Расчет длинных трубопроводов кратко

Обновлено: 05.07.2024

Сопротивление трубы, которое зависит от диаметра и коэффициента гидравлического трения. Гидравлический расчет сложных трубопроводов. Графоаналитический метод расчета трубопроводов. Характеристика трубопровода и зависимость потерь напора от расхода.

Рубрика Производство и технологии
Вид лекция
Язык русский
Дата добавления 11.12.2013
Размер файла 9,6 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Отличием длинных трубопроводов от коротких является незначительность потерь напора на местное сопротивление по сравнению с потерями по длине.

hl = лlU2/d2g = лl16Q2/р2d52g = S0lQ2

S0 - удельное сопротивление трубы, которое зависит от диаметра и коэффициента гидравлического трения л.

На практике пользуются таблицами Шевелева, в которых представлена зависимость потерь напора от расхода, диаметра, материала трубы, скорости. Эти таблицы составлены для области шероховатого трения при скорости U? 1. 2 м/с. При меньших скоростях вводится поправочный коэффициент.

Гидравлический расчет сложных трубопроводов.

При гидравлическом расчете сложных трубопроводов решаются те же 3 задачи, что и при расчете простых трубопроводов. Особенность заключается в расчете потерь напора на трение.

Рассмотрим последовательное соединенные трубопроводы.

1) Последовательно соединенным называется трубопровод, состоящий из труб разного диаметра соединенных в одну нитку.

Трубопровод разбивают на участки с одинаковым диаметром, на каждом из которых определяют потери; а общую сумму потерь между начальным и конечным сечением определяют как сумму потерь.

hн-к = h1 + h2 + h3

Расход является постоянным. Q = const.

2) Параллельно соединенный трубопровод - трубопровод, имеющий две общие точки.

Графоаналитический метод расчета трубопроводов.

Графоаналитический метод расчета трубопроводов основан на построении характеристик трубопровода и кривых потребного напора.

Характеристикой трубопровода называется зависимость потерь напора от расхода.

Гидравлический расчёт при разработке проекта трубопровода направлен на определение диаметра трубы и падения напора потока носителя. Данный вид расчёта проводится с учетом характеристик конструкционного материала, используемого при изготовлении магистрали, вида и количества элементов, составляющих систему трубопроводов(прямые участки, соединения, переходы, отводы и т. д.), производительности,физических и химических свойств рабочей среды.


Многолетний практический опыт эксплуатации систем трубопроводов показал, что трубы, имеющие круглое сечение, обладают определенными преимуществами перед трубопроводами, имеющими поперечное сечение любой другой геометрической формы:

  • минимальное соотношением периметра к площади сечения, т.е. при равной способности, обеспечивать расход носителя, затраты на изолирующие и защитные материалы при изготовлении труб с сечением в виде круга, будут минимальными;
  • круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды сточки зрения гидродинамики, достигается минимальное трение носителя о стенки трубы;
  • форма сечения в виде круга максимально устойчива к воздействию внешних и внутренних напряжений;
  • процесс изготовления труб круглой формы относительно простой и доступный.

Подбор труб по диаметру и материалу проводится на основании заданных конструктивных требований к конкретному технологическому процессу. В настоящее время элементы трубопровода стандартизированы и унифицированы по диаметру. Определяющим параметром при выборе диаметра трубы является допустимое рабочее давление, при котором будет эксплуатироваться данный трубопровод.

Основными параметрами, характеризующими трубопровод являются:

  • условный (номинальный) диаметр – DN;
  • давление номинальное – PN;
  • рабочее допустимое (избыточное) давление;
  • материал трубопровода, линейное расширение, тепловое линейное расширение;
  • физико-химические свойства рабочей среды;
  • комплектация трубопроводной системы (отводы, соединения, элементы компенсации расширения и т.д.);
  • изоляционные материалы трубопровода.


Условный диаметр (проход) трубопровода (DN) – это условная безразмерная величина, характеризующая проходную способность трубы, приблизительно равная ее внутреннему диаметру. Данный параметр учитывается при осуществлении подгонки сопутствующих изделий трубопровода (трубы, отводы, фитинги и др.).

Условный диаметр может иметь значения от 3 до 4000 и обозначается: DN 80.

Условный проход по числовому определению примерно соответствует реальному диаметру определенных отрезков трубопровода. Численно он выбран таким образом, что пропускная способность трубы повышается на 60-100% при переходе от предыдущего условного прохода к последующему.Номинальный диаметр выбирается по значению внутреннего диаметра трубопровода. Это то значение, которое наиболее близко к реальному диаметру непосредственно трубы.

Давление номинальное (PN) – это безразмерная величина, характеризующая максимальное давление рабочего носителя в трубе заданного диаметра, при котором осуществима длительная эксплуатация трубопровода при температуре 20°C.

Значения номинального давления были установлены на основании продолжительной практики и опыта эксплуатации: от 1 до 6300.

Номинальное давление для трубопровода с заданными характеристиками определяется по ближайшему к реально создаваемому в нем давлению. При этом,вся трубопроводная арматура для данной магистрали должна соответствовать тому же давлению. Расчет толщины стенок трубы проводится с учетом значения номинального давления.

Основные положения гидравлического расчета

Рабочий носитель (жидкость, газ, пар), переносимый проектируемым трубопроводом, в силу своих особых физико-химических свойств определяет характер течения среды в данном трубопроводе. Одним из основных показателей характеризующих рабочий носитель, является динамическая вязкость, характеризуемая коэффициентом динамической вязкости – μ.

Инженер-физик Осборн Рейнольдс (Ирландия), занимавшийся изучением течения различных сред, в 1880 году провел серию испытаний, по результату которых было выведено понятие критерия Рейнолдса (Re) – безразмерной величины, описывающей характер потока жидкости в трубе. Расчет данного критерия проводится по формуле:


Критерий Рейнольдса (Re) дает понятие о соотношении сил инерции к силам вязкого трения в потоке жидкости. Значение критерия характеризует изменение соотношения указанных сил, что, в свою очередь, влияет на характер потока носителя в трубопроводе. Принято выделять следующие режимы потока жидкого носителя в трубе в зависимости от значения данного критерия:

  • ламинарный поток (Re 4000) – устойчивый режим, при котором в каждой отдельной точке потока происходит изменение его направления и скорости, что в итоге приводит к выравниванию скорости движения потока по объему трубы.

Критерий Рейнольдса зависит от напора, с которым насос перекачивает жидкость, вязкости носителя при рабочей температуре и геометрических размеров используемой трубы (d, длина). Данный критерий является параметром подобия для течения жидкости,поэтому, используя его, можно осуществлять моделирование реального технологического процесса в уменьшенном масштабе, что удобно при проведении испытаний и экспериментов.

Проводя расчеты и вычисления по уравнениям, часть заданных неизвестных величин можно взять из специальных справочных источников. Профессор, доктор технических наук Ф. А. Шевелев разработал ряд таблиц для проведения точного расчета пропускной способности трубы. Таблицы включают значения параметров, характеризующих как сам трубопровод (размеры, материалы), так и их взаимосвязь с физико-химическими свойствами носителя. Кроме того, в литературе приводится таблица приближенных значений скоростей движения потока жидкости, пара,газа в трубе различного сечения.

Подбор оптимального диаметра трубопровода

Определение оптимального диаметра трубопровода – это сложная производственная задача, решение которой зависит от совокупности различных взаимосвязанных условий (технико-экономические, характеристики рабочей среды и материала трубопровода, технологические параметры и т.д.). Например, повышение скорости перекачиваемого потока приводит к уменьшению диаметра трубы, обеспечивающей заданный условиями процесса расход носителя, что влечет за собой снижение затрат на материалы, удешевлению монтажа и ремонта магистрали и т.д. С другой стороны, повышение скорости потока приводит к потере напора, что требует дополнительных энергетических и финансовых затрат на перекачку заданного объема носителя.

Значение оптимального диаметра трубопровода рассчитывается по преобразованному уравнению неразрывности потока с учетом заданного расхода носителя:


При гидравлическом расчете расход перекачиваемой жидкости чаще всего задан условиями задачи. Значение скорости потока перекачиваемого носителя определяется, исходя из свойств заданной среды и соответствующих справочных данных (см. таблицу).


Преобразованное уравнение неразрывности потока для расчета рабочего диаметра трубы имеет вид:


Расчет падения напора и гидравлического сопротивления

Полные потери напора жидкости включают в себя потери на преодоление потоком всех препятствий: наличие насосов, дюкеров, вентилей, колен, отводов, перепадов уровня при течении потока по трубопроводу, расположенному под углом и т.д. Учитываются потери на местные сопротивления, обусловленные свойствами используемых материалов.

Другим важным фактором, влияющим на потери напора, является трение движущегося потока о стенки трубопровода, которое характеризуется коэффициентом гидравлического сопротивления.

Значение коэффициента гидравлического сопротивления λзависит от режима движения потока и шероховатости материала стенок трубопровода. Под шероховатостью понимают дефекты и неровности внутренней поверхности трубы. Она может быть абсолютной и относительной. Шероховатость различна по форме и неравномерна по площади поверхности трубы. Поэтому в расчетах используется понятие усредненной шероховатости с поправочным коэффициентом (k1). Данная характеристика для конкретного трубопровода зависит от материала, продолжительности его эксплуатации, наличия различных коррозионных дефектов и других причин. Рассмотренные выше величины являются справочными.

Количественная связь между коэффициентом трения, числом Рейнольдса и шероховатостью определяется диаграммой Муди.

Для вычисления коэффициента трения турбулентного движения потока также используется уравнение Коулбрука-Уайта, с использованием которого возможно наглядное построение графических зависимостей, по которым определяется коэффициент трения:


В расчётах используются и другие уравнения приблизительного расчета потерь напора на трение. Одним из наиболее удобных и часто используемых в этом случае считается формула Дарси-Вейсбаха. Потери напора на трение рассматриваются как функция скорости жидкости от сопротивления трубы движению жидкости, выражаемой через значение шероховатости поверхности стенок трубы:


Потери давления по причине трения для воды рассчитывают по формуле Хазена — Вильямса:


Расчет потерь давления

Рабочее давление в трубопроводе – это на большее избыточное давление, при котором обеспечивается заданный режим технологического процесса. Минимальное и максимальное значения давления, а также физико-химические свойства рабочей среды, являются определяющими параметрами при расчёте расстояния между насосами, перекачивающими носитель, и производственной мощности.

Расчет потерь на падение давления в трубопроводе осуществляют по уравнению:


Примеры задач гидравлического расчета трубопровода с решениями

Задача 1

В аппарат с давлением 2,2 бар по горизонтальному трубопроводу с эффективным диаметром 24 мм из открытого хранилища насосом перекачивается вода. Расстояние до аппарата составляет 32 м. Расход жидкости задан – 80 м 3 /час. Суммарный напор составляет 20 м. Принятый коэффициент трения равен 0,028.

Рассчитайте потери напора жидкости на местные сопротивления в данном трубопроводе.

Исходные данные:

Расход Q = 80 м 3 /час = 80·1/3600 = 0,022 м 3 /с;

эффективный диаметр d = 24 мм;

длина трубы l = 32 м;

коэффициент трения λ = 0,028;

давление в аппарате Р = 2,2 бар = 2,2·10 5 Па;

общий напор Н = 20 м.

Решение задачи:

Скорость потока движения воды в трубопроводе рассчитывается по видоизмененному уравнению:

w=(4·Q) / (π·d 2 ) = ((4·0,022) / (3,14·[0,024] 2 )) = 48,66 м/с

Потери напора жидкости в трубопроводе на трение определяются по уравнению:

HТ = (λ·l) / (d·[w 2 /(2·g)]) = (0,028·32) / (0,024·[48,66] 2 ) / (2·9,81) = 0,31 м

Общие потери напора носителя рассчитываются по уравнению и составляют:

Потери напора на местные сопротивления определяется как разность:

Ответ: потери напора воды на местные сопротивления составляют 7,45 м.

Задача 2

По горизонтальному трубопроводу центробежным насосом транспортируется вода. Поток в трубе движется со скоростью 2,0 м/с. Общий напор составляет 8 м.

Найти минимальную длину прямого трубопровода, в центре которого установлен один вентиль. Забор воды осуществляется из открытого хранилища. Из трубы вода самотеком изливается в другую емкость. Рабочий диаметр трубопровода равен 0,1 м. Относительная шероховатость принимается равной 4·10 -5 .

Исходные данные:

Скорость потока жидкости W = 2,0 м/с;

диаметр трубы d = 100 мм;

общий напор Н = 8 м;

относительная шероховатость 4·10 -5 .

Решение задачи:

Согласно справочным данным в трубе диаметром 0,1 м коэффициенты местных сопротивлений для вентиля и выхода из трубы составляют соответственно 4,1 и 1.

Значение скоростного напора определяется по соотношению:

w 2 /(2·g) = 2,0 2 /(2·9,81) = 0,204 м

Потери напора воды на местные сопротивления составят:

Суммарные потери напора носителя на сопротивление трению и местные сопротивления рассчитываются по уравнению общего напора для насоса (геометрическая высота Hг по условиям задачи равна 0):

Полученное значение потери напора носителя на трение составят:

Рассчитаем значение числа Рейнольдса для заданных условий течения потока (динамическая вязкость воды принимается равной 1·10 -3 Па·с, плотность воды – 1000 кг/м 3 ):

Re = (w·d·ρ)/μ = (2,0·0,1·1000)/(1·10 -3 ) = 200000

Согласно рассчитанному значению Re, причем 2320 0,25 = 0,316/200000 0,25 = 0,015

Преобразуем уравнение и найдем требуемую длину трубопровода из расчетной формулы потерь напора на трение:

l = (Hоб·d) / (λ·[w 2 /(2g)]) = (6,96·0,1) / (0,016·0,204) = 213,235 м

Ответ:требуемая длина трубопровода составит 213,235 м.

Задача 3

В производстве транспортируют воду при рабочей температуре 40°С с производственным расходом Q = 18 м 3 /час. Длина прямого трубопровода l = 26 м, материал - сталь. Абсолютная шероховатость (ε) принимается для стали по справочным источникам и составляет 50 мкм. Какой будет диаметр стальной трубы, если перепад давления на данном участке не превысит Δp = 0,01 мПа (ΔH = 1,2 м по воде)? Коэффициент трения принимается равным 0,026.

Исходные данные:

Расход Q = 18 м 3 /час = 0,005 м 3 /с;

длина трубопровода l=26 м;

для воды ρ = 1000 кг/м 3 , μ = 653,3·10 -6 Па·с (при Т = 40°С);

шероховатость стальной трубыε = 50 мкм;

коэффициент трения λ = 0,026;

Решение задачи:

Используя форму уравнения неразрывности W=Q/F и уравнение площади потока F=(π·d²)/4 преобразуем выражение Дарси – Вейсбаха:

∆H = λ·l/d·W²/(2·g) = λ·l/d·Q²/(2·g·F²) = λ·[(l·Q²)/(2·d·g·[(π·d²)/4]²)] = =(8·l·Q²)/(g·π²)·λ/d 5 = (8·26·0.005²)/(9,81·3,14²)· λ/d 5 = 5,376·10 -5 ·λ/d 5

d 5 = (5,376·10 -5 ·λ)/∆H = (5,376·10 -5 ·0,026)/1,2 = 1,16·10 -6

d = 5 √1,16·10 -6 = 0,065 м.

Ответ: оптимальный диаметр трубопровода составляет 0,065 м.

Задача 4

Проектируются два трубопровода для транспортировки невязкой жидкости с предполагаемой производительностью Q1 = 18 м 3 /час и Q2 = 34 м 3 /час. Трубы для обоих трубопроводов должны быть одного диаметра.

Определите эффективный диаметр труб d, подходящих под условия данной задачи.

Исходные данные:

Решение задачи:

Определим возможный интервал оптимальных диаметров для проектируемых трубопроводов, воспользовавшись преобразованным видом уравнения расхода:

Значения оптимальной скорости потока найдем из справочных табличных данных. Для невязкой жидкости скорости потока составят 1,5 – 3,0 м/с.

Для первого трубопровода с расходом Q1 = 18 м 3 /час возможные диаметры составят:

d1min = √(4·18)/(3600·3,14·1,5) = 0,065 м

d1max = √(4·18)/(3600·3,14·3.0) = 0,046 м

Для трубопровода с расходом 18 м 3 /час подходят трубы с диаметром поперечного сечения от 0,046 до 0,065 м.

Аналогично определим возможные значения оптимального диаметра для второго трубопровода с расходом Q2 = 34 м 3 /час:

d2min = √(4·34)/(3600·3,14·1,5) = 0,090 м

d2max = √(4·34)/(3600·3,14·3) = 0,063 м

Для трубопровода с расходом 34 м 3 /час возможные оптимальные диаметром могут быть от 0,063 до 0,090 м.

Пересечение двух диапазонов оптимальных диаметров находится в интервале от 0,063 м до 0,065 м.

Ответ: для двух трубопроводов подходят трубы диаметром 0,063–0,065 м.

Задача 5

В трубопроводе диаметром 0,15 м при температуре Т = 40°C движется поток воды производительностью 100 м 3 /час. Определите режим течения потока воды в трубе.

диаметр трубы d = 0,25 м;

расход Q = 100 м 3 /час;

μ = 653,3·10 -6 Па·с (по таблице при Т = 40°С);

ρ = 992,2 кг/м 3 (по таблице при Т = 40°С).

Решение задачи:

Режим течения потока носителя определяется по значению числа Рейнольдса (Re). Для расчета Re определим скорость движения потока жидкости в трубе (W), используя уравнение расхода:

W = Q·4/(π·d²) = [100/3600] · [4/(3,14·0,25²)] = 0,57 м/c

Значение числа Рейнольдса определим по формуле:

Re = (ρ·W·d)/μ = (992,2·0,57·0,25) / (653,3·10 -6 ) = 216422

Критическое значение критерия Reкр по справочным данным равно 4000. Полученное значение Re больше указанного критического, что говорит о турбулентном характере течения жидкости при заданных условиях.

При расчете длинных трубопроводов местные потери напора незначительны в сравнении с потерями напора по длине, и ими можно пренебречь.

Длинными трубопроводами являются магистральные водоводы и другие трубопроводы большой протяженности. При их расчетах для получения оптимальных потерь напора по длине среднюю скорость V принимают в пределах 0,7 1,5 м/с. Такое допущение приводит к тому, что скоростной напор изменяется в пределах до 0,11 м. Такие значения скоростного напора позволяют исключить его из полного напора Н, и он будет равен

где z - геометрическая высота; - гидравлические потери в водоводе; - геометрическая высота наивысшего расположения водоразбора.

В длинных водоводах гидравлические потери определяются потерями по длине, поэтому принимается .

При расчете водоводов вводится полный свободный напор

где - свободный напор излива, зависящий от этажности здания или сооружения, куда подается вода; обычно рекомендуется принимать не менее 10 м.

Потери напора по длине трубопровода вычисляются, как правило, по водопроводной формуле

где - удельное сопротивление.

При использовании формулы Шези

В табл. 5.3 приведены значения А для стальных труб при эквивалентной шероховатости мм и для чугунных труб при мм. Коэффициент гидравлического трения определялся по формуле для квадратичной области сопротивления.

Для вычисления удельного сопротивления в неквадратичной области сопротивления при определении вводится поправка . Удельное сопротивление с учетом поправки на неквадратичность сопротивления

где А - удельное сопротивление трубопровода для квадратичной зоны сопротивления (табл. 5.3); - поправка на неквадратичность сопротивления.

Значения поправки на неквадратичность для воды в зависимости от средней скорости потока в трубе при и 1 мм приведены в табл. 5.4.

При определении удельного сопротивления и . Коэффициент Шези .

Гидравлический радиус ( - площадь сечения трубы; - периметр живого сечения). .

В табл. 4.1 гл. 4 приведены значения коэффициента шероховатости и эквивалентной шероховатости для различных труб.

Значения модуля расхода К и удельного расхода А для различных труб приведены в литературе [4, 5, 6].

Таблица 5.3 - Значения А и предельных расходов Q, л/с

Диаметр, мм Стальные трубы Чугунные трубы
Пределы изменения Q, л/с А, с 2 /л 6 Пределы изменения Q, л/с А, с 2 /л 6
верхний нижний верхний нижний
9,3 13,4 6,6 10,6
13,4 19,0 10,6 16,8
19,0 25,0 16,8 28,3
25,0 33,4 - - -
33,4 53,0 28,3 51,2
53,0 82,0 51,2 82,2
82,0 82,2
ИЗО
- - - -
- - - -
- - - -

Таблица 5.4 - Значения поправки

Скорость, м/с Скорость, м/с
мм мм мм мм
0,1 1,67 1,14 1,0 1,14 1,005
0,2 1,45 1,08 1,5 1,1 1,01
0,3 1,35 1,05 2,0 1,08 1,005
0,4 1,28 1,04 3,0 1,05 1,0
0,5 1,24 1,03 4,0 1,04 1,0

Следует обратить внимание на то, что при заданном расходе и длине водовода потери напора зависят от диаметра трубы и при увеличении диаметра потери напора уменьшаются, и наоборот. Для выбора наивыгоднейшего диаметра рассматривают функции двух экономических факторов, которые учитывают:

• эксплуатационные затраты на создание потребного напора ;

• капитальные затраты на строительство и стоимость водовода .

Если первый вид затрат уменьшается с увеличением диаметра, то второй увеличивается. В результате учета этих факторов ( и ) определяется оптимальное значение экономически наивыгоднейшего диаметра [1, 4]. Значения экономических диаметров при пропуске через них различных расходов приведены в табл. 5.3.

♦ Пример 5.4

Найти потери напора по длине трубопровода, состоящего из последовательно соединенных труб. Первая - стальная труба длиной м и диаметром мм, вторая - чугунная м, мм. Расход воды в трубопроводе м/с.

Потери напора определяем, как для длинных трубопроводов, используя водопроводную формулу .




Удельные сопротивления А находим по табл. 5.3: для стальной трубы мм с 2 /л 6 ; для чугунной трубы мм, с 2 /л 6 .

Потери напора по длине последовательно соединенных труб

При расчете длинных трубопроводов местные потери напора незначительны в сравнении с потерями напора по длине, и ими можно пренебречь.

Длинными трубопроводами являются магистральные водоводы и другие трубопроводы большой протяженности. При их расчетах для получения оптимальных потерь напора по длине среднюю скорость V принимают в пределах 0,7 1,5 м/с. Такое допущение приводит к тому, что скоростной напор изменяется в пределах до 0,11 м. Такие значения скоростного напора позволяют исключить его из полного напора Н, и он будет равен

где z - геометрическая высота; - гидравлические потери в водоводе; - геометрическая высота наивысшего расположения водоразбора.

В длинных водоводах гидравлические потери определяются потерями по длине, поэтому принимается .

При расчете водоводов вводится полный свободный напор

где - свободный напор излива, зависящий от этажности здания или сооружения, куда подается вода; обычно рекомендуется принимать не менее 10 м.

Потери напора по длине трубопровода вычисляются, как правило, по водопроводной формуле

где - удельное сопротивление.

При использовании формулы Шези

В табл. 5.3 приведены значения А для стальных труб при эквивалентной шероховатости мм и для чугунных труб при мм. Коэффициент гидравлического трения определялся по формуле для квадратичной области сопротивления.

Для вычисления удельного сопротивления в неквадратичной области сопротивления при определении вводится поправка . Удельное сопротивление с учетом поправки на неквадратичность сопротивления

где А - удельное сопротивление трубопровода для квадратичной зоны сопротивления (табл. 5.3); - поправка на неквадратичность сопротивления.

Значения поправки на неквадратичность для воды в зависимости от средней скорости потока в трубе при и 1 мм приведены в табл. 5.4.

При определении удельного сопротивления и . Коэффициент Шези .

Гидравлический радиус ( - площадь сечения трубы; - периметр живого сечения). .

В табл. 4.1 гл. 4 приведены значения коэффициента шероховатости и эквивалентной шероховатости для различных труб.

Значения модуля расхода К и удельного расхода А для различных труб приведены в литературе [4, 5, 6].

Таблица 5.3 - Значения А и предельных расходов Q, л/с

Диаметр, мм Стальные трубы Чугунные трубы
Пределы изменения Q, л/с А, с 2 /л 6 Пределы изменения Q, л/с А, с 2 /л 6
верхний нижний верхний нижний
9,3 13,4 6,6 10,6
13,4 19,0 10,6 16,8
19,0 25,0 16,8 28,3
25,0 33,4 - - -
33,4 53,0 28,3 51,2
53,0 82,0 51,2 82,2
82,0 82,2
ИЗО
- - - -
- - - -
- - - -

Таблица 5.4 - Значения поправки

Скорость, м/с Скорость, м/с
мм мм мм мм
0,1 1,67 1,14 1,0 1,14 1,005
0,2 1,45 1,08 1,5 1,1 1,01
0,3 1,35 1,05 2,0 1,08 1,005
0,4 1,28 1,04 3,0 1,05 1,0
0,5 1,24 1,03 4,0 1,04 1,0

Следует обратить внимание на то, что при заданном расходе и длине водовода потери напора зависят от диаметра трубы и при увеличении диаметра потери напора уменьшаются, и наоборот. Для выбора наивыгоднейшего диаметра рассматривают функции двух экономических факторов, которые учитывают:

• эксплуатационные затраты на создание потребного напора ;

• капитальные затраты на строительство и стоимость водовода .

Если первый вид затрат уменьшается с увеличением диаметра, то второй увеличивается. В результате учета этих факторов ( и ) определяется оптимальное значение экономически наивыгоднейшего диаметра [1, 4]. Значения экономических диаметров при пропуске через них различных расходов приведены в табл. 5.3.

♦ Пример 5.4

Найти потери напора по длине трубопровода, состоящего из последовательно соединенных труб. Первая - стальная труба длиной м и диаметром мм, вторая - чугунная м, мм. Расход воды в трубопроводе м/с.

Потери напора определяем, как для длинных трубопроводов, используя водопроводную формулу .

Удельные сопротивления А находим по табл. 5.3: для стальной трубы мм с 2 /л 6 ; для чугунной трубы мм, с 2 /л 6 .

Гидравлический расчет простых длинных трубопроводов
Гидравлический расчет простых длинных трубопроводов
Гидравлический расчет простых длинных трубопроводов
Гидравлический расчет простых длинных трубопроводов
Это изображение имеет пустой атрибут alt; его имя файла - image-10-1.jpg

Гидравлический расчет простых длинных трубопроводов

Гидравлический расчет простых длинных трубопроводов. Как упоминалось выше, при расчете длинного трубопровода учитывается только потеря напора по длине, а локальная потеря напора игнорируется. Длинные трубопроводы делятся на простые и сложные. Простой длинный трубопровод-это трубопровод одинакового диаметра H без разветвления, с постоянным потоком φ по длине I. 8.3, от водонапорной башни точки A, точка B представляет собой простую длинную схему трубопровода для подачи воды потребителям. Где Na-руководитель точки A и HB-глава пункт Б.

Простой гидравлический расчет длинного трубопровода основан на использовании зависимостей(5.78): Обычно, учитывая или когда одна из требуемых величин является расходом ( $ ), формула (5.78) Н −7 techg = зд ’ Таблица 8.1.消耗 消耗特性 удельного сопротивления 5кв Н ККВ Где, 5 ″ = ^удельное сопротивление Труба, согласно диаметру c1 и коэффициенту гидравлического трения X Как показано в§. 5.7, коэффициент гидравлического трения X в общем случае зависит от относительной шероховатости D / R и числа Рейнольдса Ke.

Следовательно, весь напор расходуется на преодоление гидравлических сопротивлений по всей длине трубопровода. Т Людмила Фирмаль

  • Удельное сопротивление 5-дюймовой трубы зависит от тех же параметров. Значение 50 труб из различных материалов можно найти в библиографии[261.Обратите внимание, что пропускная способность трубы уменьшается во время работы. Трубы корродируют, в них появляются различные отложения, повышается коэффициент давления воды, что закономерно приводит к увеличению сопротивления на 50%. Примеры вкладок. В области сопротивления 8,1, 2-го порядка удельное сопротивление чугунной трубы, работавшей со скоростью V ^ 1,2 м /с, дает 5°, С2 / м ® , а разрядные характеристики K, м3/с.

Очень часто гидравлический расчет длинного трубопровода осуществляется по следующему уравнению движения: (> = (8.8) Где 1Р-перепад давления (пьезометрическая линия) по длине трубопровода/. Обычно простой перепад давления в трубопроводе= = —вв расходуется на преодоление потерь по длине, то есть я = = * и、 Ч =% Г1. (8 9).

  • Учитывая вышесказанное, зависимости (8.6)можно представить в виде: Я = 8 и H. (8 10) При сравнении зависимостей (8.9) и (8.10)、 И!_ °> о-К2 ’ 144. Значение разрядной характеристики K в зависимости от материала трубы, условий ее эксплуатации и расчетной площади приведено в справочной литературе. Сопротивление-вторичное или переходное (см., например, таблицу 8.1). Для решения простых задач конвейера используются зависимости (8.9) и (8.10).Это 4 неизвестных Н,©, I и Чаще всего встречаются следующие расчетные случаи: Необходимо определить известные давления NA и HB, длину I, диаметр d \расход (3; Известны HB, I, th, 0.

Надо определиться дальше. HA, HB, 0 и я известны. Вы должны решить второе. Первый-проверить пропускную способность существующего трубопровода, второй-спроектировать новый трубопровод. Расчеты выполняются в соответствии с зависимостями(8.9) и (8.10). Обычно известны 2 величины (I и 0), и необходимо определить остальные 2 величины (i и Z). Вода может подаваться двумя способами по простому длинному трубопроводу (часто называемому водопроводной трубой). Если вода подается самотеком (рис. 8.4) из резервуара, расположенного на возвышенности, то вода подается потребителю под давлением Япотр (необходимое давление) от давления, создаваемого резервуаром.

Чем больше расход, который необходимо обеспечить в трубопроводе, тем больше требуется потребный напор. Людмила Фирмаль

  • Тогда теряется давление Я = Яр Япотр. Чтобы определить диаметр d, обеспечивающий путь потока O, используйте зависимость (8.9). 1(2& О-Я. Используя найденное значение K, установите необходимый диаметр d (например, см. таблицу 8.1). Если насос подает воду (рис. 8.5), то потребителю остаются неизвестными 2 объема-давление насоса Janus и Счетчик воды a. In в этом случае давление затрачивается на преодоление потерь по длине Я = YanasЯП0Тр2 Где r-геодезическая высота над уровнем воды в пруду. Если давление I невелико, то необходимо увеличить диаметр трубопровода.

То есть в этом случае стоимость трубопровода будет выше, но стоимость подачи воды будет ниже. Если высота головки I выше, то диаметр трубопровода будет меньше, и трубопровод будет дешевле, но стоимость подачи воды будет increase. In в связи с этим необходимо найти условия, которые дадут наиболее экономически выгодное решение для строительства и водоснабжения трубопроводов. Это решение приводит к определению экономического диаметра трубопровода 145. Йек = 1.13] /г^ ^,(8.11) Upr указывает, что определенный диаметр

Смотрите также:

Возможно эти страницы вам будут полезны:

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

В современной технике применяются трубопроводы для перемещения разнообразных жидкостей, изготавливаемые из различных материалов.

В зависимости от геометрической конфигурации и способов гидравлического расчета различают простые и сложные трубопроводы.

Простым называют трубопровод, состоящий из одной линии труб, не имеющих боковых ответвлений. Он может выполняться из труб одного или различных диаметров, различных длин (рис. 41).

Рисунок 41 – Простые трубопроводы

Сложнымназывают трубопровод, состоящий из основной магистрали и ряда отходящих от нее ответвлений (рис. 42). Сложные трубопроводы подразделяются на следующие виды:

- параллельные, когда к основной магистрали параллельно подключена одна или несколько труб;

- разветвленные или тупиковые, когда жидкость из магистрали подается в боковые ответвления, обратно в магистраль она не возвращается;

- кольцевые, представляющие собой замкнутую сеть (кольцо), питаемую от магистрали.

Рисунок 42 - Сложные трубопроводы

В зависимости от величины местных потерь напора все трубопроводы можно разделить на гидравлически длинные и короткие.

Трубопроводы, в которых основными потерями являются потери на трение hТР, а местными потерями hм и скоростным напором можно пренебречь, называются гидравлически длинными. В этом случае местные потери напора hм не должны превышать 5–10 % от потерь на трение hТР. А трубопроводы, в которых местные потери и скоростной напор соизмеримы с потерями на трение, называются гидравлически короткими.

Расход может быть сосредоточенным или непрерывным. Расход называется сосредоточенным, если точки отбора находятся на значительном расстоянии друг от друга, и непрерывным, если эти точки расположены очень близко одна от другой (рис. 43).

Рисунок 43 – Расход сосредоточенный и непрерывный

Рисунок 44 – Напорный и безнапорный трубопроводы

Различают также трубопроводы напорные и безнапорные (рис. 44). В напорных жидкость находится под избыточным давлением и при полном заполнении всего поперечного сечения. Безнапорные трубопроводы работают неполным сечением и характеризуется наличием свободной поверхности.

Основные формулы при расчете трубопроводов

При инженерном расчете трубопроводов используются следующие основные закономерности и формулы:

-уравнение расхода (неразрывности) ,

-формулы Дарси и Вейсбаха , ,

-формула для определения гидравлического уклона (отношение потерь на трение в трубопроводе к его длине) ,

где: С - коэффициент Шези равный: ,

R - гидравлический радиус,

- площадь живого сечения потока.

При расчете гидравлически длинных трубопроводов широко используется понятие расходной характеристики (модуля расхода), которая представляет собой расход при гидравлическом уклоне, равном единице:

Единица измерения расходной характеристики соответствует единице расхода. Значения модулей расходов К приводятся в справочниках в зависимости от диаметров и материалов труб. Формула Шези может быть записана в виде:

а потери напора в следующем виде:

Особые случаи короткого трубопровода

Расчет сложного трубопровода

К числу элементов сложного трубопровода можно отнести следующие: последовательное соединение труб разного диаметра; параллельное соединение; трубопровод с переменным по пути расходом; кольцевой трубопровод; разомкнутая сеть.

Последовательное соединение

При последовательном соединении трубопроводов различного диаметра исходят из того, что общие потери напора в трубопроводе равны сумме потерь напора на отдельных его участках. Допустим, что диаметры участков di различные, тогда общие потери напора равны сумме потерь на отдельных участках:

Для гидравлически короткого трубопровода потери определяются по формулам Вейсбаха и Дарси-Вейсбаха, а для гидравлически длинного трубопровода потери определяются по формуле:

где К – модуль расхода.

Или для всего трубопровода

Рисунок 52 - Схема последовательного соединения и построения характеристики

Часто используется графо-аналитические методы с построением гидравлических характеристик участков и сети, особенно при переменном расходе в сети.

Характеристикой трубопровода или участка называется графическая зависимость потерь напора (давления) в трубопроводе от расхода жидкости hп=f(Q). Изобразим эту зависимость графически (рис.52).

Для построения характеристики hп=f(Q) необходимо рассчитать 5-7 точек кривой. При расчете последовательно соединенных трубопроводов необходимо помнить, что по всем участкам такого трубопровода протекает одинаковый расход.

Кривая I соответствует гидравлической характеристике первого участка, кривая II – второго участка. Так как общие потери во всем трубопроводе равны сумме потерь напора на двух участках, а расходы на участке 1 и участке 2 одинаковы, то для построения суммарной характеристики сложного трубопровода с последовательным соединением необходимо сложить гидравлические характеристики отдельных участков. При этом суммарную (общую) характеристику такой сети строят сложением ординат кривых I и II, представляющих собой характеристики hп=f(Q) соответственно для 1-го и 2-го участков.

Для этого проведем ряд прямых, параллельных оси ординат, каждая из которых пересечет обе кривые, и сложим ординаты точек пересечений этих прямых с кривыми. Получим ряд точек a,b,c, принадлежащих новой кривой I+II, которая представляет собой искомую суммарную характеристику всего рассматриваемого трубопровода (сети).

Параллельное соединение

Параллельно соединенные трубопроводы имеют общую точку разветвления и общие узлы соединения. При расчете трубопровода с параллельными ветвями исходят из того, что сумма расходов в отдельных ветвях равны полному расходу Q1+Q2+…+Qn=Q и что потери напора во всех ветвях одинаковы h1=h2=…=hn. Докажем это положение.

Рисунок 53 - Схема параллельного соединения и построения характеристики

В точке А магистральный расход делится на n веток , которые объединяются в точке В, образуя далее продолжение магистрали трубопровода. Напоры HA и HB в точках А и В являются общими для каждой из веток, а их разность

одновременно для каждой из веток:

В системе n уравнений и n+1 неизвестных . Для замыкания системы требуется еще одно уравнение:

Порядок решения таков: все расходы выразим через один из них.

после чего получим

Отсюда найдем расход , а затем и остальные расходы.

При расчете трубопровода с параллельным соединением ветвей также удобно применять графо-аналитический способ с построением гидравлической характеристики сети трубопроводов. Эта характеристика получается путем сложения гидравлических характеристик отдельных труб, для чего необходимо провести ряд горизонтальных прямых (т.к. потери =hn), параллельных оси абсцисс, и сложить при постоянных ординатах абсциссы точек их пересечения с характеристиками отдельных участков (т.к. ).

Покажем построение суммарной характеристики такой сети (рис. 53). Сложим ординаты кривых I и II, представляющих собой характеристики hn=f(Q) соответственно для 1-го и 2-го участков. Для этого проведем ряд прямых, параллельных оси ординат, каждая из которых пересечет обе кривые, и сложим ординаты точек пересечений этих прямых с кривыми, получим ряд точек a,b,c, принадлежащих новой кривой I+II, которая представляет собой искомую суммарную характеристику всего рассматриваемого трубопровода (сети).

Таким образом, для построения суммарной характеристики сложного трубопровода необходимо сложить характеристики отдельных участков при параллельном соединении по горизонтали, а при последовательном по вертикали.

Часто сеть трубопроводов имеет как последовательно, так и параллельно соединенные участки.

В этом случае для получения характеристики сети рекомендуется сначала получить суммарную характеристику параллельно соединенных участков, а затем сложить ее с характеристиками последовательно соединенных участков, На рисунке 54 приведен пример такого построения.

Линия 1 – характеристика 1-го участка, линии 2-3 – характеристики 2-го и 3-го участков, соответственно. Линия 4 – суммарная характеристика двух параллельно соединенных участков (2+3), а линия 5 – общая характеристика сети.

Рисунок 54 - Схема сложного соединения и построение характеристики.

ОСНОВЫ РАСЧЕТА ТРУБОПРОВОДНЫХ СИСТЕМ

Классификация трубопроводов

В современной технике применяются трубопроводы для перемещения разнообразных жидкостей, изготавливаемые из различных материалов.

В зависимости от геометрической конфигурации и способов гидравлического расчета различают простые и сложные трубопроводы.

Простым называют трубопровод, состоящий из одной линии труб, не имеющих боковых ответвлений. Он может выполняться из труб одного или различных диаметров, различных длин (рис. 41).

Рисунок 41 – Простые трубопроводы

Сложнымназывают трубопровод, состоящий из основной магистрали и ряда отходящих от нее ответвлений (рис. 42). Сложные трубопроводы подразделяются на следующие виды:

- параллельные, когда к основной магистрали параллельно подключена одна или несколько труб;

- разветвленные или тупиковые, когда жидкость из магистрали подается в боковые ответвления, обратно в магистраль она не возвращается;

- кольцевые, представляющие собой замкнутую сеть (кольцо), питаемую от магистрали.

Рисунок 42 - Сложные трубопроводы

В зависимости от величины местных потерь напора все трубопроводы можно разделить на гидравлически длинные и короткие.

Трубопроводы, в которых основными потерями являются потери на трение hТР, а местными потерями hм и скоростным напором можно пренебречь, называются гидравлически длинными. В этом случае местные потери напора hм не должны превышать 5–10 % от потерь на трение hТР. А трубопроводы, в которых местные потери и скоростной напор соизмеримы с потерями на трение, называются гидравлически короткими.

Расход может быть сосредоточенным или непрерывным. Расход называется сосредоточенным, если точки отбора находятся на значительном расстоянии друг от друга, и непрерывным, если эти точки расположены очень близко одна от другой (рис. 43).

Рисунок 43 – Расход сосредоточенный и непрерывный

Рисунок 44 – Напорный и безнапорный трубопроводы

Различают также трубопроводы напорные и безнапорные (рис. 44). В напорных жидкость находится под избыточным давлением и при полном заполнении всего поперечного сечения. Безнапорные трубопроводы работают неполным сечением и характеризуется наличием свободной поверхности.

Читайте также: