Простейший радиоприемник физика кратко

Обновлено: 01.07.2024

На заседании Русского физико-химического общества в Петербурге 7 мая 1895 года Александр Попов продемонстрировал "прибор, предназначенный для показывания быстрых колебаний в атмосферном электричестве". Другими словами – радиоприемник, и осуществил первый сеанс радиосвязи. Полувековой юбилей этого события в СССР отмечали накануне Победы, 7 мая 1945 года. Тогда же и было принято решение сделать День радио ежегодным праздником.

Изобретателем радиотелеграфии Попова считают в странах постсоветского пространства. В других странах примерно в то же время лучшие ученые также работали над созданием подобных устройств. Поэтому в США изобретателем считают Николу Теслу, в Германии – Генриха Герца, во Франции – Эдуарда Бранли, в Бразилии – Ланделя де Муру, в Англии – Оливера Джозефа Лоджа, а в Индии – Джагадиша Чандру Боше.

Со скоростью света Мировое сообщество никак не может определиться: кем же все-таки было изобретено радио, потому что все эти великие ученые так или иначе внесли свой вклад в развитие науки. Краткая хронология открытий такова: в 1845 году английский физик и химик Майкл Фарадей открыл электромагнитное поле, и это было одним из самых важных открытий человечества в XIX веке. Спустя 20 лет после этого англичанин Джеймс Кларк Максвелл вывел теорию электромагнитного поля и рассчитал, что скорость электромагнитных волн равна скорости света. Его открытия сыграли ключевую роль в развитии физики и послужили фундаментом специальной теории относительности.

Спустя еще 20 лет Генрих Герц создал генератор и резонатор электромагнитных колебаний и продемонстрировал наличие электромагнитных волн, распространяющихся в свободном пространстве. По сути, этот прибор и был предшественником радио, но конструкция Герца передавала и принимала электромагнитные сигналы лишь на расстоянии нескольких метров. В Индии радиопередачу в миллиметровом диапазоне впервые продемонстрировали в ноябре 1894 года, за год до Александра Попова. Автором индийского изобретения стал Джагадиш Чандра Боше.

Поэтому с технической точки зрения русский изобретатель Александр Попов и итальянский ученый Гульельмо Маркони не открыли ничего нового, а лишь создали прибор, взяв за основу открытия других своих предшественников. Однако идея радио пришла этим ученым примерно в одно и то же время.

Пальма первенства Главными претендентами на звание изобретателя радиоприемника являются Попов, Маркони и Тесла. Все трое ученых никак не были связаны друг с другом и, проживая в разных странах, одновременно работали над одним и тем же изобретением.

Александр Попов изобрел радиопередатчик для целей военно-морского флота. В 1895 году на собрании российских физиков он прочел лекцию "Об отношении металлических порошков к электрическим колебаниям" и продемонстрировал свое устройство, способное передавать сигналы азбукой Морзе. Ученый занялся усовершенствованием работы прибора и дальности приема и передачи сигнала от 60-ти до 250 метров, добившись вскоре увеличения расстояния до 600. А в 1899 году была обнаружена возможность приема сигналов с помощью телефона, изобретения Александра Белла, запатентованного еще в середине 1870-х.

Однако Попов не стремился рассказать всему миру о своих исследованиях, не спешил публиковать статьи о своем изобретении, интересуясь в основном практической частью. Поэтому, продемонстрировав работу радио-приемника в 1895 году, документально свое изобретение он никак не оформил.

Патент № 7777 Гульельмо Маркони изобрел свой радиоприемник и подал заявку на получение патента лишь в июне 1896 года. Бумага была выдана 2 июля 1897-го, спустя два года после демонстрации Поповым своей работы. Маркони получил документ, юридически закрепляющий его авторство, именно поэтому некоторые историки встают на его сторону и отдают ему пальму первенства. В 1900 году Маркони получил патент № 7777 на систему настройки радио, а 12 декабря 1901 он провел первый сеанс трансатлантической радиосвязи между Англией и Ньюфаундлендом на расстояние 3200 километров, что до этого казалось невозможным.

Очередь американцев А в 1943 году в спор о том, кем изобретено радио, вмешались американцы. В суде им удалось доказать, что их соотечественник, великий ученый Никола Тесла, первым запатентовал радиопередатчик – это произошло в 1893-м, а спустя два года – в 1895-м – радиоприемник. Его прибор работал по тому же принципу, по которому работают современные устройства, преобразовывая радиосигнал в акустический звук, а изобретения Попова и Маркони могли передавать и принимать радиосигналы только с азбукой Морзе.

С тех пор, конечно, изменилось и радиовещание, и сами радиоприемники. Когда-то радио будило гимном всю страну в шесть утра, сегодня эстеты слушают джаз, а коллекционеры готовы отдать большие деньги за винтажные радиоприемники. Но никто не подвергает сомнению значимость этого изобретения: кто бы его ни создал первым, принцип, на котором основывалась работа приемника, впоследствии сделал возможным изобретение мобильной связи, беспроводного интернета и дистанционного управления электронными устройствами, без которых мы сегодня не можем представить нашу жизнь.


На этом уроке мы познакомимся с вкладом Александра Степановича Попова в развитие радиотелефонной связи. Введем в рассмотрение понятия модуляции и детектирования.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Принцип радио-телефонной связи. Простейший радиоприемник"

«Радио: средство массовой информации,

Уолт Стритифф

В данной теме поговорим о принципах радиотелефонной связи и рассмотрим устройство простейшего радиоприемника.

Впервые электромагнитные волны экспериментально получил, передал на расстояние (правда, в пределах стола) и принял Генрих Герц. В качестве колебательных контуров он использовал так называемые диполи (или вибраторы) Герца: два стержня с шариками, между которыми был оставлен определенный зазор. К шарикам от индукционной катушки подводили достаточно высокое напряжение, и между ними проскакивала искра и в пространстве возникало электромагнитное поле, а, следовательно, и электромагнитная волна. Приемник был сделан аналогичным образом, только расстояние между шариками было уменьшено. Герц наблюдал электромагнитные колебания по искоркам, проскакивающим между проводниками приемного вибратора.


Опыты Герца показали, что с помощью электромагнитных волн можно отправлять и принимать сигналы, но все это делалось на малом расстоянии, в пределах стола лаборатории. Проведя важный для науки эксперимент, Герц не увидел практической ценности использования электромагнитных волн и даже сам отрицал возможность их применения.

Однако эти опыты заинтересовали физиков всего мира. В России одним из первых занялся изучением электромагнитных волн преподаватель высшего учебного заведения в Кронштадте Александр Степанович Попов, создавший в апреле 1895 года первый в мире радиоприемник, в котором прием сигналов регистрировался с помощью электрического звонка.


Схема передатчика Попова довольно проста — это колебательный контур, который состоит из индуктивности (вторичной обмотки катушки), питаемой батареи и ёмкости (искрового промежутка). Если нажать на ключ, то в искровом промежутке катушки проскакивает искра, вызывающая электромагнитные колебания в антенне. Антенна является открытым вибратором и излучает электромагнитные волны, которые, достигнув антенны приемной станции, возбуждают в ней электрические колебания.



Попов включил когерер в цепь, содержащую источник тока и звонок, молоточек которого при действии звонка мог ударяться по резиновой трубке. Когда сопротивление когерера велико, сила тока, постоянно идущего в цепи недостаточна для притяжения якоря в реле. С появлением электромагнитной волны сопротивление когерера падает, сила тока в цепи увеличивается, якорь реле замыкает цепь электромагнита, включенного параллельно цепи когерера, и молоточек звонка сигнализирует о приходе волны. При этом цепь электромагнита размыкается, и молоточек ударяет по когереру. Сопротивление его резко увеличивается, и реле размыкает цепь звонка.


А уже в 1898 году Александр Степанович осуществил радиосвязь между двумя кораблями на расстояние 5 км.

В 1899 году его ученик Петр Николаевич Рыбкин обнаружил возможность приема радиотелеграфных сигналов на слух. Вскоре после этого Попов сконструировал первый специальный радиоприемник и тем самым положил начало развитию радиотелефонной связи.


Хотя современные радиоприемники очень мало напоминают приемник Попова, основные принципы их действия те же.

Вообще радиосвязь представляет собой довольно сложный процесс. Поэтому мы рассмотрим лишь наиболее общие принципы одного из ее видов — радиотелефонной связи, т.е. передачи звуковой информации с помощью электромагнитных волн.

Радиопередачи стали возможны после создания генератора незатухающих колебаний. При радиотелефонной связи колебания давления воздуха в звуковой волне с помощью микрофона превращаются в электрические колебания той же формы. Трудность передачи звукового сигнала состоит в том, что для радиосвязи необходимы колебания высокой частоты, а колебания звукового диапазона — это низкочастотные колебания, для излучения которых невозможно построить эффективные антенны. Поэтому колебания звуковой частоты приходится тем или иным способом накладывать на колебания высокой частоты, которые уже переносят их на большие расстояния.


Под воздействием модулированных высокочастотных колебаний в передающей антенне возникает переменный ток высокой частоты. Этот ток порождает в пространстве вокруг антенны электромагнитное поле, которое распространяется в пространстве в виде электромагнитных волн и достигает антенн радиоприемников.

Радиоприемное устройство предназначено для приема информации, передаваемой с помощью электромагнитных волн, излучаемых передающей антенной радиопередатчика.

Радиоприемное устройство содержит следующие основные элементы: приемная антенна, которая служит для улавливания электромагнитных колебаний. Резонансный контур, настраиваемый на определенную частоту, который из множества принятых антенной сигналов выделяет полезный сигнал. В резонансном контуре в результате резонанса происходит увеличение амплитуды напряжения принятых колебаний. Однако при этом дополнительная высокочастотная энергия не создается и мощность принятого сигнала не возрастает. Более того, она даже несколько уменьшается из-за неизбежных потерь энергии на активном сопротивлении входной цепи. Мощность принятого сигнала исключительно мала. Поэтому в усилителе высокой частоты повышается напряжение принятого сигнала и увеличивается его мощность. Детекторный каскад, в котором усиленный модулированный высокочастотный сигнал преобразуется и из него выделяется модулирующий сигнал, несущий передаваемую информацию. Следовательно, детектирование — это процесс, обратный модуляции. В качестве детектора используют приборы с нелинейной характеристикой — электронные лампы и полупроводниковые приборы. Выделенное в детекторном каскаде модулирующее напряжение низкой частоты мало и его усиливают в усилителе низкой частоты. После усиления низкочастотный сигнал поступает на громкоговоритель.


В телевидении используются более высокие (порядка миллиарда герц) несущие частоты. Телевизионные радиосигналы могут быть переданы только в диапазоне ультракоротких (метровых) волн. Такие волны распространяются обычно лишь в пределах прямой видимости антенны. Поэтому для охвата телевизионным вещанием большой территории необходимо размещать телепередатчики чаще и поднимать их антенны выше. Так, например, Останкинская телевизионная башня в Москве высотой 540 метров обеспечивает уверенный прием телепередач в радиусе 120 километров.


Зона уверенного приема телевидения непрерывно увеличивается в связи с появлением и использованием ретрансляционных спутников.

Получение цветного изображения осуществляется за счет передачи видеосигналов, несущих компоненты изображения, соответствующие основным цветам спектра красному, зеленому и синему.

В настоящее время различные средства связи развиваются и совершенствуются в уже освоенных областях, а также находят и новые области применения. Еще совсем недавно междугородняя телефонная связь осуществлялась только по воздушным линиям связи. На ее надежность влияли грозы и возможность обледенения проводов. В настоящее же время широко применяются кабельные и радиорелейные линии, сотовая мобильная связь, повышается уровень автоматизации связи.

Успехи в области космической радиосвязи позволили создать систему связи, названную "Орбита". В этой системе используются ретрансляционные спутники связи.


Спутники связи серии "Молния" запускаются на сильно вытянутые орбиты. Период их обращения составляет около 12 часов. Созданы мощные и надежные системы, обеспечивающие телевизионным вещанием районы Сибири и Дальнего Востока и позволяющие осуществить телефонно-телеграфную связь с отдаленными районами страны.

Новые спутники связи серии "Радуга" запускаются на орбиту радиусом около 36000 км. На этой орбите период обращения спутника равен 24 часам, поэтому спутник все время находится над одной и той же точкой поверхности Земли. Совершенствуются и находят новые применения и такие сравнительно старые средства связи, как телеграф и фототелеграф. О размахе, который получила передача неподвижных изображений по фототелеграфу, можно судить по таким цифрам: в год по фототелеграфу передается до 70 тысяч газетных полос, с которых печатается свыше 3 миллиардов экземпляров газет.

Основные выводы:

– Радиосвязь — это процесс передачи и приема информации с помощью электромагнитных волн.

– Амплитудная модуляция — это процесс изменения амплитуды высокочастотных колебаний с частотой, равной частоте звукового сигнала.

286 дн. с момента
до конца учебного года

погода в Ярославле

Сайт имеет мобильную версию. Вы будете автоматически на нее перенаправлены, если зайдете на сайт с мобильного устройства

Изобретение радио А.Поповым


Александр Степанович Попова (1859—1905), повторяя опыты Герца с электроволнами, усовершенствовал приборы так, что в 1889 г. в его приемных резонаторах стали возникать довольно сильные искры. А уже в 1894 г. Попов построил вполне чувствительный к электрическим волнам приемник, принципиальны особенности которого сохранились в радиоаппаратуре до сих пор.

Для увеличения чувствительности приемника Попов использовал явление резонанса, а также изобрёл высоко поднятую приемную антенну. Другой особенностью приемника Попова был способ регистрации волн, для чего Попов применил не искру, а специальный прибор — когерер, незадолго до этого изобретенный Бранли и применявшийся для лабораторных опытов.


Когерер представлял собой стеклянную трубку с мелкими металлическими опилками внутри, в оба конца трубки вводились провода, соприкасающиеся с опилками. В обычных условиях электрическое сопротивление в опилках было большим, но когда в цепи создавался переменный ток высокой частоты, между опилками проскакивали искорки и опилки сваривались, так что сопротивление когерера уменьшалось. Встряхиваясь, когерер вновь получал большое сопротивление, и молоточек звонка ударял по колокольчику…


В 1912 г. радио помогло спасти сотни людей с успевшего послать сигнал "SOS" "Титаника".

Распространение радиоволн

Так как при передаче электромагнитных волн приемник и передатчик часто располагаются вблизи поверхности Земли, то форма и физические свойства Земной поверхности будут значительно влиять на распространение радиоволн. Помимо этого, на распространение радиоволн будет также влиять состояние атмосферы.

В верхних слоях атмосферы находится ионосфера. Ионосфера отражает волны с длинной волны λ>10 м. Рассмотрим каждый вид волн отдельно.

Ультракороткие волны

Ультракороткие волны - (λ

Короткие волны

Диапазон коротких волн - от 10 м до 100 м. Данные волны будут отражаться от ионосферы. Они распространяются на большие расстояния только за счет того, что многократно будут отражаться от ионосферы к Земле, и от Земли к ионосфере. Эти волны не могут пройти сквозь ионосферу.

Мы можем испустить сигнал в Южной Америке, а принять его, например, в центре Азии. Этот диапазон волн оказывается как бы зажатым между Землей и ионосферой.

Средние и длинные волны

Средние и длинные волны - (λ значительно больше 100 м). Данный диапазон волн отражается ионосферой. Помимо этого, данные волны хорошо огибают земную поверхность. Это происходит вследствие явления дифракции. Причем, чем больше длинна волны, тем это огибание будет сильнее выражено. Эти волны используются для передачи сигналов на большие расстояния.

Радиолокация

Радиолокация - это обнаружение и определение точного местонахождения некоторого объекта с помощью радиоволн. Радиолокационная установка называется радаром или радиолокатором. Радар состоит из принимающей и передающей частей. Из антенны передаются остронаправленные волны.

Отраженные волны принимаются либо этой же антенной, либо другой. Так как волна является остронаправленной, то можно говорить о луче радиолокатора. Направление на объект определяется как направление луча, в момент когда отраженный луч поступил в приемную антенну.

Для определения расстояния до объекта используют импульсное излучение. Передающая антенна излучает волны очень короткими импульсами, а остальное время она работает на прием отраженных волн.

Расстояние определяется путем измерения времени прохождения волны до объекта и обратно. И так как скорость распространения электромагнитных волн равняется скорости света, будет справедлива следующая формула: R = ct/2.

Принцип радиосвязи:переменный электрический ток высокой частоты, созданный в передающей антенне, вызывает в окружающем пространстве быстро меняющееся электромагнитное поле, которое распространяется в виде электромагнитной волны. Достигая приёмной антенны, электромагнитная волна вызывает в ней переменный ток той же частоты, на которой работает передатчик. Важнейшим этапом в развитии радиосвязи было создание в 1913 г. генератора незатухающих электромагнитных колебаний.

Модуляция.Для осуществления радиотелефонной связи необходимо использовать высокочастотные колебания, интенсивно излучаемые антенной. Незатухающие гармонические колебания высокой частоты вырабатывает генератор высокой частоты, например генератор на транзисторе. Для пережачи звука эти высокочастотные колебания изменяют (модулируют), с помощью электрических колебаний низкой (звуковой) частоты. Можно, например, изменять со звуковой частотой амплитуду высокочастотных колебаний. Этот способ называют амплитудной модуляцией. Модуляция – медленный процесс. Это такие изменения в высокочастотной колебательной системе, при которых она успевает совершить очень много высокочастотных колебаний, прежде чем их амплитуда изменится заметным образом.

Детектирование. В приёмнике из модулированных колебаний высокой частоты выделяютсянизкочастотные колебания. Такой процесс называют детектированием. Полученный в результате детектирования сигнал соответствует тому звуковому сигналу, который действовал на микрофон передатчика.

Рассмотрим простейший радиоприемник. Он состоит из антенны, колебательного контура с конденсатором переменной емкости, диода-детектора, резистора и телефона. Частота колебательного контура подбирается таким образом, чтобы она совпадала с частотой несущей, при этом амплитуда колебаний на конденсаторе становится максимальной. Это позволяет выделить нужную частоту из всех принимаемых. С контура модулированные колебания высокой частоты поступают на детектор. После прохождения детектора ток каждые полпериода заряжает конденсатор, а следующие полпериода, когда ток не проходит через диод, конденсатор разряжается через резистор. (я правильно понял. ).

Принцип радиосвязи:переменный электрический ток высокой частоты, созданный в передающей антенне, вызывает в окружающем пространстве быстро меняющееся электромагнитное поле, которое распространяется в виде электромагнитной волны. Достигая приёмной антенны, электромагнитная волна вызывает в ней переменный ток той же частоты, на которой работает передатчик. Важнейшим этапом в развитии радиосвязи было создание в 1913 г. генератора незатухающих электромагнитных колебаний.




Модуляция.Для осуществления радиотелефонной связи необходимо использовать высокочастотные колебания, интенсивно излучаемые антенной. Незатухающие гармонические колебания высокой частоты вырабатывает генератор высокой частоты, например генератор на транзисторе. Для пережачи звука эти высокочастотные колебания изменяют (модулируют), с помощью электрических колебаний низкой (звуковой) частоты. Можно, например, изменять со звуковой частотой амплитуду высокочастотных колебаний. Этот способ называют амплитудной модуляцией. Модуляция – медленный процесс. Это такие изменения в высокочастотной колебательной системе, при которых она успевает совершить очень много высокочастотных колебаний, прежде чем их амплитуда изменится заметным образом.

Детектирование. В приёмнике из модулированных колебаний высокой частоты выделяютсянизкочастотные колебания. Такой процесс называют детектированием. Полученный в результате детектирования сигнал соответствует тому звуковому сигналу, который действовал на микрофон передатчика.

Рассмотрим простейший радиоприемник. Он состоит из антенны, колебательного контура с конденсатором переменной емкости, диода-детектора, резистора и телефона. Частота колебательного контура подбирается таким образом, чтобы она совпадала с частотой несущей, при этом амплитуда колебаний на конденсаторе становится максимальной. Это позволяет выделить нужную частоту из всех принимаемых. С контура модулированные колебания высокой частоты поступают на детектор. После прохождения детектора ток каждые полпериода заряжает конденсатор, а следующие полпериода, когда ток не проходит через диод, конденсатор разряжается через резистор. (я правильно понял. ).

Читайте также: