженных частиц 3.

Положительно заряженных частиц 4.


Силы , действующие между заряженными частицами как называются?

Силы , действующие между заряженными частицами как называются?


4с - частота колебаний.


Находим массу керосина : m = ρ * V = 820 * 5 * 10⁻³ = 4, 250 кг Выделится : Q = q * m = 46, 2 * 10⁶ * 4, 250≈ 196 МДж.


Эйнштейн — автор более 300 научных работ по физике, а также около 150 книг и статей в области истории и философии науки, публицистики и др. Он разработал несколько значительных физических теорий : Специальная теория относительности (1905). В её рам..


Исаак Ньютон(1642 - 1727) — английский математик, механик, астроном ифизик, создатель классической механики, член (1672) и президент (с 1703) Лондонского королевского общества. Знак зодиака —Козерог. Один из основоположников современной физики, сфо..


59 - 31 = 28 дм3 в первом сосуд с жидкостью, во втором с телом.


Дано V = 1, 8 м \ с t = 5ч S - ? S = V * t = 1. 8 * 5 * 3600 = 32400 м.


T = 2π√(l / g). Выразим отсюда l l = (T / 2π)² * g l = (0. 5 / π)² * 9. 8 ≈0. 24 м.


Вот так вот : 1)в 2)в 3)а 4)б 5)б 6)а.


Физическое тело 1)Карандаш 2)Стол Вещество 1)Вода 2)Железо 3)Керосин Явление 1)Эхо 2)Рассвет 7)Кипение.


Согласно F = G * m1 * m2 / R ^ 2 = 6, 67 * 10 ^ - 11 * 1 * 1 / 1 ^ 2 = 6, 67 * 10 ^ - 11 H.

© 2000-2022. При полном или частичном использовании материалов ссылка обязательна. 16+
Сайт защищён технологией reCAPTCHA, к которой применяются Политика конфиденциальности и Условия использования от Google.

Электричество и магнетизм, основные определения, типы движущихся заряженных частиц

В основу "учения о магнетизме", как и большинства других дисциплин, положены очень немногочисленные и довольно простые понятия. Они достаточно просты по крайней мере с точки зрения того, "что они собой представляют", хотя несколько труднее объяснить, "почему они таковы". Принятые однажды как таковые, они могут использоваться в качестве основных строительных блоков для развития всей изучаемой дисциплины. В то же время они служат ориентирами при попытках объяснять наблюдаемые явления.

Во-первых, есть такое понятие, как "электрон". Электроны не просто существуют — их бессчетные количества присутствуют везде, куда бы мы ни бросили взгляд.

Электрон представляет собой объект с ничтожно малой массой, несущий единичный отрицательный электрический заряд и вращающийся относительно своей оси с некоторой постоянной скоростью. Одним из проявлений движения электронов являются электрические токи; иными словами, электрические токи "переносятся" электронами.

Во-вторых, есть такое понятие, как "поле", которое можно использовать для передачи силы через то, что в других отношениях является пустым пространством. В данном смысле существуют поля трех основных типов — гравитационные, электрическое и магнитное (смотрите - Различия электрического и магнитного поля).

В-третьих, согласно представлениям Ампера любой движущийся электрон окружен магнитным полем. Поскольку электроны с собственным вращением — это движущиеся электроны, вокруг каждого электрона, обладающего спином, создается магнитное поле. Вследствие этого каждый электрон действует как микроминиатюрный постоянный магнит.

В-четвертых, согласно представлениям Лоренца на электрический заряд, движущийся в магнитном поле, действует определенная сила. Она является результатом взаимодействия внешнего поля и поля Ампера.

Наконец, вещество сохраняет свою целостность в пространстве благодаря силам притяжения между частицами, электрическое поле которых порождается их электрическим зарядом, а магнитное поле — их спином.

Электричество и магнетизм

Все магнитные явления можно объяснить, исходя из движения частиц, обладающих как массой, так и электрическим зарядом. К возможным типам таких частиц относятся следующие:

Электрон представляет собой электрически заряженную частицу весьма малых размеров. Каждый электрон во всех отношениях идентичен любому другому электрону.

1. Электрон имеет отрицательный единичный заряд и ничтожно малую массу.

2. Масса всех электронов всегда остается постоянной, хотя кажущаяся масса подвержена изменениям в зависимости от условий окружающей среды.

3. Все электроны вращаются вокруг собственной оси — имеют спин с одной и той же постоянной угловой скоростью.

1. Дыркой называют определенное положение в кристаллической решетке, где мог бы находиться, но в данных условиях отсутствует электрон. Таким образом, дырка имеет положительный единичный заряд и ничтожно малую массу.

2. Движением дырки вызывается движение электрона в противоположном направлении. Следовательно, дырка имеет точно такую же массу и такой же спин, как и электрон, движущийся в противоположную сторону.

Протон — это частица, значительно превышающая по размерам электрон и обладающая электрическим зарядом, который в точности равен по абсолютной величине заряду электрона, но имеет противоположную полярность. Понятие противоположной полярности определяется следующими противоположными явлениями: электрон и протон испытывают по отношению один к другому силу притяжения, тогда как два электрона или два протона отталкиваются один от другого.

В соответствии с соглашением, принятым в экспериментах Бенджамина Франклина, заряд электрона считают отрицательным, а заряд протона — положительным. Поскольку все другие электрически заряженные тела несут электрические заряды либо положительные, либо отрицательные, значения которых всегда являются в точности кратными заряду электрона, последний используют в качестве "единичного значения" при описании данного явления.

1. Протон представляет собой ион с положительным единичным зарядом и единичной молекулярной массой.

2. Положительный единичный заряд протона точно совпадает по абсолютной величине с отрицательным единичным зарядом электрона, однако масса протона во много раз превышает массу электрона.

3. Все протоны вращаются вокруг собственной оси (имеют спин) с одной и той же угловой скоростью, которая намного меньше, чем угловая скорость вращения электронов.

Атом

Положительные ионы

1. Положительные ионы обладают различными зарядами, значения которых являются целыми, кратными заряду протона, и различными массами, значения которых состоят из целого, кратного массе протона, и некоторой дополнительной массы субатомных частиц.

2. Только ионы с нечетным числом нуклонов обладают спином.

3. Ионы с разными массами вращаются с разными угловыми скоростями.

Отрицательные ионы

1. Существуют разновидности отрицательных ионов, совершенно аналогичные положительным ионам, но несущие отрицательный, а не положительный заряд.

Любые из указанных частиц в любых сочетаниях могут двигаться по различным прямолинейным или криволинейным траекториям с различными скоростями. Совокупность одинаковых частиц, движущихся более или менее единой группой, называют пучком.

Каждая частица в пучке имеет массу, направление и скорость движения, близкие к соответствующим параметрам соседних частиц. Однако при более общих условиях скорости отдельных частиц пучка различаются, подчиняясь закону распределения Максвелла.

Доминирующую роль для возникновения магнитных явлений при этом играют частицы, скорость которых близка к средней скорости пучка, а частицы с другими скоростями порождают эффекты второго порядка.

Если основное внимание уделяется именно скорости движения частиц, то частицы, движущиеся с высокой скоростью, называют горячими, а частицы, движущиеся с низкой скоростью — холодными. Эти определения являются относительными, т. е. не отражают каких-либо абсолютных скоростей.

Основные законы и определения

Имеется два различных определения магнитного поля: магнитное поле — это область в окрестности движущихся электрических зарядов, где проявляются магнитные силы. Любая область, в которой электрически заряженное тело испытывает действие силы при своем движении, содержит магнитное поле.

Электрически заряженная частица окружена электрическим полем. Движущаяся электрически заряженная частица обладает наряду с электрическим также и магнитным полем. Закон Ампера устанавливает взаимосвязь между движущимися зарядами и магнитными полями (смотрите - Закон Ампера).

Если множество малых электрически заряженных частиц непрерывно проходит через один и тот же участок траектории с постоянной скоростью, то суммарный эффект от отдельных движущихся магнитных полей каждой частицы сводится к образованию постоянного магнитного поля, известного под названием поля Био-Савара.

Частный случай закона Ампера, получивший название закона Био-Савара, определяет величину напряженности магнитного поля на заданном расстоянии от бесконечно длинного прямолинейного проводника, по которому течет электрический ток (закон Био-Савара).

Электричество

Итак, магнитное поле имеет определенную напряженность. Чем больше движущийся электрический заряд, тем сильнее результирующее магнитное поле. Кроме того, чем быстрее движется электрический заряд, тем сильнее магнитное поле.

Неподвижный электрический заряд не порождает никакого магнитного поля. Фактически магнитное поле не может существовать независимо от наличия движущегося электрического заряда.

Тело с "магнитным зарядом", находящееся во внешнем магнитном поле, испытывает действие силы, которая стремится переместить тело из положения, в котором оно усиливает внешнее поле, в такое положение, в котором оно ослабляло бы внешнее поле. В этом проявляется следующий принцип: все системы стремятся прийти в состояние, характеризующееся минимальной энергией.

Правило Ленца гласит: "Если траектория движущейся заряженной частицы изменяется каким бы то ни было образом в результате взаимодействия частицы с магнитным полем, то эти изменения приводят к возникновению нового магнитного поля, прямо противоположного тому магнитному полю, которое вызвало эти изменения".

Способность соленоида создавать магнитный поток, "текущий" по магнитной цепи, зависит как от числа витков проволоки, так и от тока, текущего в них. Оба фактора приводят к возникновению магнитодвижущей силы, или сокращенно МДС. Постоянные магниты могут создавать аналогичную магнитодвижущую силу.

Магнитодвижущая сила заставляет магнитный поток течь в магнитной цепи точно так же, как электродвижущая сила (ЭДС) обеспечивает течение электрического тока в электрической цепи.

Магнитные цепи в некотором отношении аналогичны, электрическим цепям, хотя в электрических цепях происходит реальное движение заряженных частиц, а в магнитных цепях такого движения нет. Действие электродвижущей силы, порождающей электрический ток, описывается законом Ома.

Напряженность магнитного поля — это магнитодвижущая сила, приходящаяся на единицу длины соответствующей магнитной цепи. Магнитная индукция, или плотность потока, равна магнитному потоку, проходящему через единичную площадь данной магнитной цепи.

Магнитное сопротивление — это характеристика конкретной магнитной цепи, определяющая ее способность проводить магнитный поток в ответ на действие магнитодвижущей силы.

Электрическое сопротивление Ома прямо пропорционально длине пути потока электронов, обратно пропорционально площади поперечного сечения этого потока и также обратно пропорционально удельной электрической проводимости — характеристике, описывающей электрические свойства вещества, из которого состоит токонесущая область пространства.

Магнитное сопротивление прямо пропорционально длине пути магнитного потока, обратно пропорционально площади по­ перечного сечения этого потока и также обратно пропорционально магнитной проницаемости — характеристике, описывающей магнитные свойства вещества, из которого состоит область пространства, несущая магнитный поток (смотрите - Закон Ома для магнитной цепи).

Магнитная проницаемость — это характеристика вещества, которая выражает его способность поддерживать определенную плотность магнитного потока (смотрите - Магнитная проницаемость).

Впоследствии этот основополагающий закон помог учёным сформировать представление о строении атомов, объяснить природу электричества. Это способствовало созданию источников электрического тока, без которого современного уровня научно-технического прогресса не удалось бы достигнуть.

История

На существование электрических зарядов обращали внимание мыслители ещё до нашей эры. Однако они не способны были объяснить их природу и, тем более, описать взаимодействие.

Прошло много веков до того момента, когда учёные вплотную занялись изучением электрических явлений, что и привело их к открытиям в данной области. В частности Уильям Гильберт ещё в XVI веке, не понимая природы электричества, называл наэлектризованными тела, которые притягивали другие вещества.

На основании своего открытия, физик уже мог объяснить причину взаимодействия точечных заряженных тел (см. рис. 1).

Взаимодействие наэлектризованных тел

Рис. 1. Взаимодействие наэлектризованных тел

Дискретность (неделимость) элементарных заряженных частиц доказал Роберт Милликен. Учёный подтвердил, что заряженное тело содержит целое число элементарных частиц. Он пришёл к выводу, что делимость заряда имеет предел. Носителем элементарного заряда является электрон.

На рисунке 2 изображён опыт, подтверждающий делимость заряда. Опыт показывает, что деление кратно, это наталкивает на мысль о существовании элементарных частиц.

Делимость заряда

Рис. 2. Делимость заряда

Целостная картина сложилась после обнародования предложенной Резерфордом наглядной планетарной модели атома. Модель предполагает, что атом состоит из ядра, вокруг которого вращаются электроны. Это довольно упрощённая модель, но она уже объясняла многие электрические процессы, включая электризацию тел.

Современная интерпретация планетарной модели атома

Рис. 3. Современная интерпретация планетарной модели атома

Что такое электрический заряд?

Данный термин обозначает то, что заряженное тело способно создавать электрическое поле. В более широком значении, зарядом называют количество электричества – скалярную величину, являющейся источником электромагнитного поля, участвующую в процессах электромагнитных взаимодействий. Электрический заряд не может существовать без носителя.

Частицы, заряжены дробными частями (кварки), могут существовать только в составе адронов, поэтому их не считают носителями.

Заряженные протоны, из которых состоит ядро атома, тесно связаны ядерными силами. Они не могут свободно вырываться с ядра атома. Поэтому в качестве свободных носителей положительного заряда принято считать ион – атом, с орбиты которого удалился электрон. Образование отрицательных ионов происходит за счёт присоединения к ним свободных электронов.

Заряженность нейтральных атомов и молекул нулевая, а число положительных и отрицательных ионов в ячейках кристаллических решёток скомпенсировано. Поэтому тела в обычных условиях электростатически нейтральны. Между нейтральными атомами взаимодействие отсутствует.

Свойства

Установлено, что неподвижный заряд q неразрывно связан с электрическим полем, представителем особого вида материи. Поле является материальным носителем взаимодействия между элементарными частицами. Это свойство поля проявляется даже в случае отсутствия вещества между взаимодействующими телами.

Электрическое поле действует с силой F на пробный заряд q′, расположенный в любой точке поля.

характеризует действие электричества и называется напряженностью поля. Линии, касательные к которым совпадают с вектором напряжённости, образуют линии напряжённости. Густота линий напряжённости определяет величину напряжённости.

Линии напряженности электростатического поля точечного заряда представляют собой лучи, выходящие из одной точки (для положительного) или входящего в точку (для отрицательного) (см. рис. 4).

Линии напряжённости поля

Рис. 4. Линии напряжённости поля

Электростатическое взаимодействие электромагнитных полей можно наблюдать на поведении заряженных шариков. Если эбонитовую или стеклянную палочку наэлектризовать трением и приблизить её к крохотным бузиновым шарикам, то мы увидим, как в результате силовых взаимодействий частицы отталкиваются (если они одинаковых знаков), либо притягиваются (разнознаковые).

Насыщение свободными носителями зарядов различных веществ не одинаково. Больше всего свободных электронов содержится в металлах. Поскольку заряженные электроны способны перемещаться под действием электрического поля, они являются основными транспортировщиками электрического тока в металлах. При этом движения электронов не приводит к каким-либо химическим изменениям.

Перенос зарядов в расплавленных солях или в растворах кислот осуществляется ионами. Они могут быть заряжены как положительно, так и отрицательно. В отличие от металлов, перераспределение зарядов в этих жидкостях сопровождается химическими реакциями. Поэтому растворы называют проводниками второго рода, то есть такими, которые под действием постоянных токов приводят к изменению химического состава вещества.

Таким образом, вещества условно подразделяют по типу проводимости:

  • проводники первого рода (металлы);
  • проводники второго рода (соляные, щелочные и кислотные растворы);
  • полупроводники (электронно-дырочная проводимость);
  • диэлектрики (вещества не способные проводить электричество из-за отсутствия свободных носителей).

Единица измерения

Единицей измерения заряда в международной системе СИ принято 1 кулон – совокупный заряд элементарных частиц, преодолевающих сечение проводника с током в 1 А, за единицу времени (секунду). Это огромная величина. Силу взаимодействия величиной в 1 Кл на расстоянии 1 м можно сравнить с действием гравитационного притяжения Землёй тела, массой 1 млн. т (9 × 10 9 Н).

Взаимодействие зарядов

Многочисленные опыты показали, что заряженные элементарные частицы взаимодействуют между собой. Носители одноименных зарядов отталкиваются, а носители разноименных зарядов – притягиваются (см.рис. 5).

Взаимодействие элементарных частиц

Рис. 5. Взаимодействие элементарных частиц

Силу взаимодействия точечных зарядов определяют по формуле, вытекающей из закона Кулона: F = (k*q1*q2)/r 2 , где q1 и q2 –две заряженные точки, расположенные на расстоянии r, а k – коэффициент, размерность которого зависит от выбранной системы измерений, а значение – от свойств окружающей среды. Закон Кулона – один из фундаментальных законов физики.

Закон Кулона

Рис. 6. Интерпретация закона кулона

Закон сохранения электрического заряда

Экспериментально установлено, что в замкнутой системе выполняется один из основополагающих законов физики – закон сохранения. В изолированной системе суммарный заряд не исчезает, а сохраняется во времени. Кроме того, он квантуется, то есть изменяется порциями, кратными заряду элементарной частицы.

Алгебраическая сумма зарядов – величина постоянная: q1 + q2 + … + qn = const (см. рис. 7).

Сохранение статического электричества

Рис. 7. Сохранение статического электричества

Закон сформулирован Б.Франклином (1747 г.) и подтверждён М. Фарадеем в 1843 г.

Способы измерения

Самый простой прибор для измерения – электроскоп. Он состоит из двух лепестков из фольги, расположенных на металлическом стержне. Конструкция накрыта стеклянным колпаком.

Если наэлектризованным телом прикоснуться к стержню, то лепестки наэлектризуются. Поскольку знаки на них одинаковые, то кулонова сила оттолкнёт их в разные стороны. По величине угла отклонения можно оценить величину статического электричества поступившего на лепестки.

Более сложный прибор – электрометр (схематическое изображение на рис. 8). Прибор состоит из стержня электрометра, стрелки и шкалы. Принцип действия аналогичен электроскопу (стрелка отталкивается от стержня). Благодаря наличию шкалы отклонение стрелки электрометра показывает количественную величину переданного электричества.

Схематическое изображение электрометра

Рис. 8. Схематическое изображение электрометра

Мы уже упоминали, что Кулон в своих опытах пользовался крутильными весами. Этот измерительный прибор позволил учёному открыть знаменитый закон, названный в честь его имени.

Читайте также: