Проводник с током в магнитном поле кратко

Обновлено: 02.07.2024

Подобно тому, как покоящийся электрический заряд действует на другой заряд посредством электрического поля, электрический ток действует на другой ток посредством магнитного поля. Действие магнитного поля на постоянные магниты сводится к действию его на заряды, движущиеся в атомах вещества и создающие микроскопические круговые токи.

Учение об электромагнетизме основано на двух положениях:

  • магнитное поле действует на движущиеся заряды и токи;
  • магнитное поле возникает вокруг токов и движущихся зарядов.

Взаимодействие магнитов

Постоянный магнит (или магнитная стрелка) ориентируется вдоль магнитного меридиана Земли. Тот его конец, который указывает на север, называется северным полюсом (N), а противоположный конец — южным полюсом (S). Приближая два магнита друг к другу, заметим, что одноименные их полюсы отталкиваются, а разноименные — притягиваются ( рис. 1 ).

Если разделить полюса, разрезав постоянный магнит на две части, то мы обнаружим, что каждая из них тоже будет иметь два полюса, т. е. будет постоянным магнитом ( рис. 2 ). Оба полюса — северный и южный, — неотделимые друг от друга, равноправны.

Магнитное поле, создаваемое Землей или постоянными магнитами, изображается, подобно электрическому полю, магнитными силовыми линиями. Картину силовых линий магнитного поля какого-либо магнита можно получить, помещая над ним лист бумаги, на котором насыпаны равномерным слоем железные опилки. Попадая в магнитное поле, опилки намагничиваются — у каждой из них появляется северный и южный полюсы. Противоположные полюсы стремятся сблизиться друг с другом, но этому мешает трение опилок о бумагу. Если постучать по бумаге пальцем, трение уменьшится и опилки притянутся друг к другу, образуя цепочки, изображающие линии магнитного поля.

На рис. 3 показано расположение в поле прямого магнита опилок и маленьких магнитных стрелок, указывающих направление линий магнитного поля. За это направление принято направление северного полюса магнитной стрелки.

В начале XIX в. датский ученый Эрстэд сделал важное открытие, обнаружив действие электрического тока на постоянные магниты. Он поместил длинный провод вблизи магнитной стрелки. При пропускании по проводу тока стрелка поворачивалась, стремясь расположиться перпендикулярно ему ( рис. 4 ). Это можно было объяснить возникновением вокруг проводника магнитного поля.

Магнитные силовые линии поля, созданного прямым проводником с током, представляют собой концентрические окружности, расположенные в перпендикулярной к нему плоскости, с центрами в точке, через которую проходит ток ( рис. 5 ). Направление линий определяется правилом правого винта:

Магнитное поле тока принципиально ничем не отличается от поля, созданного постоянным магнитом. В этом смысле аналогом плоского магнита является длинный соленоид — катушка из провода, длина которой значительно больше ее диаметра. Схема линий созданного им магнитного поля, изображенная на рис. 6 , аналогична таковой для плоского магнита ( рис. 3 ). Кружочками обозначены сечения провода, образующего обмотку соленоида. Токи, текущие по проводу от наблюдателя, обозначены крестиками, а токи противоположного направления — к наблюдателю — обозначены точками. Такие же обозначения приняты и для линий магнитного поля, когда они перпендикулярны плоскости чертежа ( рис. 7 а, б).

Направление тока в обмотке соленоида и направление линий магнитного поля внутри него также связаны правилом правого винта, которое в этом случае формулируется так:

Если смотреть вдоль оси соленоида, то текущий по направлению часовой стрелки ток создает в нем магнитное поле, направление которого совпадает с направлением движения правого винта ( рис. 8 )

Исходя из этого правила, легко сообразить, что у соленоида, изображенного на рис. 6 , северным полюсом служит правый его конец, а южным — левый.

Магнитное поле внутри соленоида является однородным — вектор магнитной индукции имеет там постоянное значение (B = const). В этом отношении соленоид подобен плоскому конденсатору, внутри которого создается однородное электрическое поле.

Сила, действующая в магнитном поле на проводник с током

Опытным путем было установлено, что на проводник с током в магнитном поле действует сила. В однородном поле прямолинейный проводник длиной l, по которому течет ток I, расположенный перпендикулярно вектору поля B, испытывает действие силы: F = I l B.

Направление силы определяется правилом левой руки:

Если четыре вытянутых пальца левой руки расположить по направлению тока в проводнике, а ладонь — перпендикулярно вектору B, то отставленный большой палец укажет направление силы, действующей на проводник ( рис. 9 ).

Уравнение F = IlB позволяет дать количественную характеристику индукции магнитного поля.

Модуль вектора магнитной индукции B численно равен силе, действующей на расположенный перпендикулярно к нему проводник единичной длины, по которому течет ток силой один ампер.

Нажмите, чтобы узнать подробности

Магнитное поле оказывает на рамку с током ориентирующее действие. Следовательно, вращающий момент, испытываемый рамкой, есть результат действия сил на отдельные её элементы.


Сила Ампера – сила, с которой магнитное поле действует на проводник с током.

Величина и направление этой силы определяются законом Ампера.

Закон Ампера: сила , с которой магнитное поле с индукцией действует на элемент тока , равна векторному произведению элемента тока на вектор индукции магнитного поля .



Модуль силы Ампера:

, .


Направление силы Ампера определяется по общим правилам векторного произведения или правилом левой руки.


Правило левой руки: если ладонь левой руки расположить так, чтобы в неё входил вектор , а четыре вытянутых пальца расположить по направлению тока в проводнике, то отогнутый большой палец покажет направление силы, действующей на ток.


Действие магнитного поля на проводник с током (рамку с током) используется в различных технических устройствах (электродвигатели, электроизмерительные приборы, громкоговорители).

Применим закон Ампера для вычисления силы взаимодействия двух параллельных бесконечно длинных прямолинейных токов.







Каждый из проводников создаёт магнитное поле

(, ),

которое действует по закону Ампера на

другой проводник с током.








Силы, с которыми поля В1 и В2 действуют на участки длиной каждого из проводников, равны:

Подставим значения: B1 и B2:

По третьему закону Ньютона: .

Итак, два параллельных тока одинакового направления притягиваются друг к другу с силой

Если токи имеют противоположные направления, то между ними действует сила отталкивания, определяемая формулой (*).

На основании формулы (*) устанавливается единица силы тока в системе СИ: ампер – сила постоянного тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого поперечного сечения, расположенным в вакууме на расстоянии 1 м друг от друга, создаёт между этими проводниками силу взаимодействия, равную 2∙10 -7 Н на каждый метр длины.

Используя определение ампера и формулу (*), можно найти значение магнитной постоянной :

Установим единицу напряжённости магнитного поля:

2. Работа по перемещению проводников с током в магнитном поле.

При движении проводника с током в магнитном поле под действием силы Ампера совершается работа.

Работа при перемещении проводника на будет равна:

– площадь, описываемая проводником при его движении.

– магнитный поток через эту площадь.

Таким образом, работа по перемещению проводника с током в однородном магнитном поле равна произведению силы тока на магнитный поток через площадь, описываемую проводником при его движении:

Работа совершается не за счёт магнитного поля, которое при этом не изменяется, а за счёт источника тока.

При движении произвольного замкнутого контура в магнитном поле работа также будет равна:

где ΔФ – изменение магнитного потока через поверхность, ограниченную контуром.

Контрольные вопросы

1. Как определяются величина и направление силы, с которой магнитное поле действует на проводник с током?

2. Сформулируйте правило левой руки.

3. Запишите выражение для силы взаимодействия двух параллельных бесконечно длинных прямолинейных токов.

4. Дайте определение единицы силы тока в системе СИ.

5. Чему равна работа по перемещению проводника с током в магнитном поле? замкнутого контура с током?

Проводник с током, помещенный в магнитное поле, испытывает действие механической силы "F" со стороны поля, которая стремится двигать проводник под прямым углом к магнитным силовым линиям.

Силу, действующую на проводник с током в магнитном поле, называют силой Ампера.

Действие силы возникает в результате взаимодействия основного магнитного поля с магнитным полем проводника с током. Эта сила зависит от магнитной индукции "B", тока в проводнике "I"и длины той части проводника ℓ, которая находится в магнитном поле:

F=B·I·ℓ, H

Сила "F" будет наибольшей, когда проводник расположен перпендикулярно к магнитным силовым линиям. Если проводник расположен вдоль силовых линий, то поле не оказывает на него механического воздействия.

Направление действия силы определяется по правилу левой руки: если расположить левую руку так, чтобы силовые линии входили в ладонь, четыре пальца указывали направление тока в проводнике, то отогнутый большой палец укажет направление действия силы на проводник.


Рис. 4.9. Правило левой руки

Возникновение механической силы, действующей на проводник с током, находящийся в магнитном поле, поясняет следующий рисунок:


Рис. 4.10. Возникновение механической силы, действующей на проводник с током

Справа от проводника с током основное магнитное поле и поле тока совпадают по направлению и общее магнитное поле усиливается. Слева от проводника основное магнитное поле действует навстречу полю тока и общее магнитное поле ослабляется.

Учитывая боковой распор магнитных силовых линий и их стремление сократить свою длину, появляется механическая сила, выталкивающая проводник влево.

Электромагнитная индукция

В проводнике, который двигаясь в магнитном поле, пересекает магнитные линии, возникает Э.Д.С. Это явление называется магнитной индукцией.


Рис. 4.11. Возникновение ЭДС в движущемся проводнике с током

При движении проводника со скоростью "v" с той же скоростью перемещаются элементарные заряженные частицы.

Т.к. движение провода происходит в магнитном поле, то на каждую заряженную частицу действует электромагнитная сила "F0".

Под действием этих сил свободные электроны перемещаются на один край провода, создавая избыточный отрицательный заряд.

На другом крае провода возникает избыточный положительный заряд. По мере накопления зарядов усиливается напряженность электрического поля этих зарядов и на каждую заряженную частицу кроме силы "F0" , будет действовать сила "F" электрического поля, направленная противоположно силе "F0".

По достижении равновесия этих сил движение зарядов прекратится. Разность потенциалов по краям проводника и есть индуктированная в проводе Э.Д.С.

Если соединить концы этого проводника через нагрузку, то по цепи потечет ток.

Величина индуктированной Э.Д.С., возникающей в проводе, пропорциональна магнитной индукции "B", длине провода "ℓ" и скорости его движения "v".

E=B·ℓ·v, B

Индуктированная Э.Д.С. возникает только в том случае, если проводник пересекает магнитное поле. Если проводник двигается вдоль силовых линий, то E=0.

Направление индуктированной Э.Д.С. определяется правилом правой руки: ладонь правой руки располагают так, чтобы магнитные линии входили в ладонь, отставленный большой палец указывал направление движения проводника, то вытянутые четыре пальца укажут направление индуктированной Э.Д.С.

Явление самоиндукции

Если в проводнике протекает изменяющийся по значению ток, то магнитное поле вокруг него также изменяется

и в проводнике индуктируется Э.Д.С.

Индуктированная Э.Д.С. возникает в том самом проводнике, в котором происходит изменение тока. Это явление называется самоиндукцией.

Эта Э.Д.С. возникает при всяком изменении тока, при замыкании и размыкании цепей, при изменении нагрузки двигателей.

Согласно закону Ленца, Э.Д.С. самоиндукции всегда имеет такое направление, при котором она препятствует изменению вызвавшего ее тока и стремится поддержать его величину на одном и том же уровне.

При замыкании цепи появляется ток и возникает магнитное поле, которое индуктирует в проводе Э.Д.С. самоиндукции, направленную навстречу току и препятствующую его возрастанию.


Рис. 4.12. Возникновение ЭДС самоиндукции

При размыкании цепи, исчезновении магнитного поля, его силовые линии пересекают проводник и возникает Э.Д.С. самоиндукции, которая совпадает по направлению с током, препятствуя его убыванию.

Благодаря тормозному действию Э.Д.С. самоиндукции, ток в электрических цепях при включении нарастает не мгновенно, а достигает своего установившегося значения в течение определенного времени.

При отключении цепи ток не уменьшается мгновенно, а спадает постепенно.

Явление самоиндукции в проводниках характеризуется индуктивностью "L". Индуктивность характеризует именно Э.Д.С. самоиндукции в зависимости от изменения тока.

Единица измерения - Генри.

1 Генри - это индуктивность проводника, в котором возникает Э.Д.С. самоиндукции в 1 В при изменении тока в 1 А в 1 сек.

1 Гн = 1 В · с / А

Особенно проявляет себя Э.Д.С. самоиндукции при размыкании цепей, содержащих катушки с большим числом витков и со стальными сердечниками. При этом может возникнуть Э.Д.С. самоиндукции больше Э.Д.С. источника тока. Поэтому для гашения электрической дуги при размыкании цепей, применяют контакторы с дугогасительным устройством.

На проводник с током, помещенный в магнитное поле, действует сила, величина которой зависит от абсолютной величины тока, длины проводника и величины магнитной индукции. Чему равна величина этой силы и как определить направление силы, действующей на проводник, если известны направления тока и магнитной индукции? Попробуем найти ответы на эти вопросы.

Действие магнитного поля на проводник с током кратко

Магнитное взаимодействие

Французский физик Андре-Мари Ампер в 1820 г. обнаружил, что два проводника, по которым пропущен электрический ток, расположенные параллельно друг другу, притягиваются, если направления токов совпадают, и отталкиваются, если токи направлены в разные стороны. Ампер назвал этот эффект электродинамическим взаимодействием.

Действие магнитного поля на проводник с током кратко

Рис. 1. Опыт Ампера по взаимодействию токов в параллельных проводниках.

Для объяснения этого явления Ампер ввел понятие магнитного поля, которое возникает вокруг любого движущегося электрического заряда. Магнитное поле непрерывно в пространстве и проявляет себя, оказывая силовое воздействие на другие движущиеся электрические заряды.

Предшественники Ампера пытались построить теорию магнитного поля по аналогии с электрическим полем с помощью магнитных зарядов с разными знаками (северным N и южным S). Однако, эксперименты показали, что отдельных магнитных зарядов в природе не существует. Магнитное поле возникает только в результате движения электрических зарядов.

Сила магнитного взаимодействия

Сила, действующая на проводник с током со стороны магнитного поля, была названа в честь первооткрывателя — силой Ампера. Эксперименты показали, что модуль силы Ампера F пропорционален длине проводника L и зависит от пространственного положения проводника в магнитном поле.

Для количественного описания действия магнитного поля на проводник с током была введена величина, названная магнитной индукцией B. Тогда сила Ампера будет равна:

где I — сила тока. Эта формула справедлива при вычислении модуля максимального значения силы Ампера, действующей на прямолинейный проводник в магнитном поле, вектор магнитного поля B направлен под 900 к вектору тока I.

Если проводник расположен под углом α к вектору магнитной индукции B, то вместо формулы (1) следует применять следующую формулу:

Правило левой руки

Для определения направления вектора силы Ампера применяется “правило левой руки”.

Действие магнитного поля на проводник с током кратко

Рис. 2. Правило левой руки для определения направления силы Ампера.

Левая рука располагается так, чтобы пальцы ладони (все кроме большого) указывали направление тока в проводнике. Затем плоскость ладони устанавливается перпендикулярно плоскости, в которой находятся проводник с током и вектор магнитной индукции B. Вектор B должен входить в ладонь. Тогда большой палец левой руки, развернутый под прямым углом, укажет направление силы Ампера.

Единица измерения индукции

Единица индукции в системе СИ определяется как индукция такого магнитного поля, в котором на 1 м проводника при силе тока действует сила Ампера величиной 1 Н. Единица называется тесла (Тл).

Единица индукции названа в честь выдающегося сербского инженера, физика Николы Тесла (1856-1943 г.г.). Тесла изобрел электромеханические генераторы, высокочастотный трансформатор. Исследовал свойства токов высокой частоты, изобрел многофазный электродвигатель и системы передачи электроэнергии с помощью переменного тока. Тесла сформулировал основные принципы радиосвязи, изобрел мачтовую антенну для приемки и передачи радиосигналов.

Действие магнитного поля на проводник с током кратко

Рис. 3. Портрет Никола Тесла.

Что мы узнали?

Итак, мы узнали что на проводник с током, помещенный в магнитное поле, действует сила Ампера. В статье рассказано кратко о действии магнитного поля на проводник с током. Дано определение понятия магнитной индукции. Приведены формулы для вычисления силы Ампера. Для определения направления силы Ампера дано описание “правила левой руки”.

Учитель физики, информатики и вычислительной техники. Победитель конкурса лучших учителей Российской Федерации в рамках Приоритетного Национального Проекта "Образование".

Читайте также: