Распад и окисление органических веществ в клетках при обмене веществ кратко

Обновлено: 05.07.2024

Одним из основных свойств живых систем считается их открытость. При этом постоянно происходит взаимообмен веществ, энергии и информации с внешней средой. Сегодня на уроке познакомимся с особенностями обмена веществ организмов. Подробно остановимся на энергетическом обмене. Рассмотрим, как осуществляется питание клетки, фотосинтез и хемосинтез.

План урока:

Метаболизм

Всякая живая клеточная структура постоянно осуществляет различные реакции, которые обеспечивают все основные процессы, необходимые для нормального существования. Так обеспечивается постоянство условий внутренней среды биологической системы или гомеостаз. При нарушении этих условий происходит сбой в работе всей системы, что способно привести к гибели не только отдельной клетки, но и всего организма. Соответственно, все процессы ориентированы на поддержание именно гомеостаза.

С целью реализации трудоемких биохимических реакций требуются различные соединения, а также энергия, получаемые организмом при метаболизме.

Получается, что ассимиляция и диссимиляция – это взаимозависимые процессы, протекающие синхронно.

Любой организм, вследствие питания, получает извне различные вещества и микроэлементы, используемые в процессе ассимиляции.

Ассимиляция – это процесс, состоящий в формировании соединений, а также составных частей клетки. Данные реакции иначе именуются анаболизм или пластический обмен. Примером ассимиляции может быть образование белковых молекул.

Любые реакции синтеза проходят с расходом энергии. Источником ее выступают ранее образованные соединения, находящиеся в клетке. Они подвергаются распаду вследствие протекания совокупности процессов диссимиляции.

Частично освобождающаяся энергия применяется при синтезе различных соединений, часть рассеивается с теплом или запасается.

Соответственно, диссимиляция – это процесс,заключающийся в разложении веществ с освобождением энергии.

Процесс диссимиляции в организме именуется еще катаболизм или энергетический обмен.

Ассимиляция и диссимиляция не могут существовать по отдельности. Нарушение баланса этих процессов приведет к развитию заболеваний или гибели организма. К примеру, это может выразиться в истощении или ожирении.

Метаболизм в клеточных структурах протекает при средней температуре, нормальном давлении и нейтральной среде. Из курса химии нам известно, что только повышение данных показателей приведет к ускорению реакции. При таких же условиях реакции должны протекать очень медленно. Однако, в биологических системах есть помощники метаболизма – ферменты.

Роль ферментов в метаболизме огромна. Данные структуры ускоряют реакцию без изменения ее общего результата. Причем абсолютно все процессы в организме протекают при участии ферментов. К примеру, под их действием происходит разложение пищи на составные компоненты.

Исходя из значения ферментов в метаболизме можно сказать, что нарушение их образования и активности приведет к различным заболеваниям.

Энергетический обмен

Диссимиляция или энергетический обмен проходит в несколько этапов. Познакомимся с ними на схеме.

  • Подготовительный этап энергетического обмена проходит в цитоплазме растительных клеток, простейших, в пищеварительной системе животных, а кроме того и человека. При этом питательные соединения под воздействием пищеварительных ферментов разлагаются до мономеров. Вследствие этого образуется незначимый объем энергии, рассеивающейся как тепло. На представленном этапе энергетического обмена синтеза АТФ не происходит.
  • Вторым этапом диссимиляции веществ считается бескислородный или анаэробный. Проходит данная стадия в цитоплазме клеток, заключается в разложении мономеров, образовавшихся на предварительной стадии.

Примером подобного процесса считается гликолиз – многоступенчатое расщепление глюкозы. Мономеры углеводов подвергаются распаду в отсутствии кислорода с освобождением энергии, определенное количество которой расходуется для формирования АТФ.

При протекании ряда последовательных этапов гликолиза совершается разложение молекулы глюкозы на две молекулы пировиноградной кислоты. Чаще всего, пировиноградная кислота затем преобразуется в молочную кислоту. Вследствие этих реакций в ходе гликолиза из АДФ, а также фосфорной кислоты синтезируются 2 молекулы АТФ.

Следует учесть, что по такому принципу гликолиз протекает в клетках животных и человека.

В растительных клетках, в отдельных дрожжевых грибах, у бактерий бескислородный этап осуществляется как спиртовое брожение.

В реакции спиртового брожения могут вступать всевозможные соединения. Например, углеводы, органические кислоты, спирты, аминокислоты и многие другие. Широкое распространение получили реакции расщепления глюкозы при молочнокислом, а также спиртовом брожении.

У молочнокислых бактерий спиртовое брожение сопровождается ферментативным расщеплением глюкозы и продуктом является молочная кислота.

Суммарные уравнения молочнокислого и спиртового брожения рассмотрим на рисунке.

Вследствие бескислородной стадии энергетического обмена вещества распадаются не до конечных продуктов, а до соединений с запасом энергии. Поэтому они переходят в следующий этап – кислородный.

3. Третья стадия энергетического обмена получила название аэробного или кислородного.В течение данных реакций осуществляется последующее разложение органических соединений до конечных продуктов. Характерен он только аэробным организмам, использующим для метаболизма кислород.

Происходит кислородный распад в митохондриях, поэтому именуется еще клеточным дыханием. Протекает оно в несколько поочередных стадий. Основным признаком клеточного дыхания является участие кислорода в распаде соединений.

В процессе клеточного дыхания осуществляется дальнейшее окисление пировиноградной кислоты с формированием двуокиси углерода и воды.

Данный этап считается заключительным, поэтому при клеточном дыхании выделяется внушительное число энергии в виде 36 молекул АТФ.

Вследствие процесса энергетического обмена веществ при окислении одной молекулы глюкозы формируется 38 молекул АТФ. Эта энергия используется на другие химические реакции. К примеру, у человека каждая молекула АТФ расщепляется и вновь создается 2400 раз в сутки, то есть средняя продолжительность жизни АТФ менее минуты.

Питание клетки

Для протекания метаболизма в клетке необходимы различные питательные вещества, которые организм получает в результате питания.

Все живые организмы различаются по тому, какую пищу они используют. Некоторые организмы способны сами производить вещества, другие же в процессе питания клетки потребляют уже готовые.

Различают несколько разновидностей организмов по способу питания клетки:

1. Автотрофы сами производят органические вещества. Для осуществления процессов синтеза они используют простые неорганические соединения – углекислый газ и воду. Источником энергии для протекания ассимиляции в клетке у автотрофов является солнечный свет или энергия химических взаимодействий.

Организмы, использующие солнечный свет для формирования органических соединений получили название фототрофы. Этим существам характерен фотосинтез, протекающий в хлоропластах. Соответственно, фототрофами являются все зеленые растения. Помимо этого, примером фототрофов считаются цианобактерии, зеленые и пурпурные бактерии.

Организмы, которые для производства органических соединений используют энергию химических взаимодействий, называются хемотрофами.

Хемотрофами являются некоторые бактерии, к примеру, железобактерии, серобактерии, нитрифицирующие бактерии.

Гетеротрофы используют в пищу готовые органические вещества. Вследствие такого питания гетеротрофы получают энергию, требуемую для жизненных процессов, а также служат источником строительного материала для клеточных структур. Гетеротрофами являются все животные, грибы и большинство бактерий.

Вдобавок есть организмы, применяющие для питания клетки автотрофный и гетеротрофный способ. К этим организмам относится эвглена зеленая. У нее есть хлоропласты и она может сама производить вещества для питания клетки как автотрофы. Однако в темноте, ее питание осуществляется гетеротрофным способом как у животной клетки.

Фотосинтез

Одним из примеров ассимиляции является процесс фотосинтеза у растений.

Фотосинтез происходит в фотосинтезирующем пигменте хлорофилле хлоропластов листа. Данный пигмент считается чрезмерно активным соединением и реализует поглощение света, начальный запас энергии, также последующая ее трансформация в химическую энергию.

Принято выделять световую и темновую фазы фотосинтеза. Остановимся детальнее на них.

Световая фаза совершается в мембранах хлоропластов. Наступает световая фаза фотосинтеза с поглощения кванта света молекулой хлорофилла. Один из электронов хлорофилла переводится на высочайший энергетический уровень и вступает в возбужденном состоянии. Электроны с большим избытком энергии активизируют разложение воды. Данная процедура, протекающая на начальной стадии фотосинтеза, приобрела наименование фотолиз воды.

В итоге распада совершается отдача гидроксид-ионом (OH - ) своего электрона, а также превращение его в радикал (OH). Радикалы объединяются и формируют воду, свободный кислород. Далее в процессе светового фотосинтеза электрон от гидроксид-иона снова попадает в молекулу хлорофилла, замещая удалившийся электрон. Вследствие этого освобождается энергия, идущая для формирования АТФ.

В процессе световой фазы фотосинтеза совершается превращение световой энергии в химическую энергию макроэргических связей молекулы АТФ. В данной фазе фотосинтеза осуществляется выброс кислорода, являющегося второстепенным продуктом. Он может употребляться дальше растительными клетками при дыхании или выделяться в биосферу.

2. В момент темновой фазы фотосинтеза проистекают трудоемкие ферментативные взаимодействия. Основой считается трансформация молекул углекислого газа до органических соединений. Протекает данная стадия в строме хлоропластов в присутствии продуктов световой реакции.

Основным признаком темновой фазы фотосинтеза считается отсутствие солнечного света.

Начинается данная стадия с проникновения углекислого газа в листья через устьица. Затем он соединяется со своеобразным веществом – акцептором, которым выступает при фотосинтезе пятиуглеродный сахар – рибулозодифосфат. Вследствие этого формируется нестойкое соединение, разлагающиеся на 2 молекулы фосфороглицериновой кислоты. Эти молекулы подвергаются воздействию продуктов светового фотосинтеза, в частности АТФ.

Впоследствии, посредством некоторых переходных стадий, создаются углеводы, а также прочие органические соединения. Данный процесс трансформации углекислого газа в углеводы в темновой фазе фотосинтеза приобрел наименование цикла Кальвина.

В темновом фотосинтезе энергия макроэргических связей АТФ трансформируется в химическую энергию органических соединений. Данные вещества служат пищей для гетеротрофов.

Соответственно, первостепенными веществами темнового и светового фотосинтеза считаются кислород, а также углеводы.

Благодаря данному процессу возможно существование всех живых существ на Земле. Ведь он является одним источником свободного кислорода.

Хемосинтез

Помимо фотосинтеза имеется еще один процесс автотрофной ассимиляции – хемосинтез, типичный отдельным видам микроорганизмов.

Основой энергии для хемосинтеза здесь служит не свет, а окисление отдельных неорганических соединений. Открытие хемосинтеза у таких организмов как бактерии принадлежит русскому ученому С.Н. Виноградскому.

Важнейшей группой данного типа питания считаются нитрифицирующие бактерии. Они могут окислять возникающий при гниении остатков аммиак до нитрита, а также до нитрата. Вследствие этого совершается освобождение энергии, нужной нитрифицирующим бактериям для жизненных функций.

Хемотрофные нитрифицирующие бактерии массово встречаются в природной среде. Они находятся в почве, в различных водоемах. Исполняемые ими процессы считаются частью круговорота азота.

Серобактерии – это еще одни существа, способом питания которых является хемосинтез. Вследствие этого они окисляют сероводород и накапливают в своих клетках серу.

К серобактериям относятся многие автотрофные пурпурные, а также зеленые бактерии.

Серобактерии являются разрушителями горных пород, в связи с формированием серной кислоты в ходе питания. Выделяемая ими едкая жидкость активизирует порчу различных сооружений.

Многочисленные типы серобактерий в ходе питания образуют всевозможные производные серы. Это способствует очищению промышленных сточных вод.

В процессе питания железобактерии переводят железо (II) в железо (III). Освободившаяся энергия употребляется с целью восстановления углекислого газа до органических соединений.

Хемосинтетики – единственные организмы, жизнь которых не связана с освещением. Соответственно они способны существовать в различных местах, осваивая глубины океана или недра земли.

Обмен веществ_виды.jpg

В результате окисления \(1\) г белка происходит выделение \(17,2\) кДж (\(4,1\) ккал) энергии. Но в качестве источника энергии белки обычно не используются, так как они выполняют другие функции: строительную, защитную, каталитическую и т. д.

В процессе пищеварения белки пищи расщепляются под действием пищеварительных ферментов до аминокислот. Аминокислоты всасываются ворсинками тонкого кишечника и попадают в кровь, которая доставляет их к клеткам. В клетках из аминокислот синтезируются новые белки, свойственные организму человека.

В белковом обмене важную роль играет печень. Она управляет содержанием отдельных аминокислот в крови, осуществляет синтез белков плазмы крови. Одним из продуктов распада аминокислот является ядовитый аммиак. Клетки печени преобразуют аммиак в менее опасную мочевину, которая удаляется из организма с мочой и частично с потом.

Расщепление белков.jpg

Основная функция углеводов в организме — энергетическая. \(1\) г углеводов при окислении даёт \(17,2\) кДж (\(4,1\) ккал) энергии.

С пищей в наш организм поступают разные углеводы. Чаще всего это крахмал (из растительных продуктов), гликоген (из животных продуктов), сахароза, лактоза и др. Эти соединения распадаются в органах пищеварения до глюкозы, которая всасывается стенками тонкого кишечника и попадает в кровь.

Обмен углеводов.jpg

Основная часть глюкозы окисляется в клетках до углекислого газа и воды, которые удаляются с выдыхаемым воздухом или с мочой. Неиспользованная глюкоза превращается в гликоген (животный крахмал) и накапливается в клетках печени и в мышцах.

В крови содержание глюкозы поддерживается на уровне \(0,10\)–\(0,15\) % . В регуляции уровня глюкозы участвуют гормоны поджелудочной железы инсулин и глюкагон. Инсулин ускоряет превращение глюкозы в гликоген, а также затормаживает его распад. Глюкагон обладает противоположным действием. Он, наоборот, способствует расщеплению гликогена и повышению уровня глюкозы в крови.

Если поджелудочная железа вырабатывает недостаточное количество инсулина, то содержание глюкозы в крови увеличивается, и это может привести к тяжёлой болезни — сахарному диабету.

Расщепление углеводов.jpg

Если с пищей в организм поступает слишком много углеводов, они преобразуются в жиры и накапливаются в разных органах.

Окисление жиров в два раза эффективнее окисления углеводов или белков. \(1\) г жира даёт \(38,9\) кДж (\(9,3\) ккал) энергии.

Жиры — это вещества, образованные жирными кислотами и глицерином. В органах пищеварения жиры расщепляются на составные части под влиянием ферментов поджелудочной железы и тонкого кишечника. Образовавшиеся продукты поступают в лимфатические сосуды ворсинок тонкого кишечника, а затем вместе с лимфой попадают в кровеносную систему и доставляются к клеткам.

Обмен жиров.jpg

Расщепление жиров.jpg

  • Окисление жиров обеспечивает энергией работу внутренних органов.
  • Липиды образуют все клеточные мембраны, выполняют функции медиаторов и гормонов.
  • Откладываются в запас в подкожной жировой клетчатке и сальнике, защищают органы от механических повреждений.
  • Жиры плохо проводят тепло и защищают организм от перегревания и переохлаждения, способствуя поддержанию постоянной температуры тела.

Ежедневно рекомендуется употреблять \(80\)–\(100\) г разных жиров. Лишний жир запасается под кожей, но может откладываться также в печени и в кровеносных сосудах.

3 (2).jpg

Органические вещества могут взаимно превращаться. Из белков образуются жиры и углеводы. Углеводы превращаются в жиры, и наоборот, источником углеводов могут стать жиры. Но заменить белки другими веществами невозможно.

Установлено, что взрослому человеку в сутки необходимо получить с пищей не менее \(1500\)–\(1700\) ккал. Причём на обеспечение процессов жизнедеятельности тратится \(15\)–\(35\) % полученной энергии, а остальная энергия тратится на поддержание постоянной температуры тела.

Для жизнедеятельности организма постоянно требуется энергия. Она образуется при распаде органических соединений — в основном углеводов и жиров, в меньшей степени — белков. Белки нужны организму человека для обеспечения анаболических процессов. Энергия выделяется при разрушении химических связей между атомами этих молекул. Частично она рассеивается в виде тепла, а частично запасается в виде АТФ (аденозинтрифосфат). Соотношение между рассеянной энергией и запасенной примерно 1:1.

В молекуле АТФ между остатками фосфорной кислоты имеются макроэргические связи, при разрыве которых выделяется большое количество энергии. Разрыв связей при гидролизе молекул АТФ осуществляется последовательно до АДФ (аденозиндифосфата) и АМФ (аденозинмонофосфата). Энергия, запасенная в АТФ, может быть использована клетками организма по мере необходимости. Таким образом, АТФ — универсальный аккумулятор энергии в клетке.

Сущностью процесса образования АТФ является фосфорилирование — присоединение остатка фосфорной кислоты к АДФ. Однако для этого необходима энергия, которая образуется в результате распада сложных органических молекул и тканевого дыхания. В качестве примера можно рассмотреть образование АТФ при распаде одной молекулы глюкозы (С6Н12O6). Полное расщепление глюкозы до углекислого газа и воды в клетке требует прохождения анаэробного (бескислородного) и аэробного (с участием кислорода) процессов ее окисления (рис. 1).

Гликолиз (анаэробное окисление). Происходит в цитоплазме клетки без участия кислорода. В последнее время установлено, что гликолиз может активно протекать с высокой скоростью и в аэробных условиях. При гликолизе происходят последовательно 10 биохимических реакций, каждая из которых катализируется своим ферментом. При достаточном количестве кислорода в клетке конечным продуктом анаэробного окисления является пировиноградная кислота (ПВК). При недостатке кислорода в клетке происходит еще одна, одиннадцатая, реакция гликолиза, в результате которой из ПВК образуется молочная кислота. В процессе 10 реакций гликолиза образуются две молекулы ПВК и две молекулы АТФ.

Рис. 1. Распад и окисление глюкозы в клетке

Дефицит кислорода наблюдается в клетках, например, в случае чрезмерной физической нагрузки. При этом в цитоплазме происходит активация гликолитических процессов и в большом количестве из глюкозы образуется молочная кислота (лактат). Это вещество не может быть использовано клеткой в дальнейшем и удаляется из нее. При значительном накоплении лактата возникают болезненные ощущения, связанные с закислением внутренней среды организма.

Тканевое дыхание. Так называют обмен газов, происходящий в клетках при биологическом окислении питательных веществ. В ходе окислительных процессов клетки выделяют конечный продукт метаболизма — углекислый газ и одновременно поглощают из кровеносных капилляров кислород. При этом атомы водорода, образующиеся при окислении глюкозы, переносятся на ферменты внутренней мембраны митохондрий. Это так называемая дыхательная транспортная цепь. Водород взаимодействует с кислородом, образуя воду. Ток протонов водорода характеризуется значительным выделением энергии, которая расходуется на синтез АТФ из АДФ и остатка фосфорной кислоты. В результате этих реакций при окислении одной молекулы глюкозы образуется 38 молекул АТФ. При этом недостаток кислорода лимитирует окислительные реакции значительно сильнее, чем неадекватное удаление углекислого газа. Энергия, аккумулированная в АТФ, используется организмом для поддержания всех его функций, жизненных процессов:

- синтеза новых органических веществ, свойственных организму (белков, жиров, углеводов, ДНК), образования новых клеточных структур и органелл;

- осуществления основных жизненных процессов в клетке (митоза, транспорта веществ в клетку и др.);

- поддержания температурного гомеостаза организма.

ОБМЕН ЭНЕРГИИ

Основной обмен. Это минимальный уровень энерготрат, который необходим для поддержания жизненных функций организма в условиях полного физического и эмоционального покоя. Таким образом, данный показатель характеризует количество энергии, необходимой только для функционирования внутренних органов (сердца, легких, почек, печени и др.) и поддержания необходимой температуры тела. Измеряется он в утренние часы с помощью специальных приборов — калориметров. Испытуемый должен находиться в лежачем положении. Измерение проводят натощак, при максимальном расслаблении мышц, при этом внешняя температура поддерживается на уровне 22°С. Приборы фиксируют выделяемое организмом тепло. Это так называемый метод прямой калориметрии. Было установлено, что величина основного обмена для взрослого мужчины составляет примерно 4,2 кДж на 1 кг массы тела в час, т.е. 7200 кДж в сутки (для человека массой 72 кг). Величина основного обмена у женщин несколько ниже. Этот показатель уменьшается с возрастом.

На практике чаще используют метод непрямой калориметрии. Определяют объем легочной вентиляции, а затем количество поглощенного кислорода и выделенного углекислого газа. Отношение объема выделенного углекислого газа к объему поглощенного кислорода называют дыхательным коэффициентом. По величине последнего можно судить о характере окислительных процессов в организме.

Рассчитать основной обмен можно по таблицам. В этом случае определяют среднестатистический уровень основного обмена. Для вычисления необходимо знать рост, массу тела, возраст (прил. 2). Затем по формуле Рида вычисляют процент отклонения величины основного обмена от нормы. Для применения формулы необходимо знать артериальное давление и частоту пульса:

О = 0,75(ЧП + 0,75ДП) - 72,

где О — отклонение, %; Чп — частота пульса; Дп — пульсовое давление (разница между величиной систолического и диастолического АД).

Для упрощения расчетов по формуле Рида можно использовать специальную номограмму (рис. 2). Соединив линейкой значения частоты пульса и пульсового давления, в средней колонке находим величину процентного отклонения основного обмена от нормы. Затем, исходя из данных таблицы, проводят перерасчет уровня основного обмена на величину полученного процентного отклонения.

Интенсивность обменных процессов резко возрастает при физической нагрузке. При этом люди, занятые легким физическим трудом, тратят 9200 кДж в сутки, средней степени — 12000-15000 кДж в сутки, а тяжелым — 16000-18000 кДж в сутки. Следовательно, питание человека должно соответствовать энерготратам и полностью компенсировать их.

Рис. 10.2. Номограмма Рида

Отдача тепла во внешнюю среду осуществляется несколькими способами: теплопроведение, конвекция, излучение и испарение. Излучение — способ отдачи тепла в окружающую среду поверхностью тела посредством инфракрасных волн. Глаз человека не может уловить этот вид электромагнитных волн. Однако существуют живые организмы, способные их различать (например, некоторые змеи). При температуре 20°С и относительной влажности воздуха 50% излучение может составить 40-50 % всего отдаваемого тепла. Конвекция — способ отдачи тепла при контакте тела с движущимися потоками воздуха. Теплопроведение — способ отдачи тепла через непосредственное соприкосновение тела человека с другими физическими телами (например, одеждой).

Первые три механизма теплоотдачи становятся неэффективными при выравнивании температуры тела и температуры окружающей среды. В этих условиях основным способом отдачи тепла является испарение пота с поверхности кожи и влаги с поверхности слизистых оболочек. Количество испаряемой воды в условиях тяжелой физической работы и высокой температуры может доходить до 2 л/ч.

Основную роль в теплоотдаче играет кожа. При высоких температурах внешней среды сосуды кожи расширяются, кровь поступает в нее в значительно больших количествах, чем в условиях температурного комфорта (25-26°С). Усиление кровотока через кожу увеличивает потоотделение и потерю организмом тепла. При понижении температуры внешней среды идет перераспределение кровотока во внутренние органы. При этом сосуды кожи суживаются, кровоток в коже и соответственно испарение уменьшаются. Следовательно, уменьшается и выделение тепла из организма.

ТЕРМОРЕГУЛЯЦИЯ

РЕГУЛЯЦИЯ ОБМЕНА ВЕЩЕСТВ

Обмен веществ и энергии — свойство всех клеток и тканей организма. Следовательно, регуляция обмена веществ подразумевает регуляцию множества функций организма (дыхания, пищеварения, кровообращения, выделения и др.). Значительную роль в регуляции обмена веществ играет нервная система, в частности гипоталамус. Этот отдел головного мозга включает в себя ряд важных центров: голода и насыщения, жажды, терморегуляции. Эти центры реализуют свои функции через вегетативную нервную систему. Кроме того, гипоталамус и расположенный рядом с ним гипофиз координируют работу практически всех желез внутренней секреции.

Эндокринная система оказывает решающее влияние на регуляцию обмена веществ и энергии. Гормоны воздействуют на скорость биохимических превращений непосредственно в клетке. Совокупность их действия на отдельные клетки вызывает изменения в функционировании всего организма. Приведем лишь некоторые примеры влияния гормонов на обмен веществ. Соматотропный гормон гипофиза оказывает выраженное анаболическое действие, ускоряет синтез пластических веществ, следовательно, ускоряет рост. Катехоламины мозгового вещества надпочечников усиливают окислительные процессы, энергообразование. Тироксин и трийодтиронин (гормоны щитовидной железы) стимулируют синтез белка из аминокислот и в то же время активируют разрушение жиров и углеводов.

Приложение 5

Закрепление

Для жизнедеятельности организма постоянно требуется энергия. Она образуется при распаде органических соединений — в основном углеводов и жиров, в меньшей степени — белков. Белки нужны организму человека для обеспечения анаболических процессов. Энергия выделяется при разрушении химических связей между атомами этих молекул. Частично она рассеивается в виде тепла, а частично запасается в виде АТФ (аденозинтрифосфат). Соотношение между рассеянной энергией и запасенной примерно 1:1.

В молекуле АТФ между остатками фосфорной кислоты имеются макроэргические связи, при разрыве которых выделяется большое количество энергии. Разрыв связей при гидролизе молекул АТФ осуществляется последовательно до АДФ (аденозиндифосфата) и АМФ (аденозинмонофосфата). Энергия, запасенная в АТФ, может быть использована клетками организма по мере необходимости. Таким образом, АТФ — универсальный аккумулятор энергии в клетке.

Сущностью процесса образования АТФ является фосфорилирование — присоединение остатка фосфорной кислоты к АДФ. Однако для этого необходима энергия, которая образуется в результате распада сложных органических молекул и тканевого дыхания. В качестве примера можно рассмотреть образование АТФ при распаде одной молекулы глюкозы (С6Н12O6). Полное расщепление глюкозы до углекислого газа и воды в клетке требует прохождения анаэробного (бескислородного) и аэробного (с участием кислорода) процессов ее окисления (рис. 1).

Гликолиз (анаэробное окисление). Происходит в цитоплазме клетки без участия кислорода. В последнее время установлено, что гликолиз может активно протекать с высокой скоростью и в аэробных условиях. При гликолизе происходят последовательно 10 биохимических реакций, каждая из которых катализируется своим ферментом. При достаточном количестве кислорода в клетке конечным продуктом анаэробного окисления является пировиноградная кислота (ПВК). При недостатке кислорода в клетке происходит еще одна, одиннадцатая, реакция гликолиза, в результате которой из ПВК образуется молочная кислота. В процессе 10 реакций гликолиза образуются две молекулы ПВК и две молекулы АТФ.

Рис. 1. Распад и окисление глюкозы в клетке

Дефицит кислорода наблюдается в клетках, например, в случае чрезмерной физической нагрузки. При этом в цитоплазме происходит активация гликолитических процессов и в большом количестве из глюкозы образуется молочная кислота (лактат). Это вещество не может быть использовано клеткой в дальнейшем и удаляется из нее. При значительном накоплении лактата возникают болезненные ощущения, связанные с закислением внутренней среды организма.

Тканевое дыхание. Так называют обмен газов, происходящий в клетках при биологическом окислении питательных веществ. В ходе окислительных процессов клетки выделяют конечный продукт метаболизма — углекислый газ и одновременно поглощают из кровеносных капилляров кислород. При этом атомы водорода, образующиеся при окислении глюкозы, переносятся на ферменты внутренней мембраны митохондрий. Это так называемая дыхательная транспортная цепь. Водород взаимодействует с кислородом, образуя воду. Ток протонов водорода характеризуется значительным выделением энергии, которая расходуется на синтез АТФ из АДФ и остатка фосфорной кислоты. В результате этих реакций при окислении одной молекулы глюкозы образуется 38 молекул АТФ. При этом недостаток кислорода лимитирует окислительные реакции значительно сильнее, чем неадекватное удаление углекислого газа. Энергия, аккумулированная в АТФ, используется организмом для поддержания всех его функций, жизненных процессов:

- синтеза новых органических веществ, свойственных организму (белков, жиров, углеводов, ДНК), образования новых клеточных структур и органелл;

- осуществления основных жизненных процессов в клетке (митоза, транспорта веществ в клетку и др.);

- поддержания температурного гомеостаза организма.

ОБМЕН ЭНЕРГИИ

Основной обмен. Это минимальный уровень энерготрат, который необходим для поддержания жизненных функций организма в условиях полного физического и эмоционального покоя. Таким образом, данный показатель характеризует количество энергии, необходимой только для функционирования внутренних органов (сердца, легких, почек, печени и др.) и поддержания необходимой температуры тела. Измеряется он в утренние часы с помощью специальных приборов — калориметров. Испытуемый должен находиться в лежачем положении. Измерение проводят натощак, при максимальном расслаблении мышц, при этом внешняя температура поддерживается на уровне 22°С. Приборы фиксируют выделяемое организмом тепло. Это так называемый метод прямой калориметрии. Было установлено, что величина основного обмена для взрослого мужчины составляет примерно 4,2 кДж на 1 кг массы тела в час, т.е. 7200 кДж в сутки (для человека массой 72 кг). Величина основного обмена у женщин несколько ниже. Этот показатель уменьшается с возрастом.

На практике чаще используют метод непрямой калориметрии. Определяют объем легочной вентиляции, а затем количество поглощенного кислорода и выделенного углекислого газа. Отношение объема выделенного углекислого газа к объему поглощенного кислорода называют дыхательным коэффициентом. По величине последнего можно судить о характере окислительных процессов в организме.

Рассчитать основной обмен можно по таблицам. В этом случае определяют среднестатистический уровень основного обмена. Для вычисления необходимо знать рост, массу тела, возраст (прил. 2). Затем по формуле Рида вычисляют процент отклонения величины основного обмена от нормы. Для применения формулы необходимо знать артериальное давление и частоту пульса:

О = 0,75(ЧП + 0,75ДП) - 72,

где О — отклонение, %; Чп — частота пульса; Дп — пульсовое давление (разница между величиной систолического и диастолического АД).

Для упрощения расчетов по формуле Рида можно использовать специальную номограмму (рис. 2). Соединив линейкой значения частоты пульса и пульсового давления, в средней колонке находим величину процентного отклонения основного обмена от нормы. Затем, исходя из данных таблицы, проводят перерасчет уровня основного обмена на величину полученного процентного отклонения.

Интенсивность обменных процессов резко возрастает при физической нагрузке. При этом люди, занятые легким физическим трудом, тратят 9200 кДж в сутки, средней степени — 12000-15000 кДж в сутки, а тяжелым — 16000-18000 кДж в сутки. Следовательно, питание человека должно соответствовать энерготратам и полностью компенсировать их.

Рис. 10.2. Номограмма Рида

Отдача тепла во внешнюю среду осуществляется несколькими способами: теплопроведение, конвекция, излучение и испарение. Излучение — способ отдачи тепла в окружающую среду поверхностью тела посредством инфракрасных волн. Глаз человека не может уловить этот вид электромагнитных волн. Однако существуют живые организмы, способные их различать (например, некоторые змеи). При температуре 20°С и относительной влажности воздуха 50% излучение может составить 40-50 % всего отдаваемого тепла. Конвекция — способ отдачи тепла при контакте тела с движущимися потоками воздуха. Теплопроведение — способ отдачи тепла через непосредственное соприкосновение тела человека с другими физическими телами (например, одеждой).

Первые три механизма теплоотдачи становятся неэффективными при выравнивании температуры тела и температуры окружающей среды. В этих условиях основным способом отдачи тепла является испарение пота с поверхности кожи и влаги с поверхности слизистых оболочек. Количество испаряемой воды в условиях тяжелой физической работы и высокой температуры может доходить до 2 л/ч.

Основную роль в теплоотдаче играет кожа. При высоких температурах внешней среды сосуды кожи расширяются, кровь поступает в нее в значительно больших количествах, чем в условиях температурного комфорта (25-26°С). Усиление кровотока через кожу увеличивает потоотделение и потерю организмом тепла. При понижении температуры внешней среды идет перераспределение кровотока во внутренние органы. При этом сосуды кожи суживаются, кровоток в коже и соответственно испарение уменьшаются. Следовательно, уменьшается и выделение тепла из организма.

ТЕРМОРЕГУЛЯЦИЯ

РЕГУЛЯЦИЯ ОБМЕНА ВЕЩЕСТВ

Обмен веществ и энергии — свойство всех клеток и тканей организма. Следовательно, регуляция обмена веществ подразумевает регуляцию множества функций организма (дыхания, пищеварения, кровообращения, выделения и др.). Значительную роль в регуляции обмена веществ играет нервная система, в частности гипоталамус. Этот отдел головного мозга включает в себя ряд важных центров: голода и насыщения, жажды, терморегуляции. Эти центры реализуют свои функции через вегетативную нервную систему. Кроме того, гипоталамус и расположенный рядом с ним гипофиз координируют работу практически всех желез внутренней секреции.

Эндокринная система оказывает решающее влияние на регуляцию обмена веществ и энергии. Гормоны воздействуют на скорость биохимических превращений непосредственно в клетке. Совокупность их действия на отдельные клетки вызывает изменения в функционировании всего организма. Приведем лишь некоторые примеры влияния гормонов на обмен веществ. Соматотропный гормон гипофиза оказывает выраженное анаболическое действие, ускоряет синтез пластических веществ, следовательно, ускоряет рост. Катехоламины мозгового вещества надпочечников усиливают окислительные процессы, энергообразование. Тироксин и трийодтиронин (гормоны щитовидной железы) стимулируют синтез белка из аминокислот и в то же время активируют разрушение жиров и углеводов.

Обмен веществ и превращение энергии – свойства живых организмов

Обмен веществ является комплексом различных химических преобразований, способствующих сохранению и самовоспроизведению биоструктур.

Обмен веществ и превращения энергии

Он заключается в поступлении веществ в организм во время питания и дыхания, метаболизме внутри клетки или обмене веществ, вдобавок, в высвобождении конечных продуктов метаболизма.

Метаболизм неотрывно соединён с процессами преобразований определённых видов энергии в другие. К примеру, в начале процесса фотосинтеза световая энергия скапливается в виде энергии химических связей сложных органических молекул, в процессе же дыхания она освобождается и применяется для синтезирования новых молекул, механические и осмотические работы, рассеянные в виде тепла и т. д.

Поток химических превращений в живых организмах снабжается биологическими катализаторами белковой специфики — ферментами или энзимами. Наряду с остальными катализаторами, энзимы ускоряют течение химических реакций в клетке до нескольких сотен тысяч раз, при этом они не меняют природу или свойства конечных продуктов клетки. Ферменты представляют собой простые или сложные белковые молекулы, которые, помимо части, состоящей из белка, включают небелковый кофактор, по – другому называемый коферментом. Ферментами являются, например: амилаза слюны, которая расщепляет гликаны при длительном жевании и пепсин, который обеспечивает переваривание белков в желудочно-кишечном тракте.

Ферменты различаются с небелковыми катализаторами тем, что имеют высокую специфичность действия, в значительной степени увеличенную скорости реакции, а также возможностью регулирования действия путем смены условий реакции или взаимодействия различных веществ с ними. Кроме того, условия, при которых протекает ферментативный катализ, значительно различаются с теми, при которых происходит неферментативный катализ: оптимальная температура для того, чтобы ферменты могли функционировать в организме человека, составляет 37 ° С, а также необходимо, чтобы давление являлось близким к атмосферному, в то время как кислотность среды может значительно варьироваться. Например, для амилазы необходима щелочная среда, для пепсина же наоборот - кислая.

Механизм действия ферментов заключается в том, чтобы снизить энергию активации веществ (субстратов), которые вступают в реакцию вследствие образования промежуточных фермент-субстратных комплексов.

Механизм действия ферментов

Энергетический и пластический обмен, их взаимосвязь

Метаболизм процессуально слагается из двух частей, происходящих в клетке в одно и то же время: пластического и энергетического обмена.

Пластический метаболизм (анаболизм, ассимиляция) является совокупностью реакций синтеза, сопровождающихся расходом энергии аденозинтрифосфата. Пластический обмен особенно важен тем, что в результате него синтезируются органические вещества, играющие важную роль в жизнедеятельности клетки. Реакциями данного обмена являются, например, процесс фотосинтеза, биологический синтез белковых молекул и репликация молекул ДНК (самодублирование).

Энергетический обмен (катаболизм, диссимиляция) являет собой сочетание реакций разложения сложных веществ на более простые. Результатом данного обмена является накапливание энергии в форме АТФ. Важнейшими процессами энергетического обмена являются дыхание и брожение.

Пластический и энергетический обмены прочно коррелируют между собой, в связи с тем, что синтез органических веществ происходит в процессе пластического обмена, а для этого нужна именно энергия АТФ; в процессе обмена энергии органические вещества разлагаются, и высвобождается АТФ, а затем используется для синтеза.

Получение энергии организмами осуществляется в процессе питания, затем высвобождают ее и переводят в форму, доступную главным образом в процессе дыхания. По способу питания все организмы подразделяются на автотрофные и гетеротрофные. Автотрофы способны к самостоятельному синтезу органических веществ из неорганических, а гетеротрофные организмы поглощают уже готовые органические вещества.

Ассимиляция — биосинтез макромолекул, свойственных клеткам организма. Растения и многие бактерии могут создавать молекулы глюкозы из углекислого газа и воды. На этот процесс расходуется и запасается энергия. Животным необходимы готовые молекулы белков, жиров и углеводов (БЖУ). Это важнейший строительный и энергетический материал для клеток.

Ассимиляция — это совокупность процессов создания структур организма с накоплением энергии.

  • Поступление из внешней среды веществ, необходимых для организма;
  • Превращение питательных веществ в соединения, которые могут использоваться клетками и тканями;
  • Синтез структурных элементов клеток, ферментов и т.д., замена устаревшим новыми;
  • Синтез более сложных соединений из более простых;
  • Отложение запасов.

Диссимиляция — распад веществ, противоположный ассимиляции (биосинтезу). Белки гидролизуются до аминокислот. При распаде жиров выделяются жирные кислоты и глицерин. Сложные углеводы разлагаются на простые сахара.

Ассимиляция и диссимиляция происходят согласованно. Распад и окисление веществ с выделением энергии возможны лишь тогда, когда есть субстрат — макромолекулы. Они разлагаются на мономеры, которые участвуют в биосинтезе. Выделяющаяся при диссимиляции энергия затрачивается на образование свойственных организму веществ.

Стадии энергетического обмена

Несмотря на сложность реакций обмена энергии, он разделяется на три фазы:

  1. подготовительная,
  2. анаэробная (без кислорода),
  3. аэробная (кислород).

Стадии энергетического обмена

На подготовительном этапе происходит разложение молекул гликанов, липидов, белков, нуклеиновых кислот на более простые, к примеру, на глюкозу, глицерин и жирные кислоты, аминокислоты, нуклеотиды. Эта фаза может осуществляться непосредственно в клетках или в кишечнике, откуда эти вещества переносятся кровотоком.

В анаэробной фазе энергетического катаболизма в дальнейшем происходит расщепление мономеров органических соединений до более простых промежуточных соединений, к примеру, пировиноградной кислоты или пирувата. Он не нуждается в присутствии кислорода, и для организмов, живущих в болотном иле, это единственный способ получить энергию. Анаэробная фаза энергетического обмена проходит в цитоплазме.

Некоторые вещества подвергаются бескислородному расщеплению, при этом глюкоза, чаще всего, остается основным субстратом реакций. Процесс его свободного от кислорода распада принято называть гликолизом. Вследствие гликолиза, молекула глюкозы теряет четыре атома водорода, то есть она окисляется, и образуются две молекулы пировиноградной кислоты, две молекулы АТФ и две молекулы переносчика водорода, восстановленного НАДH + H + :

Образование АТФ из АДФ осуществляется за счет прямого переноса фосфат-аниона из предварительно фосфорилированного сахара и называется субстратным фосфорилированием.

Аэробная фаза энергетического катаболизма может происходить только в присутствии кислорода, тогда как промежуточные продукты, образующиеся при бескислородном разложении, окисляются до конечных продуктов (углекислого газа и воды), и большая часть энергии, хранящейся в химических связях органических соединений, высвобождается. В молекулу АТФ входит 36 макроэргических связей. Эта стадия имеет такое название, как тканевое дыхание. Когда кислород отсутствует, происходит преобразование промежуточных продуктов обмена веществ в определённые органические вещества, данный процесс принято называть ферментацией или брожением.

Брожение и дыхание

Брожение и дыхание это две различные формы диссимиляции — разложения веществ в организме для получения энергии.

Брожение

Примеры процессов брожения известны из повседневной жизни, производственной деятельности.

  1. Спиртовое брожение заключается в метаболическом превращении углеводов микроорганизмами, преимущественно дрожжами. В результате образуется этиловый спирт, АТФ и вода, выделяется углекислый газ. Энергию микроорганизмы используют для жизнедеятельности, деления клеток. Спиртовое брожение используется в производстве алкогольных напитков. Пекарские дрожжи в хлебопечении тоже перерабатывают углеводы на этанол и углекислый газ, разрыхляющий тесто.
  2. Молочнокислое брожение завершается образованием молекул молочной кислоты, АТФ, водорода и воды. Так скисает молоко, получается пахта, йогурт, сметана, творог. (Рисунок 1). Этот же тип брожения происходит при квашении капусты. Молочнокислые бактерии уменьшают рН субстрата, создают кислую среду. Они не нуждаются в кислороде, но выживают и в кислородной среде.
  3. Уксуснокислое брожение приводит к изменениям сока, вина. Сначала, в результате спиртового брожения, вырабатывается этанол. Затем, уксуснокислые бактерии перерабатывают спирт на органические кислоты, в основном яблочную, лимонную, молочную. Так получают натуральный уксус из плодово-ягодного сырья.

Во всех случаях брожения микроорганизмы изменяют углеводы и производят макроэнергетическое вещество — АТФ. Для этого процесса не требуется кислород, что является важнейшим отличием от дыхания. Общий признак — химическая энергия связей в молекуле глюкозы преобразуется в энергию в форме АТФ, которая используется для жизненных процессов.

Брожение — древнейший и не самый совершенный способ выработки энергии. Из одной молекулы глюкозы образуется 2 молекулы АТФ. Кислородный процесс более эффективен в плане получения энергии.

Молекулы О2 попадают в организм насекомых через трахеи. Для рыб характерно жаберное дыхание, для млекопитающих — легочное. Переносят кислород к органам и транспортируют диоксид углерода красные кровяные клетки, содержащие гемоглобин.

При отсутствии кислорода начинает происходить ферментация. Ферментация является эволюционно более ранним способом генерирования энергии, чем дыхание, но она менее энергетически выгодна, потому что ферментация производит органическое вещество, которое все еще богато энергией. Различают несколько основных видов брожения: уксусно – кислое, спиртовое, маслянокислое, молочнокислое, метановое и др.

Стало быть, в скелетных мышцах в отсутствие кислорода во время ферментации пировиноградная кислота восстанавливается до молочной кислоты, тогда как ранее образованные восстановительные эквиваленты расходуются, и остаются только две молекулы АТФ:

При ферментации с дрожжами пировиноградная кислота в присутствии кислорода преобразуется в этиловый спирт и окись углерода (IV):

Во время ферментации с использованием микроорганизмов пируват также может образовывать уксусную, масляную, муравьиную кислоты и так далее.

Энергия АТФ, которая образуется вследствие энергетического обмена, используется клеткой на различные виды работ:

  • Химическая работа включает в себя биосинтез белков, липидов, углеводов, нуклеиновых кислот и других важных соединений.
  • Осмотическая работа включает процессы поглощения и удаления веществ из клетки, находящиеся во внеклеточном пространстве в более высоких концентрациях, чем в самой клетке.
  • Электрическая работа неразрывно связана с осмотической, ведь именно из – за перемещения заряженных частиц через мембраны формируется заряд мембраны и приобретаются свойства возбудимости и проводимости.
  • Механическая работа связана с передвижением веществ и структур во внутриклеточном пространстве и непосредственно клетки в целом.
  • К регуляторной работе относят все процессы, которые направлены на координировании процессуальных действий в клетке.

Дыхание

Кислородное дыхание производится в митохондриях, где пировиноградная кислота вначале теряет один атом углерода, что сопровождается синтезом одного восстанавливающего эквивалента молекул НАДН + Н + и ацетилкофермента A (ацетил-КоА):

С3Н4О3 + НАД + Н ~ КоАСН3СО ~ КоА + НАДН + Н + + СО2.

Ацетил-КоА в митохондриальном матриксе участвует в цепочке химических превращений, которые в совокупности называются циклом Кребса (цикл трикарбоновых кислот, цикл лимонной кислоты). Во время этих превращений образуются две молекулы АТФ, ацетил-КоА полностью окисляется до диоксида углерода, а его ионы водорода и электроны присоединяются к водородным векторам НАДН + Н + и НАДH2. Носители переносят протоны и электроны водорода во внутренние митохондриальные мембраны, которые образуют гребни. При помощи белков-носителей протоны водорода вводятся в межмембранное пространство, а электроны переносятся через, так называемую, дыхательную цепь энзимов, которые расположены во внутренней митохондриальной мембране, и разряжаются в атомы кислорода:

O2 + 2 e−O 2− .

Важно то, что в дыхательной цепи имеются белки, содержащие железо и серу.

Протоны водорода переносятся из межмембранного пространства в митохондриальный матрикс благодаря специальным ферментам, АТФ-синтетаз, а энергия, выделенная в результате этого процесса, используется для синтеза 34 молекул АТФ из каждой молекулы глюкозы. Этот процесс называется окислительным фосфорилированием. В митохондриальной матрице протоны водорода, прореагировавшие с радикалами кислорода с образованием воды:

4H + + O 2−2H2O.

Набор кислородных дыхательных реакций можно выразить таким уравнением:

Общее уравнение дыхания выглядит следующим образом:

Читайте также: