Проверка исправности радиоэлементов кратко

Обновлено: 02.07.2024

Тестирование радиоэлектронных компонентов (радиодеталей) электрических схем.

Проверка резисторов

При определении состояния работающих резисторов или новых для замены вышедших из строя необходима их проверка. Постоянные резисторы проверяют внешним осмотром на отсутствие механических повреждений, целость корпуса, его покрытия, прочность выводов. По маркировке и размерам

определяют номинальную величину сопротивления, допустимую мощность рассеяния и класс точности, а также соответствие параметров, указанных на корпусе, принципиальной электрической схеме. Омметром измеряют действительную величину сопротивления и определяют отклонение от номинала. Целость выводов проверяют измерением сопротивления резистора при их покачивании.

Переменные резисторы после внешнего осмотра проверяют на плавность изменения сопротивления путем его измерения при вращении оси, на соответствие закона изменения сопротивления резистора (линейное, логарифмическое, обратнологарифмическое) его типу, а также обращают внимание на сопротивление резистора при крайних положениях оси. Если при измерении сопротивления потенциометра при вращении его оси наблюдаются скачки сопротивления, это говорит о его неисправности и о необходимости замены. В работающем устройстве, например усилителе, это может проявляться в скачкообразном изменении громкости звука при его регулировке.

Резистор исправен, если нет механических повреждений, величина его сопротивления находится в допустимых пределах данного класса точности, а контакт ползунка с токопроводящим слоем постоянен и надежен.

Проверка конденсаторов

Простейший способ проверки исправности конденсатора -внешний осмотр, при котором обнаруживаются механические повреждения. Если при внешнем осмотре дефекты не замечены, проводят электрическую проверку. Она включает проверку на короткое замыкание, пробой, целость выводов, а также проверку тока утечки (сопротивление изоляции) и измерение емкости.

Емкость конденсаторов измеряют при помощи измерителя RLC. При отсутствии прибора емкость можно проверить другими способами.

Конденсаторы большой емкости (1 мкФ и выше) на короткое замыкание проверяют омметром на максимальных пределах измерения, измеряя сопротивление между выводами и между выводами и корпусом, если корпус металлический. При этом от конденсатора отпаивают детали, если он в схеме и разряжают его. Прибор подготавливают для измерения больших сопротивлений, общий провод должен быть соединен с положительным выводом конденсатора, а измерительный - с корпусом.

При наличии утечки омметр показывает малое сопротивление - сотни и тысячи ом, — величина которого зависит от емкости и типа конденсатора. При пробое конденсатора его сопротивление будет около нуля. При проверке исправных конденсаторов емкостью меньше 1 мкФ стрелка прибора не отклоняется, потому что ток и время заряда конденсатора незначительны.

При проверке омметром нельзя установить пробой конденсатора, если он происходит при рабочем напряжении. В таком случае можно проверить конденсатор мегаомметром при напряжении прибора, не превышающем рабочее напряжение конденсатора.

Конденсаторы средней емкости (от 500 пФ до 1 мкФ) проверяют с помощью последовательно подключенных к выводам конденсатора наушников и источника тока. Если конденсатор исправен, в момент замыкания цепи в головных телефонах слышен щелчок.

Конденсаторы малой емкости (до 500 пФ) проверяют в цепи тока высокой частоты. Конденсатор включают между антенной и приемником. Если громкость не уменьшится, значит, обрывов выводов нет.

Сопротивление изоляции конденсатора между выводами и каждым выводом и корпусом проверяют ламповым мегаомметром. При этом сопротивление изоляции бумажных конденсаторов должно составлять сотни и тысячи мегом, остальных - десятки и сотни мегом.

Прочность крепления выводов проверяется их покачиванием. Тем же проверкам подвергаются и новые конденсаторы, предназначенные для замены. При этом проверяется соответствие их параметров, указанных на корпусе, электрической схеме.

У конденсаторов переменной емкости проверяют плавность вращения ротора, отсутствие заеданий и люфтов. Конденсаторы переменной емкости проверяют на пробой при плавном повороте ротора. Проверить конденсатор на пробой можно и на специальной испытательной установке, прикладывая между выводами и каждым выводом и корпусом повышенное напряжение, превышающее номинальное в 1,5-3 раза в течение 10-60 с в зависимости от типа конденсатора.

Проверка катушки индуктивности

Проверка исправности катушек индуктивности начинается с внешнего осмотра, в ходе которого необходимо убедиться в исправности каркаса, экрана, выводов; в правильности и надежности соединений всех деталей катушки; в отсутствии видимых обрывов проводов, замыканий, повреждения изоляции и покрытий. Особое внимание следует обращать на места' обугливания изоляции, каркаса, почернение или оплавление заливки.

Электрическая проверка катушек индуктивности включает проверку на обрыв, поиск короткозамкнутых витков и определение износа изоляции обмотки. Проверка на обрыв выполняется омметром. Увеличение сопротивления означает обрыв или плохой контакт одной или нескольких жил литцендрата. Уменьшение сопротивления свидетельствует о межвитковом замыкании.

При коротком замыкании выводов сопротивление равно нулю. Для более точного представления о неисправности элемента необходимо измерить индуктивность. В заключение рекомендуется проверить работоспособность катушки в исправном аппарате, подобном тому, для которого она предназначена.

Проверка трансформаторов и дросселей

По конструкции и технологии изготовления силовые трансформаторы, трансформаторы и дроссели НЧ весьма похожи. Все они состоят из обмоток, выполненных изолированным проводом, и сердечника. Проверку начинают с внешнего осмотра, в ходе которого находят и устраняют все видимые механические дефекты.

Проверка на короткое замыкание между обмотками, между обмотками и корпусом производится с помощью омметра (рис. 1 а,б). Прибор включают между выводами разных обмоток, а также между одним из выводов и корпусом. Так же проверяется и сопротивление изоляции, которое должно быть не менее 100 МОм для герметизированных трансформаторов и не менее десятков мегаом для негерметизированных.

Схемы проверки трансформатора на замыкание между обмоткой и сердечником (а), между обмотками (б), проверка коэффициента трансформации на холостом ходу

Рис. 1. Схемы проверки трансформатора на замыкание между обмоткой и сердечником (а), между обмотками (б), проверка коэффициента трансформации на холостом ходу (в).

Самая сложная проверка на межвитковые замыкания. Существует несколько способов проверки трансформаторов:

  1. Измерение омического сопротивления обмотки и сравнение результатов с паспортными данными. (Способ простой, но не слишком точный, особенно при малой величине омического сопротивления обмоток и небольшом количестве короткозамкнутых витков.)
  2. Проверка коэффициентов трансформации на холостом ходу (рис. 4.6в). Коэффициент трансформации определяется как отношение напряжений, показываемых вольтметрами 2 и 1. При наличии межвитковых замыканий (изображено пунктиром) коэффициент трансформации будет меньше нормы.
  3. Измерение индуктивности обмотки.
  4. Измерение потребляемой мощности на холостом ходу. У силовых трансформаторов одним из признаков короткозамкнутых витков является чрезмерный нагрев обмотки.

Наиболее точные результаты получают, используя приборные способы проверки:

Формы наблюдаемых сигналов

Рис. 2. Формы наблюдаемых сигналов.

Схема проверки трансформатора при использовании параллельного (а) и последовательного (б) резонанса

Рис. 3. Схема проверки трансформатора при использовании параллельного (а) и последовательного (б) резонанса.

Для проверки закоротите обмотку II трансформатора. Колебания в LC-контуре исчезнут. Из этого следует, что короткозамкнутые витки срывают резонансные явления, чего мы и добивались.

Наличие короткозамкнутых витков в катушке также приведет к невозможности наблюдать резонансные явления в LC-контуре. Отметим, что для проверки импульсных трансформаторов блоков питания конденсатор С должен иметь емкость 0,01-1 мкФ. Частота генерации подбирается опытным путем.

Проверка полупроводниковых диодов

Простейшая проверка исправности полупроводниковых диодов заключается в измерении их прямого (Rпр) и обратного (Rобр) сопротивлений постоянному току. Чем меньше прямое сопротивление и больше обратное сопротивление, или, другими словами, чем выше отношение Rобр /Rпр , тем выше качество диода.

Для измерения диод подключают к тестеру (омметру), как показано на рис. 4. При этом выходное напряжение измерительного прибора не должно превышать максимально допустимого для данного элемента.

Схема проверки исправности диода: измерение прямого (а) и обратного (б) сопротивлений

Рис. 4. Схема проверки исправности диода: измерение прямого (а) и обратного (б) сопротивлений.

Прямое сопротивление должно быть не больше 200 Ом, а обратное не меньше 500 кОм. Следует иметь в виду, что если прямое сопротивление - около нуля, а обратное стремится к бесконечности, то в первом случае имеется пробой, а во втором - обрыв выводов или нарушение структуры. Сопротивление диода переменному току меньше прямого сопротивления и зависит от положения рабочей точки.

Исправность высокочастотных диодов можно проверить включением их в схему работающего простейшего детекторного радиоприемника, как показано на рис. 5. Нормальная работа радиоприемника говорит об исправности диода, а отсутствие приема - о пробое.

Схема проверки исправности ВЧ диода

Рис. 5. Схема проверки исправности ВЧ диода.

Для применения в цифровых устройствах лучше всего использовать специальные импульсные диоды, имеющие малую длительность переходных процессов включения и выключения.

Проверка диодных мостов

Диодный мост иногда нелегко протестировать из-за соединения с вторичной обмоткой трансформатора. В таком случае его необходимо предварительно демонтировать. При проверке диодных мостов надо присоединить один из измерительных щупов к отрицательному или положительному выходу моста и протестировать подключенные к этому выводу диоды.

Для проведения полной проверки необходимо выполнить восемь тестов (по два на каждый диод). При этом полезно иметь под рукой эквивалентную схему, которая отражает внутреннее строение диодного моста.

Проверка впаянных компонентов

Чтобы не отпаивать некоторые особенно чувствительные к нагреву компоненты с целью их тестирования можно рассечь дорожки металлизации на печатной плате, соединяющие этот компонент с другими. После этого, обеспечив электрическую изоляцию, можно провести тестирование таким же образом, как и при отпайке компонентов. Не рекомендуется рассекать одновременно несколько дорожек, а сразу после окончания проверки исходное соединение следует восстановить.

Проверка тиристоров

Простейший способ проверки тиристоров представлен на рис. 6. Сопротивление исправного тиристора составляет несколько мегаом, а пробитого - близко к нулю. Если анод исправного тиристора соединить на мгновение с управляющим электродом (УЭ), прибор покажет сопротивление короткого замыкания.

Проверка тиристора с помощью мегомметра

Рис. 6. Проверка тиристора с помощью мегомметра.

Проверка транзисторов

Чтобы проверить исправность полупроводникового транзистора, не включенного в схему, на отсутствие коротких замыканий, необходимо измерить сопротивления между его электродами.

Поскольку транзистор состоит из двух переходов, причем каждый из них представляет собой полупроводниковый диод, проверить транзистор можно таким же образом, как и диод. Для этого омметр подключают поочередно к базе и эмиттеру, к базе и коллектору, к эмиттеру и коллектору, меняя полярность подключения.

На рис. 7 показано, как измеряют прямое и обратное сопротивление каждого из переходов. У исправного транзистора прямые сопротивления переходов составляют 30-50 Ом, а обратные - 0,5-2 МОм. При значительных отклонениях от этих величин транзистор можно считать неисправным.

С транзистором р-п-р типа производят те же действия, но полярность напряжения должна быть обратной. Остается проверить переход коллектор-эмиттер, который не должен пропускать ток.

При проверке ВЧ транзисторов напряжение батареи омметра не должно превышать 1,5 В. Следует также иметь в виду, что транзисторы Дарлингтона иногда имеют защитный диод, включенный между коллектором и эмиттером. Для более точной проверки необходимо использовать специальные приборы.

Проверка транзистора с помощью омметра

Рис. 7. Проверка транзистора с помощью омметра.

Многие модели современных мультиметров имеют специальные гнезда для подключения транзисторов с целью проверки их исправности. Наличие такого прибора значительно упростит работу радиолюбителя и ускорит проверку.

Для этого желательно измерить обратный ток коллектора, обратный ток эмиттера и ориентировочное значение коэффициента усиления по току. Пригодность транзистора определяется сравнением полученных при измерении данных с данными, указанными в паспорте транзистора.

При измерениях параметров отдельного транзистора можно выявить обрывы электродов и замыкания в транзисторах, но это же можно сделать и при измерениях в схемах с транзисторами. При этом нужно иметь в виду, что применяемый измерительный прибор должен обладать достаточно большим внутренним сопротивлением. При проведении электрических измерений можно сделать следующие выводы:

  • при обрыве цепи базы напряжения базы и эмиттера отсутствуют, напряжение коллектора повышено;
  • при обрыве цепи эмиттера напряжение коллектора повышено, напряжение базы почти нормальное, напряжение на эмиттере приблизительно равно напряжению базы;
  • при обрыве цепи коллектора напряжения на всех электродах транзистора уменьшаются;
  • при обрыве базы внутри транзистора напряжение базы близко к нормальному, напряжение эмиттера уменьшается, а напряжение коллектора повышается;
  • при замыкании эмиттера и коллектора внутри транзистора напряжение базы изменяется незначительно, напряжение эмиттера возрастает, напряжение коллектора падает.

Проверка транзисторов без выпаивания

При ремонте бытовой радиоаппаратуры часто возникает необходимость проверить исправность полупроводниковых транзисторов без выпаивания из схемы. Один из способов проверки - измерение омметром сопротивления между выводами эмиттера и коллектора при соединении базы с коллектором (рис. 8 а) и соединении базы С-эмит-тером (рис. 8).

хема проверки исправности транзистора

Рис. 8. Схема проверки исправности транзистора.

При этом источник коллекторного питания отключают от схемы. Если транзистор исправен, в первом случае омметр покажет малое сопротивление, во втором - порядка нескольких десятков или сотен килоом.

Проверка полевых транзисторов

Из многочисленных параметров полевых транзисторов практическое значение имеют только два: /СНАЧ - ток стока при нулевом напряжении на затворе и 5- крутизна характеристики.

Проверка полевого транзистора

Рис. 9. Проверка полевого транзистора.

Сначала вывод затвора соединяют проволочной перемычкой с выводом истока. При этом миллиамперметр зафиксирует первый параметр транзистора - ток стока Iснач. Записывают его значение.

Затем снимают перемычку и подключают вместо нее элемент GB2. Миллиамперметр покажет меньший ток в стоковой цепи. Если теперь разность двух показаний миллиамперметра разделить на напряжение элемента, полученный результат будет соответствовать численному значению параметра 5 проверяемого полевого транзистора.

При измерении параметров полевого транзистора с p-n переходом и каналом n-типа полярность включения миллиампер метра РА, батареи GB1 и элемента GB2 должна быть обратной.

Проверка элементов питання

Проверку гальванических батарей и сухих элементов осуществляют с помощью вольтметра при подключенной нагрузке (рис. 10). Нагрузкой может быть или лампа накаливания с соответствующим номинальным током, или резистор R, сопротивление которого рассчитывается по закону Ома (величина потребляемого тока берется порядка 100-200 мА).

Для сухих элементов (1,5 В) напряжение, измеренное под нагрузкой, не должно быть меньше 1,36 В, а для гальванических батарей 4,5 В - от 3,8 до 4 В.

Проверка гальванических батарей и сухих элементов с помощью вольтметра при подключенной нагрузке

Рис. 10. Проверка гальванических батарей и сухих элементов с помощью вольтметра при подключенной нагрузке.

Многим из нас часто приходилось сталкиваться с тем, что из-за одной, вышедшей из строя, детальки перестаёт работать целое устройство. Что бы избежать недоразумений, следует уметь быстро и правильно проверять детали. Этому я и собираюсь Вас научить. Для начала, нам потребуется мультиметр

Транзисторы биполярные

Транзисторы

Чаще всего, сгорают в схемах транзисторы. По крайней мере у меня. Проверить их на работоспособность очень просто. Для начала, стоит прозвонить переходы База-Эмиттер и База-Коллектор. Они должны проводить ток в одном направлении, но не пускать в обратном. В зависимости от того, ПНП это транзистор или НПН, ток они будут проводить к Базе или от Базы. Для удобства, можем представить его в виде двух диодов

Учтите, что в некоторых современных транзисторах параллельно с цепью Коллектор-Эмиттер встроен диод. Так что стоит изучить даташит на Ваш транзистор, если Коллектор-Эмиттер звонится в одну сторону!

Если хотя бы одно из утверждений не подтверждается, то транзистор нерабочий. Но прежде чем заменить его, проверьте оставшиеся детали. Возможно причина в них!

Транзисторы униполярные (полевые)

У исправного полевого транзистора между всеми его выводами должно быть бесконечное сопротивление. Причем бесконечное сопротивление прибор должен показывать независимо от прикладываемого тестового напряжения. Следует заметить, что имеются некоторые исключения.

Конденсаторы

Конденсатор

Конденсаторы – ещё одна разновидность радиодеталей. Они тоже довольно часто выходят из строя. Чаще всего умирают электролитические, плёнки и керамика портятся несколько реже. . .

Для начала, платы стоит обследовать визуально. Обычно мёртвые электролиты надуваются, а многие даже взрываются. Присмотритесь! Керамические конденсаторы не надуваются, но могут взорваться, что тоже заметно! Их, как и электролиты надо прозванивать. Ток они проводить не должны.

Перед началом электронной проверки конденсатора необходимо провести механическую проверку целостности внутреннего контакта его выводов.

Для этого достаточно поочерёдно согнуть выводы конденсатора под небольшим углом, и аккуратно поворачивая их в разные стороны, а также слегка потягивая на себя, убедиться в их неподвижности. В случае, если хотя бы один вывод конденсатора свободно вращается вокруг своей оси, или свободно вынимается из корпуса, то такой конденсатор считается не пригодным и дальнейшей проверке не подлежит.

Ещё один интересный факт – заряд/разряд конденсаторов. Это можно заметить, если мерять сопротивление конденсаторов, ёмкостью более 10мкФ. Оно есть и у меньших емкостей, но не так заметно выражен! Как только мы подключим щупы, сопротивление будет единицы Ом, но в течении секунды вырастет до бесконечности! Если мы поменяем щупы местами, эффект повторится.

Проверка конденсатора

Соответственно, если конденсатор проводит ток, или не заряжается, то он уже ушёл в мир иной.

Резисторы

Резисторы

Резисторы – их больше всего на платах, хотя они не так то уж и часто выходят из строя. Проверить их просто, достаточно сделать одно измерение – проверить сопротивление.

Проверка резистора

Если оно меньше бесконечности и не равно нулю, то резистор скорее всего пригоден к использованию. Обычно, мёртвые резисторы чёрные – перегретые! Но чёрные бывают и живыми, хотя их тоже стоит заменить. После нагрева, их сопротивление могло измениться от номинального, что плохо повлияет на работу устройства! Вообще стоит прозвонить все резисторы, и если их сопротивление отличается от номинального, то лучше заменить. Заметьте, что отличие от номинала на ± 5% считается допустимым. . .

Диоды

Диоды

Проверить диоды по моему проще всего. Померили сопротивление, с плюсом на аноде, показывать должно несколько десятков/сотен Ом. Померили с плюсом на катоде – бесконечность. Если не так, то диод стоит заменить. . .

Индуктивность

Редко, но всё же из строя выходят индуктивности. Причины тому две. Первая – КЗ витков, а вторая – обрыв. Обрыв вычислить легко – достаточно проверить сопротивление катушки. Если оно меньше бесконечности, то всё ОК. Сопротивление индуктивностей обычно не более сотен Ом. Чаще всего несколько десятков. . .

КЗ между витков вычислить несколько труднее. Надо проверить напряжение самоиндукции. Это работает только на дросселях/трансформаторах, с обмотками в хотя бы 1000 витков. Надо подать импульс низковольтный на обмотку, А после, замкнуть эту обмотку лампочкой газоразрядной. Фактически, любя ИН-ка. Импульс обычно подают, слегка касаясь контактов КРОНЫ. Если ИН-ка в итоге мигнёт, то всё норм. Если нет, то либо КЗ витков, либо очень мало витков. . .

Как видите, способ не очень точный, и не очень удобный. Так что сначала проверьте все детали, и лишь потом грешите на КЗ витков!

Оптопары

Оптопара фактически состоит из двух устройств, поэтому проверять её немного сложнее. Сначала, надо прозвонить излучающий диод. Он должен как и обычный диод прозваниваться в одну сторону и служить диэлектриком в другую. Затем надо подав питание на излучающий диод померить сопротивление фотоприёмника. Это может быть диод, транзистор, тиристор или симистор, в зависимости от типа оптопары. Его сопротивление должно быть близким к нулю.

Затем убираем питание с излучающего диода. Если сопротивление фотоприёмника выросло до бесконечности, то оптопара целая. Если что-то не так, то её стоит заменить!

Тиристоры

Ещё один важный ключевой элемент – тиристор. Так же любит выходить из строя. Тиристоры так же бывают симметричные. Называются симисторы! Проверить и те и другие просто.

Берём омметр, плюсовой щуп подключаем к аноду, минусовой к катоду. Сопротивление равно бесконечности. Затем управляющий электрод (УЭ) подсоединяем к аноду. Сопротивление падает до где-то сотни Ом. Затем УЭ отсоединяем от анода. По идее, сопротивление тиристора должно остаться низким – ток удержания.

Если некоторые тезисы не совпадают с действительностью, то Ваш тиристор/симистор нерабочий.

Стабилитроны

Стабилитроны

Стабилитрон – фактически один из видов диода. По этому проверяется он так же. Заметим, что падение напряжения на стабилитроне, с плюсом на катоде равно напряжению его стабилизации – он проводит в обратную сторону, но с бОльшим падением. Чтоб это проверить, мы берём блок питания, стабилитрон и резистор на 300. 500Ом. Включаем их как на картинке ниже и меряем напряжение на стабилитроне.

Проверка стабилитрона

Мы плавно подымаем напряжение блока питания, и в какой-то момент, на стабилитроне напряжение перестаёт расти. Мы достигли его напряжения стабилизации. Если этого не случилось, то либо стабилитрон нерабочий, либо надо ещё повысить напряжение. Если Вы знаете его напряжение стабилизации, то прибавьте к нему 3 вольта и подайте. Затем повышайте и если стабилитрон не начал стабилизировать, то можете быть уверены, что он неисправен!

Стабисторы

Стабилитроны

Стабисторы – одна из разновидностей стабилитронов. Единственное их отличие в том, что при прямом включении – с плюсом на аноде, падение напряжения на стабисторе равно напряжению его стабилизации, а в другую сторону, с плюсом на катоде, ток они не проводят вообще. Достигается это включением нескольких кристаллов-диодов последовательно.

Учтите, что мультиметр с напряжением питания в 1,5В чисто физически не сможет вызвонить стабистор скажем на 1,9В. По этому включаем наш стабистор как на картинке ниже и меряем напряжение на нём. Подать надо напряжение около 5В. Резистор взять сопротивлением в 200. 500Ом. Повышаем напряжение, меряя напряжение на стабисторе.

Проверка стабистора

Если на какой то точке оно перестало расти, или стало расти очень медленно, то это и есть его напряжение стабилизации. Он рабочий! Если же он проводит ток в обе стороны, или имеет крайне низкое падение напряжения в прямом включении, то его стоит заменить. По видимому, он сгорел!

Шлейф/разъём

Шлейф/разъём

Проверить различного рода шлейфы, переходники, разъёмы и др. довольно просто. Для этого надо прозвонить контакты. В шлейфе каждый контакт должен звониться с одним контактом на другой стороне. Если контакт не звонится ни с каким другим, то в шлейфе обрыв. Если же он звонится с несколькими, то скорее всего в шлейфе КЗ. Тоже самое с переходниками и разъёмами. Те из них, которые с обрывом или КЗ считаются бракованными и использованию не подлежат!

Микросхемы/ИМС

Микросхемы

Их великое множество, они имеют много выводов и выполняют разные функции. Поэтому проверка микросхемы должна учитывать её функциональное назначение. Точно убедиться в целости микросхем довольно трудно. Внутри каждая представляет десятки-сотни транзисторов, диодов, резисторов и др. Есть такие гибриды, в которых одних только транзисторов более 2000000000 штук.

Одно можно сказать точно – если Вы видите внешние повреждения корпуса, пятна от перегрева, раковины и трещины на корпусе, отставшие выводы, то микросхему стоит заменить – она скорее всего с повреждением кристалла. Греющаяся микросхема, назначение которой не предусматривает её нагрева, должна быть так же заменена.

Полная проверка микросхем может осуществляться только в устройстве, где она подключена так, как ей полагается. Этим устройством может быть либо ремонтируемая аппаратура, либо специальная, проверочная плата. При проверке микросхем используются данные типового включения, имеющиеся в спецификации на конкретную микросхему.

Ну всё, ни пуха Вам, и поменьше горелых деталек!

GENIAL Опубликована: 2012 г. 0 0


Вознаградить Я собрал 0 1

Статья для начинающих радиолюбителей. В ней приводятся примеры проверки основных радиодеталей, используемых в радиоэлектронной аппаратуре (резисторы, конденсаторы, трансформаторы, катушки индуктивности, дроссели, диоды и транзисторы) с помощью мультиметра или обычного стрелочного омметра.

Резисторы

Конденсаторы

Простейший способ проверки исправности конденсатора — внешний осмотр, при котором обнаруживаются механические повреждения, например деформация корпуса при перегреве вызванного большим током утечки. Если при внешнем осмотре дефекты не замечены, проводят электрическую проверку.
Омметром легко определить один вид неисправности – внутреннее короткое замыкание (пробой). Сложнее дело обстоит с другими видами неисправности конденсаторов: внутренним обрывом, большим током утечки и частичной потерей емкости. Причиной последнего вида неисправности у электролитических конденсаторов бывает высыхание электролита.

Многие цифровые тестеры обеспечивают возможность измерения емкости конденсаторов в диапазоне от 2000 пФ до 2000 мкФ. В большинстве случаев этого достаточно. Надо отметить, что электролитические конденсаторы имеют довольно большой разброс допустимого отклонения от номинальной величины емкости. У конденсаторов некоторых типов он достигает- 20%,+80%, то есть, если номинал конденсатора 10мкФ, то фактическая величина его емкости может быть от 8 до 18мкФ.

При отсутствии измерителя емкости конденсатор можно проверить другими способами.


При наличии утечки омметр показывает малое сопротивление — сотни и тысячи ом, — величина которого зависит от емкости и типа конденсатора. При пробое конденсатора его сопротивление будет около нуля. При проверке исправных конденсаторов емкостью меньше 1 мкФ стрелка прибора не отклоняется, потому что ток и время заряда конденсатора незначительны.
При проверке омметром нельзя установить пробой конденсатора, если он происходит при рабочем напряжении. В таком случае можно проверить конденсатор мегаомметром при напряжении прибора, не превышающем рабочее напряжение конденсатора.
Конденсаторы средней емкости (от 500 пФ до 1 мкФ) можно проверить с помощью последовательно подключенных к выводам конденсатора наушников и источника тока. Если конденсатор исправен, в момент замыкания цепи в головных телефонах слышен щелчок.
Конденсаторы малой емкости (до 500 пФ) проверяют в цепи тока высокой частоты. Конденсатор включают между антенной и приемником. Если громкость не уменьшится, значит, обрывов выводов нет.

Трансформаторы, катушки индуктивности и дроссели

Если внутри нет межвитковых замыканий, то форма сигнала не должна отличаться от синусоидальной во всем диапазоне частот. Находим резонансную частоту по максимуму напряжения во вторичной цепи.

Проверка радиодеталей мультиметром для начинающих радиолюбителей

Короткозамкнутые витки в катушке приводят к срыву колебаний в LC-контуре на резонансной частоте.

У трансформаторов разного назначения рабочий частотный диапазон отличается — это надо учитывать при проверке:

  • сетевые питающие 40…60 Гц;
  • звуковые разделительные 10…20000Гц;
  • для импульсного блока питания и разделительные .. 13… 100 кГц.

Импульсные трансформаторы обычно содержат малое число витков. При самостоятельном изготовлении убедиться в их работоспособности можно путем контроля коэффициента трансформации обмоток. Для этого подключаем обмотку трансформатора с наибольшим числом витков к генератору синусоидального сигнала на частоте 1 кГц. Эта частота не очень высокая и на ней работают все измерительные вольтметры (цифровые и аналоговые), в то же время она позволяет с достаточной точностью определить коэффициент трансформации (такими же они будут и на более высоких рабочих частотах). Измерив напряжение на входе и выходе всех других обмоток трансформатора, легко посчитать соответствующие коэффициенты трансформации.

Диоды и фотодиоды

Биполярные транзисторы

Некоторые тестеры имеют встроенные измерители коэффициента усиления маломощных транзисторов. Если у вас такого прибора нет, то при помощи обычного тестера в режиме омметра или же цифровым, в режиме проверки диодов, можно проверить исправность транзисторов.

Проверка биполярных транзисторов основана на том, что они имеют два n-p перехода, поэтому транзистор можно представить как два диода, общий вывод которых – база. Для n-p-n транзистора эти два эквивалентных диода соединены с базой анодами, а для транзистора p-n-p катодами.

Проверка радиодеталей мультиметром для начинающих радиолюбителей

Транзистор исправен, если исправны оба перехода.

Для проверки один щуп мультиметра присоединяют к базе транзистора, а вторым щупом поочередно прикасаются к эмиттеру и коллектору. Затем меняют щупы местами и повторяют измерение.

При прозвонке электродов некоторых цифровых или мощных транзисторов следует учитывать, что у них могут внутри быть установлены защитные диоды между эмиттером и коллектором, а также встроенные резисторы в цепи базы или между базой и эмиттером. Не зная этого, элемент по ошибке можно принять за неисправный.

Полевые транзисторы

В отличие от биполярных, полевых транзисторов существует много видов и при проверке надо учитывать, с каким из них вы имеете дело. Так, для проверки транзисторов, имеющих затвор на основе запорного слоя p-n-перехода, можно воспользоваться эквивалентной схемой, приведенной на рисунке

Проверка радиодеталей мультиметром для начинающих радиолюбителей

2017-10-30 Статьи Комментариев нет

В сегодняшней статье я бы хотел немного затронуть тему электроники и рассказать о радиоэлектронных компонентах, а точнее о методике их проверки.

С электроникой профессиональным электрикам да и любителям приходится сталкиваться время от времени, поэтому базовые знания об электронных компонентах не помешают всем, кто занимается электрикой в той или иной степени. Так как радиокомпонентов на данный момент множество, обо всех конечно я рассказать не смогу, а затрону только наиболее часто встречающиеся. Итак поехали.

Резисторы

Пожалуй наиболее простая и часто встречающаяся радиодеталь — это резистор. Сгоревший резистор легко определить по почерневшему, обуглившемуся корпусу. Если же резистор на вид выглядит нормально, то придется воспользоваться мультиметром.

Для проверки мультиметр выставляем в режим омметра. Так как резистор не имеет полярности, какой щуп к какому выводу подключать не имеет значения, важно только во время проверки не касаться руками токоведущих частей щупов и выводов резистора.

Полученный результат сравниваем с номиналом резистора, указанным на корпусе либо в виде разноцветных полос, либо в виде числового значения. Расшифровку цветового обозначения резисторов можно посмотреть в интернете или скачать программу. Стоит отметить что отклонение от номинального сопротивления на на ± 5% считается вполне допустимым.

Для проверки переменного резистора (потенциометра) замеряем сопротивление между его крайними выводами, которое должно быть равно его номинальному значению с учетом допуска и погрешности измерения, а также измерим сопротивление между каждым из крайних выводов и средним выводом. Сопротивление при вращении ручки потенциометра из одного крайнего положения в другое должно плавно, без скачков изменяться от нуля до номинального значения.

Конденсаторы

Наряду с резисторами конденсаторы являются самыми распространенными радиодеталями. На любой электронной плате можно встретить различные типы конденсаторов — керамические, пленочные, электролитические и т.д. Среди них особняком стоят электролитические конденсаторы — именно они наиболее часто подвержены выходу из строя. Наверное классическая неисправность, с которой сталкивались все, кто занимался ремонтом техники — вздутие конденсатора вследствии перегрева, приводящего к увеличению давления внутри его корпуса из-за испарения электролита.

condensator

Помимо электролитов, нередко такое же можно наблюдать и у полимерных конденсаторов.

Среди основных неисправностей конденсаторов можно выделить три:

  • пробой диэлектрика, возникающий при превышении допустимого рабочего напряжения.
  • обрыв, при котором конденсатор представляет собой два изолированных проводника, не имеющих между собой никакой емкости.
  • повышенная утечка, которая характеризуется изменением сопротивления диэлектрика между обкладками. При этом емкость конденсатора заметно уменьшается.

В случае неполярного конденсатора выставляем на мультиметре диапазон измерений на Мом, если значение проверяемого конденсатора меньше 2 Мом, то скорее всего он неисправен.

Но такой проверки недостаточно, необходимо убедиться в том, что конденсатор не потерял свою емкость. А для этого необходим либо мультиметр с такой функцией , либо LC-метр. LC-метр есть конечно далеко не у каждого, а вот большинство мультиметров среднего ценового диапазона измерять емкость умеют.

Нельзя также не упомянуть о таком параметре конденсатора как ESR (Equivalent Series Resistance) или по русски эквивалентное последовательное сопротивление. Этот параметр представляет из себя сопротивление выводов и обкладок и влияет на работу электролитических конденсаторов в высокочастотных схемах. Подробно на этом параметре я останавливаться не буду, кому интересно может прочитать об этом в интернете. Скажу только что для измерения необходим специальный ESR тестер, мультиметром проверить ESR не получится.

Диоды

Еще одна повсеместно встречающаяся в радиотехнике деталь это диод и его различные разновидности — диодные мосты, стабилитроны, варикапы и т.д.

Выпрямительные диоды легко можно проверить мультиметром в режиме проверки диодов.

diod

Стабилитрон, или по другому диод Зенера, представляет собой практически тот же диод, хотя и выполняет в схеме совершенно другие функции.

stabilitron

Проверить его можно также же как и обычный диод, в одну сторону стабилитрон будет проводит ток, в другую стабилитрон будет закрыт.

Диодный мост чаще всего встречается на электронных платах в виде единой сборки, состоящей из четырех диодов, соединенных между собой по схеме мостового выпрямителя.

diod_bridge

diod_most

Варисторы

Варистор представляет собой полупроводниковый резистор, который меняет свое сопротивление в зависимости от приложенного напряжения. Основное его назначение в схеме — это защита от кратковременных скачков напряжения. Кстати варисторы являются основным элементом таких устройств как ограничители перенапряжений.

varistor

Проверить на исправность варистор можно мультиметром. Переключаем прибор в режим измерения сопротивления и выставляем максимальное значение в мегаомах. Прикасаясь щупами к выводам исправного варистора на дисплее должно отображаться значение в десятки МОм. В противном случае варистор можно считать неисправным. Измерение необходимо проводить в обе стороны, поменяв местами щупы прибора. В обоих положениях измеренное значение должно быть примерно одинаковое.

Тиристоры

Тиристоры относятся к классу полупроводниковых приборов, с которыми довольно часто можно столкнуться при ремонте. К этому же классу относятся помимо тиристоров симисторы и динисторы.

tiristor

Они применяются в первую очередь в качестве силовых ключей, для коммутации и регулирования больших токов. Принцип работы тиристора напоминает работу обычного электромеханического реле — если у реле контакты замыкаются или размыкаются при подаче напряжения на его катушку, то у тиристора эту роль выполняет управляющий электрод.

Проверить тиристор можно двумя способами — мультиметром, или собрав простейшую схему проверки.

Если под рукой нет мультиметра, то для проверки можно собрать схему.

tiristor1

Для этого понадобится источник питания постоянного тока, лампочка и провода. Плюсовой вывод от источника питания подаем на анод тиристора, минус на катод через лампу. При включении лампа гореть не должна — тиристор закрыт. Если лампа сразу загорелась значит тиристор пробит. Далее замыкаем между собой анод и управляющий электрод. Лампа должна загореться. Убираем перемычку между анодом и управляющим электродом — лампа должна продолжать гореть. Чтобы закрыть тиристор необходимо разорвать цепь или же подать на мгновение обратное напряжение.

Симистор представляет собой симметричный тиристор. Главное его отличие от тиристора заключается в двухсторонней проводимости тока, можно сказать что симистор это два тиристора в одном корпусе с общим управляющем электродом.

Проверить симистор мультиметром с большой долей вероятности не получится, так как не хватит тока для открытия симистора. Поэтому самый надежный способ — это собрать простую схему проверки.

simistor

Изначально при включении источника питания симистор закрыт и светодиод не горит. При замыкании ключа управляющий электрод и анод замыкаются и светодиод загорится. Он будет гореть до тех пор, пока есть напряжение на источнике питания или снова не замкнуть управляющий электрод на плюсовой вывод. Проверка с помощью такой схемы поможет с уверенностью сказать об исправности симистора.

Динистор отличается от тиристоров и симисторов отсутствием управляющего электрода, поэтому динистор управляется не управляющим сигналом, а только напряжением на его выводах. При прямом включении он не будет пропускать ток до тех пор, пока напряжение на его выводах не достигнет определённого значения.

dinistor

Мультиметром динистор можно проверить только на пробой. Анод и катод динистора не должны прозваниваться ни в одном направлении.

На этом пока остановимся, а в следующей части рассмотрим методы проверки других часто встречающихся радиодеталей, таких как транзисторы, герконы, термисторы и т.д.

Проверка проволочных и непроволочных резисторов. Для проверки проволочного и непроволочного резисторов постоянного и переменного сопротивления необходимо проделать следующее:

  • произвести внешний осмотр;
  • проверить работу движущего механизма переменного резистора и состояние его частей;
  • по маркировке и размерам определить номинальную величину сопротивления, допустимую мощность рассеяния и класс точности омметром измерить действительную величину сопротивления и определить отклонение от номинала;
  • у переменных резисторов измерить еще и плавность изменения сопротивления при движении ползунка.

Резистор исправен, если нет механических повреждений, величина его сопротивления находится в допустимых пределах данного классаточности, а контакт ползунка с токопроводящим слоем постоянен и надежен.

Проверка конденсаторов всех типов

К электрическим неисправностям относятся: пробой конденсаторов; короткое замыкание пластин изменение номинальной емкости сверх допуска из-за старения диэлектрика, попадания на него влаги, перегрева, деформации; повышение тока утечки из-за ухудшения изоляции.

Полная или частичная потеря емкости электролитических конденсаторов происходит в результате высыхания электролита.

Простейший способ проверки исправности конденсатора - внешний осмотр, при котором обнаруживаются механические повреждения.

Если при внешнем осмотре дефекты не обнаружены, проводят электрическую проверку. Она включает: проверку на короткое замыкание, на пробой, на целость выводов, проверку тока утечки (сопротивление изоляции), измерение емкости.

Емкость конденсаторов измеряют прибором Е12-1А. При отсутствии прибора емкость можно проверить другими способами, зависящими от емкости конденсаторов.

Конденсаторы большой емкости (1 мкФ и выше) проверяют пробником (омметром), подключая его к выводам конденсатора. Если конденсатор исправен, то стрелка прибора медленно возвращается в исходное положение. Если же утечка велика, то стрелка прибора не вернется в исходное положение.

Конденсаторы средней емкости (от 500 пФ до 1 мкФ) проверяют с помощью последовательно подключенных к выводам конденсатора телефонов и источника тока. При исправном конденсаторе в момент замыкания цепи в телефонах прослушивается щелчок.

Конденсаторы малой емкости (до 500 пФ) проверяют в цепи тока высокой частоты. Конденсатор включают между антенной и приемником. Если громкость приема не уменьшится, значит, обрывов выводов нет.

Проверка катушек индуктивности

Проверка исправности катушек индуктивности начинается с внешнего осмотра, в ходе которого убеждаются в исправности каркаса, экрана, выводов; в правильности и надежности соединений всех деталей катушки между собой; в отсутствии видимых обрывов проводов, замыканий, повреждения изоляции и покрытий. Особое внимание следует обращать на места обугливания изоляции, каркаса, почернение или оплавление заливки.

Электрическая проверка катушек индуктивности включает проверку на обрыв, обнаружение короткозамкнутых витков и определение состояния изоляции обмотки.

Проверка на обрыв выполняется пробником. Увеличение сопротивления означает обрыв или плохой контакт одной или нескольких жил литцендрата. Уменьшение сопротивления означает наличие межвиткового замыкания. При коротком замыкании выводов сопротивление равно нулю.

Для более точного представления о неисправности катушки необходимо измерить индуктивность. В заключение рекомендуется проверить работоспособность катушки в таком же заведомо исправном аппарате, для которого она предназначена.

Проверка трансформаторов и дросселей низкой частоты

По конструкции и технологии изготовления силовые трансформаторы, трансформаторы и дроссели НЧ имеют много общего. Те и другие состоят из обмоток, выполненных изолированным проводом, и сердечника.

Неисправности трансформаторов и дросселей НЧ делятся на механические и электрические. К механическим неисправностям относятся: поломка экрана, сердечника, выводов, каркаса и крепежной арматуры, к электрическим - обрывы обмоток; замыкания между витками обмоток; короткое замыкание обмотки на корпус, сердечник, экран или арматуру; пробой между обмотками, на корпус или между витками одной обмотки; уменьшение сопротивления изоляции; местные перегревы.

Проверку исправности трансформаторов и дросселей НЧ начинают с внешнего осмотра. В ходе его выявляют и устраняют все видимые механические дефекты.

Проверка на короткое замыкание между обмотками, между обмотками и корпусом производится омметром.

Схема проверки силовых трансформаторов и трансформаторов НЧ

Рис. 1. Схема проверки силовых трансформаторов и трансформаторов НЧ: а - проверка на замыкание между обмоткой и сердечником; 6-проверка на замыкание между обмотками; в - проверка коэффициента трансформации на холостом ходу.

Прибор включают между выводами разных обмоток, а также между одним из выводов и корпусом. Так же проверяется и сопротивление изоляции, которое должно быть не менее 100 МОм для герметизированных трансформаторов и не менее десятков МОм для негерметизированных. Самая сложная проверка на межвитковые замыкания.

Известно несколько способов проверки трансформаторов (рис. 1).

  1. Измерение омического сопротивления обмотки и сравнение результатов с паспортными данными. (Способ простой, но не точный, особенно при малой величине омического сопротивления обмоток и малом числе короткозамкнутых витков.)
  2. Проверка катушки с помощью специального прибора - анализатора короткозамкнутых витков.
  3. Проверка коэффициентов трансформации на холостом ходу. Коэффициент трансформации определяется как отношение напряжений, показываемых вольтметрами 2 и 1. При наличии межвитковых замыканий коэффициент трансформации будет меньше нормы.
  4. Измерение индуктивности обмотки.
  5. Измерение потребляемой мощности на холостом ходу. У силовых трансформаторов одним из признаков короткозамкнутых витков является чрезмерный нагрев обмотки.

Простейшая проверка исправности полупроводниковых диодов

Простейшая проверка исправности полупроводниковых диодов заключается в измерении их прямого Rпр и обратного Rобр сопротивлений.

Чем больше отношение Rобр/Rпр, тем выше качество диода. Для измерения диод подключается к тестеру (омметру) или к ампервольтомметру, как показано на рис. 2. При этом выходное напряжение измерительного прибора не должно превышать максимально допустимого для данного полупроводникового прибора.

Схема проверки исправности полупроводниковых диодов

Рис. 2. Схема проверки исправности полупроводниковых диодов.

Схема проверки исправности ВЧ-диодов

Рис. 3. Схема проверки исправности ВЧ-диодов.

Исправность высокочастотных диодов можно проверить подключением их в схему работающего простейшего детекторного радиоприемника, как показано на рис. 3. Нормальная работа радиоприемника говорит об исправности диода, а отсутствие приема - о его пробое.

Простая проверка транзисторов

При ремонте бытовой радиоаппаратуры возникает необходимость проверить исправность полупроводниковых триодов (транзисторов) без выпайки их из схемы. Один из способов такой проверки - измерение омметром сопротивления между выводами эмиттера и коллектора при соединении базы с коллектором (рис. 4, а) и при соединении базы с эмиттером (рис. 4,6).

При этом источник коллекторного питания отключается от схемы. При исправном транзисторе в первом случае омметр покажет малое сопротивление, во втором - порядка нескольких сотен тысяч или десятков тысяч ом.

Проверка транзисторов, не включенных в схему, на отсутствие коротких замыканий производится измерением сопротивления между их электродами. Для этого омметр подключают поочередно к базе и эмиттеру, к базе и коллектору, к эмиттеру и коллектору, меняя полярность подключения омметра.

Схема проверки исправности транзисторов

Рис. 4. Схема проверки исправности транзисторов.

Проверка транзистора с помощью омметра

Рис. 5. Проверка транзистора с помощью омметра.

Поскольку транзистор состоит из двух переходов, причем каждый из них представляет собой полупроводниковый диод, проверить транзистор можно так же, как проверяют диод.

Для проверки исправности транзисторов омметр подключают к соответствующим выводам транзистора (на рис. 5 показано, как измеряют прямое и обратное сопротивления каждого из переходов транзистора). У исправного транзистора прямые сопротивления переходов составляют 30-50 Ом, а обратные - 0,5-2 МОм.

При значительных отклонениях от этих величин транзистор можно считать неисправным. При проверке ВЧ транзисторов напряжение батареи омметра не должно превышать 1,5 В. Для более тщательной проверки транзисторов используются специальные приборы.

Простейшая проверка тиристоров

Простейший способ проверки тиристоров показан на рис. 6. Сопротивление исправного тиристора составляет несколько МОм, а пробитого - близко к нулю. Если анод исправного тиристора соединить на мгновенье с управляющим электродом (УЭ), прибор покажет сопротивление короткого замыкания.

Проверка тиристоров на исправность

Рис. 6. Проверка тиристоров на исправность.

Проверка гальванических батарей и сухих элементов

Проверку гальванических батарей и сухих элементов осуществляют с помощью вольтметра при подключенной нагрузке (рис. 7). Нагрузкой может быть или лампа накаливания с соответствующим номинальным током, или резистор її, сопротивление которого рассчитывается по закону Ома.

Рис. 7. Проверка гальванических батарей и сухих элементов с помощью вольтметра при подключенной нагрузке.

Для сухих элементов (1,5 В) напряжение, измеренное под нагрузкой, не должно быть меньше 1,36 В, а для гальванических батарей - 4,5 В - 3,8. 4 В.

Простая проверка полевых транзисторов

Из многочисленных параметров полевых транзисторов практическое значение имеют только два: Iс.нач. -ток стока при нулевом напряжении на затворе и S - крутизна характеристики. Эти параметры можно измерить, используя простую схему, изображенную на рис. 8.

Проверка полевых транзисторов

Рис. 8. Проверка полевых транзисторов.

Сначала вывод затвора соединяют проволочной перемычкой с выводом истока. При этом миллиамперметр зафиксирует первый параметр транзистора - ток стока Iс.нач, Записывают его значение. Затем снимают перемычку и подключают вместо неё элемент. Миллиамперметр покажет меньший ток в стоковой цепи.

Если теперь разность двух показаний миллиамперметра разделить на напряжение элемента, полученный результат будет соответствовать численному значению параметра S проверяемого полевого транзистора.

При измерении параметров полевого транзистора с р-п переходом и каналом п-типа полярность включения миллиамперметра ИП1, батареи Б1 и элемента Б2 должна быть обратной.

Читайте также: