Проблема термоядерной энергетики кратко

Обновлено: 04.07.2024

Проблему управляемого термоядерного синтеза, пока решить не удалось.. . Существуют только экспериментальные установки, выработка электроэнергии на которых пока в промышленных масштабах невозможна.

Проблема термоядерной энергетики в том, что для запуска термоядерной реакции необходимо приложить к ядрам очень большую энергию для преодоления электростатического отталкивания. Существующие на данный момент способы запуска ядерного синтеза дают на выходе энергии меньше, чем затрачено на запуск, поэтому термоядерная энергетика пока не имеет смысла.
В термоядерных бомбах для запуска реакции синтеза используется обычный ядерный взрыв (реакция деления тяжёлых ядер) , при этом гигантское количество энергии высвобождается за доли секунды, и для ядерной энергетики такой способ использовать невозможно.

Эту статью могут комментировать только участники сообщества.
Вы можете вступить в сообщество одним кликом по кнопке справа.


Европейский токамак JET, который вносит свою лепту в развитие науки о термоядерном синтезе

Европейское содружество по развитию термоядерной энергетики EFDA опубликовало предполагаемый план перехода от первого экспериментального реактора к полноценным электростанциям. По оценкам экспертов, на это потребуется 30 лет - реальностью термоядерная электроэнергетика станет к 2050 году.

На сегодняшний день люди уже умеют зажигать термоядерные реакции, которые протекают на Солнце, в земных условиях. Правда, есть два нюанса: реакция либо вспыхивает во время взрыва водородной бомбы и протекает после этого совершенно неуправляемо, либо, если мы пытаемся запустить ее внутри специальной установки, выделяемая энергия оказывается заметно меньше затраченной на инициацию. Или на поджиг, если использовать тот термин, который употребляют ученые.

Поджечь термоядерную реакцию так, чтобы она оправдала затраты энергии, но не оставила на месте лаборатории радиоактивную воронку, планируется к 2020 году - произойдет это, по оценкам EFDA, на строящемся сейчас во Франции международном экспериментальном реакторе ITER. Этот научный мегапроект финансирует ряд стран, среди которых есть и Россия; многие физики вполне серьезно говорят о том, что параметры реактора могут сделать реальностью управляемую реакцию с выделением энергии в большем объеме, чем требуется для работы самой установки.

Но это еще не электростанция: от того, что реактор будет хорошо греться и выдавать ионизирующее излучение, толку немного. Надо еще будет научиться эту энергию использовать, для чего планируется построить установку с кодовым названием DEMO - она станет чем-то вроде первых АЭС, которые еще не могли конкурировать с традиционными тепловыми и гидроэлектростанциями, но которые уже выдавали мегаватты энергии в общую сеть.

Казалось бы, что сложного в том, чтобы обмотать корпус реактора трубами, пустить в них воду, получить на выходе пар и поставить турбину? В документе, который представили специалисты EFDA, перечислен целый ряд подводных камней. Причем не просто перечислен, а указаны возможные сроки их решения; мы начнем с самой очевидной.

Проблема первая - излучение

Работающий термоядерный реактор представляет собой маленькую звезду, только вместо шара в реакторах данного типа, токамаках, будет висеть в магнитном поле тор, бублик из нагретой до миллионов градусов плазмы. Температура при этом не столь страшна, так как в рабочей камере невелика плотность вещества - а вот радиация совсем другое дело. Даже лучшие сорта стали в интенсивном потоке нейтронов и гамма-квантов меняют свою структуру, металл стремительно теряет прочность и в нем могут появляться трещины. Если реактор на электростанции придется менять через пару недель работы, то термоядерная энергетика окажется экономически бессмысленной затеей; на поиск рецептов радиационноупорной стали отводится примерно 20 лет - от начала работы ITER до постройки DEMO к 2040 году.

Кстати, рецепты стали подразумевают не просто поиск какого-то сочетания металлов - "возьмите столько-то железа, столько-то углерода, добавьте молибден и щепотку ванадия". Сюда могут быть включены особые условия выплавки и обработки поверхности, причем все это ищется не вслепую, а с использованием фундаментальных знаний о структуре сплавов, о их превращениях, росте кристаллов и так далее.

Проблема вторая - поведение плазмы

В общих чертах выбранная для ITER схема токамака выглядит просто - плазму сворачивают в бублик и греют высокочастотным током, примерно как в гигантской микроволновке. Но вот устойчивость и стабильность такого бублика вызывает пока вопросы. Предполагается, что ITER позволит ученым научится управлять плазмой так, чтобы минимизировать потери. Кстати, нелишним будет уточнить вопрос безопасности: одним из фундаментальных достоинств токамака является то, что даже контакт плазмы со стенками вовсе не приведет к катастрофе - несмотря на свою температуру, плазма не сможет моментально прожечь корпус и вырваться наружу, сжигая все на своем пути. Ее плотность и, как следствие, масса, слишком невелики для этого.

Проблема третья - наработка топлива

Еще одним большим достоинством токамаков называют то, что они смогут сами для себя производить самый дефицитный компонент топлива, тритий (другой, дейтерий, в изобилии находится в обычной воде). Реактор обкладывается специальным "одеялом" (специальный термин "бланкет" вообще-то есть английское blanket, то есть именно "одеяло") с литием, который при облучении нейтронами превращается в тритий. Но это в теории, на практике, разумеется, такую схему никто не реализовывал, ведь работающих термоядерных реакторов пока нет.

Проблема четвертая - безопасность

Несмотря на то, что страшные катастрофы вроде чернобыльской на термоядерных электростанциях невозможны в принципе (нет большого количества высокооактивных и при этом долгоживущих изотопов), небольшие, но частые аварии тоже способны поставить крест на этом направлении.

Проблема пятая - отвод тепла

Термоядерный синтез — это разновидность ядерной реакции.

В ходе ядерной реакции ядро атома взаимодействует либо с элементарной частицей, либо с ядром другого атома, за счет чего состав и строение ядра изменяются. Тяжелое атомное ядро может распасться на два-три более легких — это реакция деления. Существует также реакция синтеза: это когда два легких атомных ядра сливаются в одно тяжелое.

В отличие от ядерного деления, которое может проходить как самопроизвольно, так и вынужденно, ядерный синтез невозможен без подвода внешней энергии. Как известно, притягиваются противоположности, но вот атомные ядра заряжены положительно — поэтому они отталкиваются друг от друга. Эта ситуация называется кулоновским барьером. Чтобы преодолеть отталкивание, необходимо разогнать эти частицы до сумасшедших скоростей. Это можно осуществить при очень высокой температуре — порядка нескольких миллионов кельвинов. Именно такие реакции и называются термоядерными.

В ходе ядерных и термоядерных реакций выделяется огромное количество энергии, которую можно использовать в различных целях — можно создать мощнейшее оружие, а можно преобразовать ядерную энергию в электричество и снабдить им весь мир. Энергия распада ядра давно используется на атомных электростанциях. Но термоядерная энергетика выглядит перспективнее. При термоядерной реакции на каждый нуклон (так называются составляющие ядра, протоны и нейтроны) выделяется намного больше энергии, чем при ядерной реакции. К примеру, при делении ядра урана на один нуклон приходится 0,9 МэВ (мегаэлектронвольт), а при синтезе ядра гелия из ядер водорода выделяется энергия, равная 6 МэВ. Термоядерные реакции делят на самоподдерживающиеся, неуправляемые (используются в водородных бомбах) и управляемые (подходят для мирных целей). Самоподдерживающиеся реакции проходят в недрах звезд. Однако на Земле нет условий для проведения таких реакций. Неуправляемый, или взрывной термоядерный синтез люди проводят давно. В 1952 году в ходе операции "Иви Майк" американцы взорвали первое в мире термоядерное взрывное устройство, которое не имело практической ценности в качестве оружия. А в октябре 1961 года прошли испытания первой в мире термоядерной (водородной) бомбы ("Царь-бомба", "Кузькина мать"), разработанной советскими учеными под руководством Игоря Курчатова. Это было самое мощное взрывное устройство за всю историю человечества: полная энергия взрыва, по разным данным, составляла от 57 до 58,6 мегатонн в тротиловом эквиваленте. Чтобы взорвать водородную бомбу, необходимо сначала в ходе обычного ядерного взрыва получить высокую температуру — лишь тогда атомные ядра начнут реагировать.

Мощность взрыва при неуправляемой ядерной реакции очень велика, кроме того, высока доля радиоактивного загрязнения. Поэтому чтобы использовать термоядерную энергию в мирных целях, необходимо научиться ею управлять.

Проблема термоядерной энергетики.

Для управляемой термоядерной реакции нужноудержать плазму.


В ядерной энергетике используются изотопы — атомы, отличающиеся друг от друга количеством нейтронов и, соответственно, атомной массой. Изотоп водорода дейтерий (D) добывают из воды. Сверхтяжелый водород или тритий (Т) — радиоактивный изотоп водорода, который является побочным продуктом реакций распада, проводимых на обычных ядерных реакторах. Также в термоядерных реакциях используется легкий изотоп водорода — протий: это единственный стабильный элемент, не имеющий нейтронов в ядре. Гелий-3 содержится на Земле в ничтожно малых количествах, зато его очень много в лунном грунте (реголите): в 80-х гг НАСА разрабатывало план гипотетических установок по переработке реголита и выделению ценного изотопа. Зато на нашей планете широко распространен другой изотоп — бор-11. 80% бора на Земле — это необходимый ядерщикам изотоп. Вещество, участвующее в термоядерной реакции, должно представлять собой практически полностью ионизированную плазму — это газ, в котором отдельно плавают свободные электроны и ионы различных зарядов. Чтобы превратить вещество в плазму, необходима температура 10 7 –10 8 К — это сотни миллионов градусов Цельсия! Такие сверхвысокие температуры можно получить путем создания в плазме электрических разрядов большой мощности.




Однако просто нагреть необходимые химические элементы нельзя. Любой реактор моментально испарится при таких температурах. Здесь требуется совершенно иной подход. На сегодняшний день удается удерживать плазму на ограниченной территории с помощью сверхмощных электрических магнитов. Но полноценно использовать получаемую в результате термоядерной реакции энергию пока не удается: даже под воздействием магнитного поля плазма растекается в пространстве.В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться дейтерий (2H) и тритий (3H), а в более отдалённой перспективе гелий-3 (3He) и бор-11 (11B).

Естественным термоядерным реактором является звезда. В ней плазма удерживается под действием гравитации, а излучение поглощается — таким образом, ядро не остывает.


На Земле же термоядерные реакции можно провести лишь в специальных установках. Импульсные системы. В таких системах дейтерий и тритий облучают сверх мощными лазерными лучи или пучками электронов/ионов. Такое облучение вызывает последовательность термоядерных микровзрывов. Однако такие системы невыгодно использовать в промышленных масштабах: на разгон атомов тратится намного больше энергии, чем получается в результате синтеза, так как не все разгоняемые атомы вступают в реакцию. Поэтому многие страны строят квазистационарные системы.

Квазистационарные системы. В таких реакторах плазма удерживается с помощью магнитного поля при низком давлении и высокой температуре. Существует три типа реакторов, основанных на различных конфигурациях магнитного поля. Это токамаки, стеллараторы (торсатроны) и зеркальные ловушки. Токамак расшифровывается как "тороидальная камера с магнитными катушками". Это камера в виде "бублика" (тора), на которую намотаны катушки. Главной особенностью токамака является использование переменного электрического тока, который протекает через плазму, нагревает ее и, создавая вокруг себя магнитное поле, удерживает ее.

В стеллараторе (торсатроне) магнитное поле полностью удерживается с помощью магнитных катушек и, в отличие от токамака, может работать постоянно.

В зеркальных (открытых) ловушках используется принцип отражения. Камера с двух сторон закрыта магнитными "пробками", которые отражают плазму, удерживая ее в реакторе.

3. Энергия Солнца и звезд.

В 1929 г. Р. Аткинсон и Ф. Хоутерманс высказали гипотезу о том, что внутри Солнца и других звезд существуют условия для протекания реакций ядерного синтеза, и их излучение создается за счет термоядерных реакций. В настоящее время принято считать, что Солнце и звезды образовались (и образуются) в результате постепенной гравитационной конденсации межзвездного газа, состоящего в основном из водорода. В первоначальной фазе сжатия, которая для звезды с массой, близкой к массе Солнца, длится около 107 лет, температура звезды повышается только за счет гравитационной энергии. Когда температура внутренних областей достигает 10 7 К, они превращаются в горячую плазму и начинаются ядерные реакции водородного цикла, при которых четыре ядра водорода в конечном счете превращаются в ядро 4 Не с выделением около 26,2 МэВ энергии.

Спектральный анализ светового излучения, испускаемого Солнцем, показывает, что солнечная хромосфера в основном состоит из водорода и гелия. Это дает основание предположить, что источником энергии Солнца действительно служит превращение водорода в гелий.

Гидродинамическое и тепловое равновесие в звезде обеспечивается равенством сил тяготения и давления, действующих на каждый элемент ее массы. Выделение ядерной энергии компенсирует потери энергии на излучение. Длительность данной стадии зависит от массы звезды и от запасов водорода.

Другой возможный процесс превращения водорода в гелий был предложен Г. Бете. Он называется углеродным циклом. Протекание углеродного цикла возможно в звездах, которые уже содержат достаточное количество ядер атомов углерода и кислорода, служащих катализаторами, в результате которых четыре ядра водорода превращаются в ядро 4Не с выделением около 25 МэВ, как и при водородном цикле. Поведение ядра углерода в данном случае очень похоже на поведение катализаторов при химических реакциях, сохраняющихся после завершения цикла.

На Солнце, по-видимому, главную роль играет водородный цикл. Каждую секунду в нем около 8 • 10 8 т водорода превращается в гелий. Если этот процесс будет продолжаться с той же интенсивностью, то запасов водорода хватит еще на 10 10 лет. Интересно, что около 5 % энергии Солнца и звезд, в которых энергия выделяется в результате водородного цикла, излучается в виде нейтрино.

Тема: Энергия Солнца и звезд.

План

1. Термоядерный синтез.

2. Проблема термоядерной энергетики.

3. Энергия Солнца и звезд.

Термоядерный синтез.

Термоядерный синтез — это разновидность ядерной реакции.

В ходе ядерной реакции ядро атома взаимодействует либо с элементарной частицей, либо с ядром другого атома, за счет чего состав и строение ядра изменяются. Тяжелое атомное ядро может распасться на два-три более легких — это реакция деления. Существует также реакция синтеза: это когда два легких атомных ядра сливаются в одно тяжелое.

В отличие от ядерного деления, которое может проходить как самопроизвольно, так и вынужденно, ядерный синтез невозможен без подвода внешней энергии. Как известно, притягиваются противоположности, но вот атомные ядра заряжены положительно — поэтому они отталкиваются друг от друга. Эта ситуация называется кулоновским барьером. Чтобы преодолеть отталкивание, необходимо разогнать эти частицы до сумасшедших скоростей. Это можно осуществить при очень высокой температуре — порядка нескольких миллионов кельвинов. Именно такие реакции и называются термоядерными.

В ходе ядерных и термоядерных реакций выделяется огромное количество энергии, которую можно использовать в различных целях — можно создать мощнейшее оружие, а можно преобразовать ядерную энергию в электричество и снабдить им весь мир. Энергия распада ядра давно используется на атомных электростанциях. Но термоядерная энергетика выглядит перспективнее. При термоядерной реакции на каждый нуклон (так называются составляющие ядра, протоны и нейтроны) выделяется намного больше энергии, чем при ядерной реакции. К примеру, при делении ядра урана на один нуклон приходится 0,9 МэВ (мегаэлектронвольт), а при синтезе ядра гелия из ядер водорода выделяется энергия, равная 6 МэВ. Термоядерные реакции делят на самоподдерживающиеся, неуправляемые (используются в водородных бомбах) и управляемые (подходят для мирных целей). Самоподдерживающиеся реакции проходят в недрах звезд. Однако на Земле нет условий для проведения таких реакций. Неуправляемый, или взрывной термоядерный синтез люди проводят давно. В 1952 году в ходе операции "Иви Майк" американцы взорвали первое в мире термоядерное взрывное устройство, которое не имело практической ценности в качестве оружия. А в октябре 1961 года прошли испытания первой в мире термоядерной (водородной) бомбы ("Царь-бомба", "Кузькина мать"), разработанной советскими учеными под руководством Игоря Курчатова. Это было самое мощное взрывное устройство за всю историю человечества: полная энергия взрыва, по разным данным, составляла от 57 до 58,6 мегатонн в тротиловом эквиваленте. Чтобы взорвать водородную бомбу, необходимо сначала в ходе обычного ядерного взрыва получить высокую температуру — лишь тогда атомные ядра начнут реагировать.

Мощность взрыва при неуправляемой ядерной реакции очень велика, кроме того, высока доля радиоактивного загрязнения. Поэтому чтобы использовать термоядерную энергию в мирных целях, необходимо научиться ею управлять.

Проблема термоядерной энергетики.

Для управляемой термоядерной реакции нужноудержать плазму.


В ядерной энергетике используются изотопы — атомы, отличающиеся друг от друга количеством нейтронов и, соответственно, атомной массой. Изотоп водорода дейтерий (D) добывают из воды. Сверхтяжелый водород или тритий (Т) — радиоактивный изотоп водорода, который является побочным продуктом реакций распада, проводимых на обычных ядерных реакторах. Также в термоядерных реакциях используется легкий изотоп водорода — протий: это единственный стабильный элемент, не имеющий нейтронов в ядре. Гелий-3 содержится на Земле в ничтожно малых количествах, зато его очень много в лунном грунте (реголите): в 80-х гг НАСА разрабатывало план гипотетических установок по переработке реголита и выделению ценного изотопа. Зато на нашей планете широко распространен другой изотоп — бор-11. 80% бора на Земле — это необходимый ядерщикам изотоп. Вещество, участвующее в термоядерной реакции, должно представлять собой практически полностью ионизированную плазму — это газ, в котором отдельно плавают свободные электроны и ионы различных зарядов. Чтобы превратить вещество в плазму, необходима температура 10 7 –10 8 К — это сотни миллионов градусов Цельсия! Такие сверхвысокие температуры можно получить путем создания в плазме электрических разрядов большой мощности.

Однако просто нагреть необходимые химические элементы нельзя. Любой реактор моментально испарится при таких температурах. Здесь требуется совершенно иной подход. На сегодняшний день удается удерживать плазму на ограниченной территории с помощью сверхмощных электрических магнитов. Но полноценно использовать получаемую в результате термоядерной реакции энергию пока не удается: даже под воздействием магнитного поля плазма растекается в пространстве.В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться дейтерий (2H) и тритий (3H), а в более отдалённой перспективе гелий-3 (3He) и бор-11 (11B).

Естественным термоядерным реактором является звезда. В ней плазма удерживается под действием гравитации, а излучение поглощается — таким образом, ядро не остывает.


На Земле же термоядерные реакции можно провести лишь в специальных установках. Импульсные системы. В таких системах дейтерий и тритий облучают сверх мощными лазерными лучи или пучками электронов/ионов. Такое облучение вызывает последовательность термоядерных микровзрывов. Однако такие системы невыгодно использовать в промышленных масштабах: на разгон атомов тратится намного больше энергии, чем получается в результате синтеза, так как не все разгоняемые атомы вступают в реакцию. Поэтому многие страны строят квазистационарные системы.

Квазистационарные системы. В таких реакторах плазма удерживается с помощью магнитного поля при низком давлении и высокой температуре. Существует три типа реакторов, основанных на различных конфигурациях магнитного поля. Это токамаки, стеллараторы (торсатроны) и зеркальные ловушки. Токамак расшифровывается как "тороидальная камера с магнитными катушками". Это камера в виде "бублика" (тора), на которую намотаны катушки. Главной особенностью токамака является использование переменного электрического тока, который протекает через плазму, нагревает ее и, создавая вокруг себя магнитное поле, удерживает ее.

В стеллараторе (торсатроне) магнитное поле полностью удерживается с помощью магнитных катушек и, в отличие от токамака, может работать постоянно.

В зеркальных (открытых) ловушках используется принцип отражения. Камера с двух сторон закрыта магнитными "пробками", которые отражают плазму, удерживая ее в реакторе.

3. Энергия Солнца и звезд.

В 1929 г. Р. Аткинсон и Ф. Хоутерманс высказали гипотезу о том, что внутри Солнца и других звезд существуют условия для протекания реакций ядерного синтеза, и их излучение создается за счет термоядерных реакций. В настоящее время принято считать, что Солнце и звезды образовались (и образуются) в результате постепенной гравитационной конденсации межзвездного газа, состоящего в основном из водорода. В первоначальной фазе сжатия, которая для звезды с массой, близкой к массе Солнца, длится около 107 лет, температура звезды повышается только за счет гравитационной энергии. Когда температура внутренних областей достигает 10 7 К, они превращаются в горячую плазму и начинаются ядерные реакции водородного цикла, при которых четыре ядра водорода в конечном счете превращаются в ядро 4 Не с выделением около 26,2 МэВ энергии.

Спектральный анализ светового излучения, испускаемого Солнцем, показывает, что солнечная хромосфера в основном состоит из водорода и гелия. Это дает основание предположить, что источником энергии Солнца действительно служит превращение водорода в гелий.

Гидродинамическое и тепловое равновесие в звезде обеспечивается равенством сил тяготения и давления, действующих на каждый элемент ее массы. Выделение ядерной энергии компенсирует потери энергии на излучение. Длительность данной стадии зависит от массы звезды и от запасов водорода.

Другой возможный процесс превращения водорода в гелий был предложен Г. Бете. Он называется углеродным циклом. Протекание углеродного цикла возможно в звездах, которые уже содержат достаточное количество ядер атомов углерода и кислорода, служащих катализаторами, в результате которых четыре ядра водорода превращаются в ядро 4Не с выделением около 25 МэВ, как и при водородном цикле. Поведение ядра углерода в данном случае очень похоже на поведение катализаторов при химических реакциях, сохраняющихся после завершения цикла.

На Солнце, по-видимому, главную роль играет водородный цикл. Каждую секунду в нем около 8 • 10 8 т водорода превращается в гелий. Если этот процесс будет продолжаться с той же интенсивностью, то запасов водорода хватит еще на 10 10 лет. Интересно, что около 5 % энергии Солнца и звезд, в которых энергия выделяется в результате водородного цикла, излучается в виде нейтрино.

Работа по физике на тему "Проблемы термоядерной энергетики". Здесь подобраны материалы, отвечающие на вопросы, какие возможности открывает для человека термоядерная энергетика и какие проблемы пока не дают возможности осуществить проект термоядерной электростанции.

ВложениеРазмер
rabota_po_fizike.doc 133.5 КБ

Предварительный просмотр:

Муниципальное бюджетное образовательное учреждение

Креповская средняя общеобразовательная школа

Выполнил ученик 7 класса

МБОУ Креповской СОШ

Гололобов Роман,

Учитель физики

Раева Елена Викторовна

1.Термоядерная энергетика 3-5 с.

2.Проблемы, не дающие осуществить проект термоядерной электростанции 5с.

3. Управление термоядерным синтезом 6 с.

4.Принцип работы управляемого термоядерного синтеза 6-7 с.

5.Трудности и перспективы 8 с.

Список литературы 8 с.

1.Термоядерная энергетика

Управляемая термоядерная реакция - заманчивая перспектива для физиков, заветная мечта энергетиков. Овладеть ею - значит одарить человечество неиссякаемым источником энергии. Успешное решение проблемы позволит превращать энергию водорода в практически неограниченное количество электричества и тепла, не загрязняя атмосферу. Работы по термоядерному синтезу впервые в мире начались в СССР в 1950 г. под руководством И. В. Курчатова. За четверть века была фактически создана новая область физики - физика высокотемпературной плазмы.

Если в обычной атомной энергетике применяют реакции деления ядер, при которых ядро делится на части нейтронами с освобождением огромной энергии и образованием новых нейтронов, поддерживающих реакции, то в термоядерной энергетике будет использоваться противоположный процесс - слияние легких ядер вместе с образованием более тяжелых. В качестве топлива здесь выступают ядра изотопов водорода, в первую очередь дейтерия.

Атомный вес водорода - 1. Тот же элемент, но с атомным весом в 2 раза больше, называется тяжелым водородом, или дейтерием. В термоядерной реакции участвуют дейтерий или тритий (водород с атомным весом 3). Где взять дейтерий и тритий? Эта проблема легко разрешима. В морях и океанах содержится огромное количество дейтерия. Тритий получают из другого элемента - лития - в термоядерном реакторе. Запасы его также практически неограниченны.

При ядерном слиянии 1 кг изотопов водорода выделяется в 10 млн. раз больше энергии, чем при сжигании одного килограмма угля. Реакции синтеза могут происходить только тогда, когда два ядра сближаются на расстоянии порядка 10 -13 см. Чтобы сближение произошло, положительно заряженные частицы должны преодолеть взаимное электростатическое отталкивание, т. е. обладать большой энергией. Чтобы ядра обрели огромную кинетическую энергию и смогли соединиться друг с другом, необходимо нагреть вещество до чрезвычайно высокой температуры.

Термоядерная энергия - основа энергетики будущего, главное направление развития атомной техники на современном этапе.

В термоядерных реакциях происходит выделение энергии в процессе превращения водорода в гелий. Быстро протекающие термоядерные реакции осуществлены в нашей стране, в США и в Англии в водородных бомбах. Сейчас перед наукой и техникой стоит задача осуществления термоядерной реакции не в виде взрыва, а в форме управляемого, спокойно протекающего процесса. Решение этой задачи даст возможность использовать громадные запасы водорода на Земле в качестве ядерного топлива".

Что же происходит, когда разновидности водорода (дейтерий, тритий) на мгновение подвергаются очень сильному нагреву и огромному давлению? Связи между элементарными частицами нарушаются, атомные ядра теряют электронную оболочку, скорости движения частиц сильно повышаются, и ядра все больше преодолевают действующие между ними электрические (кулоновские) силы отталкивания. В этих условиях атомные ядра могут соединяться друг с другом, образуя ядра других химических элементов и высвобождая при этом огромную энергию.

Источником энергии термоядерного синтеза, как и энергии деления ядер, служит внутриядерная энергия. Она выделяется в свободном виде в тех ядерных процессах, которые сопровождаются убылью общей массы участвующих в реакции ядер. Количественной основой этого процесса служит закон эквивалентности энергии и массы: Е=mс 2 . По изменению массы покоя реагирующих ядер он позволяет определить количество выделенной энергии синтеза.

После первоначального разогрева плазма поддерживает и развивает реакцию уже как бы изнутри, за счет энергии, выделяющейся в результате синтеза ядер. В дальнейшем процесс идет самопроизвольно, автоматически, без притока энергии со стороны, подобно тому, как это происходит на Солнце и в звездах.

Наука еще не познала многого в природе явлений, происходящих на Солнце, но нет сомнений в том, что основной причиной выделения энергии Солнцем служат непрерывно протекающие на нем термоядерные процессы. Солнце можно уподобить гигантской термоядерной энергетической установке, безотказно действующей миллиарды лет.

Считается, что в звездах происходит термоядерный синтез двух циклов: углеродно-азотного (цикла Бете) и водородного (протонно-протонного) цикла. Источник энергии, который питает излучение звезд, есть и на Земле. Это внутриядерная энергия. Нужно только научиться ее извлекать. Ученые считают, что эта задача не легче той, которую пришлось решать человеку каменного века, когда перед ним встала проблема получения огня из куска дерева, т. е., говоря современным языком, извлечения из него химической энергии.

К вопросу о том, как нагреть и удержать плазму - сырье термоядерного реактора, - сводится вся задача ближайшего этапа термоядерных исследований. Если тяжелые ядра находятся на грани самопроизвольного деления, то легкие оказывают сильное сопротивление слиянию. Причина в том, что контакт между ними трудно осуществим: ядра имеют положительный заряд, вследствие чего они отталкиваются друг от друга. Поэтому главная задача на пути осуществления термоядерной реакции состоит в том, чтобы преодолеть это сопротивление (кулоновский барьер), с большой скоростью сталкивая ядра между собой.

Для начала реакции плазма должна быть сжата до небольшого объема, однако при этом она не должна вступать в соприкосновение с обычным веществом во избежание мгновенного охлаждения. Казалось, задача была бы невыполнима, если бы не одно свойство плазмы. Оно заключается в том, что плазма состоит из движущихся электрически заряженных частиц и может быть ограничена в пространстве с помощью магнитных полей.

Однако если в центре Солнца огромное давление вышележащих слоев, стянутых силами гравитации, создает очень плотную плазму и не дает ей расширяться, что позволяет реакции протекать при температуре около 20 млн. градусов, то в земных условиях гравитационные силы слишком малы, чтобы сдержать плазму. Единственный выход - сжать плазму магнитными силовыми линиями, причем как можно плотнее. Но поскольку достигнуть такой же плотности частиц, которая существует на Солнце, все же, видимо, не удастся, температуру плазмы придется, по подсчетам теоретиков, поднимать выше солнечной, доводя ее почти до 100 млн. градусов. На пути создания звездного вещества - плазмы, т. е. на пути овладения термоядерным синтезом, стоят многие трудности. Успешное разрешение этой величайшей проблемы, очевидно, во многом будет зависеть от новых открытий в области магнитной гидродинамики, физики плазмы и ядерной физики.

Никогда нельзя точно предсказать, как будет развиваться та или иная отрасль науки. Можно надеяться, что в недалеком будущем люди найдут до сих пор неизвестные способы управления термоядерным синтезом.

2.Проблемы, не дающие возможности осуществить проект термоядерной электростанции

Проблема управляемого термоядерного синтеза - одна из важнейших задач,

стоящих перед человечеством.

Человеческая цивилизация не может существовать, а тем более развиваться без энергии. Все хорошо понимают, что освоенные источники энергии, к сожалению, могут скоро истощиться. По данным Мирового энергетического совета, разведанных запасов углеводородного топлива на Земле осталось на 50-80 лет.

Сегодня основными источниками энергии служат нефть, газ и уголь.

По оценкам специалистов, запасы этих ископаемых на исходе. Почти не осталось разведанных, годных к освоению месторождений нефти и уже наши внуки могут столкнуться с очень серьезной проблемой нехватки энергии.

Наиболее обеспеченные топливом атомные электростанции могли бы, конечно, еще не одну сотню лет снабжать человечество электроэнергией.

Однако эксплуатация атомных электростанций, работающих за счет деления ядер урана, приводит к серьезным экологическим проблемам, огромное количество радиоактивных отходов - "долгожителей", остающихся после их работы, и опасность последствий в случае аварии изрядно ограничивают возможность всеобщего перехода на атомную энергетику.

Единственный долгосрочный источник энергии - это ядерная энергия, которая выделяется в процессе деления или синтеза.

Процесс термоядерного синтеза в значительной степени свободен от недостатков, присущих процессу деления. В реакции синтеза не образуется долгоживущих радиоактивных изотопов, топливом для нее служат тяжелые изотопы водорода - дейтерий и тритий. В литре обычной воды содержится примерно 0,03 г дейтерия, но в процессе его реакции выделяется столько же энергии, сколько при сгорании 300 литров бензина! Запасов дейтерия на Земле хватит, чтобы обеспечивать человечество энергией около миллиарда лет. Немаловажно, что производство термоядерного топлива уже сегодня очень недорого: в нынешних условиях цена составила бы 1-2 копейки за киловатт электроэнергии и будет снижаться в дальнейшем.

Суммируя сказанное, можно сделать вывод: кто получит управляемую реакцию синтеза, тот практически полностью обеспечит себя энергией. И можно смело утверждать, что решение этой проблемы окупит все затраты.

Поэтому поиски альтернативных источников энергии идут особенно интенсивно.

Продолжающиеся уже 50 лет исследования в области управляемого термоядерного синтеза, судя по всему, перешли в стадию технически реализуемых изделий. Если верить мировым научным авторитетам, в ближайшие 50 лет на Земле должны появиться первые термоядерные электростанции, которые решат проблему безопасного и практически неисчерпаемого источника энергии.

3.Проблемы управления термоядерным синтезом (УТС)

Исследователи всех развитых стран связывают надежды на преодоление грядущего энергетического кризиса с управляемой термоядерной реакцией. Такая реакция - синтез гелия из дейтерия и трития - миллионы лет протекает на Солнце, а в земных условиях ее вот уже пятьдесят лет пытаются осуществить в гигантских и очень дорогих лазерных установках, токамаках и стеллараторах. Однако, есть и другие пути решения этой непростой задачи, и вместо огромных токамаков для осуществления термоядерного синтеза можно будет, вероятно, использовать довольно компактный и недорогой коллайдер - ускоритель на встречных пучках.

Кроме слияния дейтерия и лития, возможен чисто солнечный термояд, когда

соединяются два атома дейтерия. В случае освоения этой реакции энергетические проблемы будут решены сразу и навсегда.

Отличительной особенностью термояда является почти полная радиационная

безопасность. Специалисты утверждают, что термоядерная электростанция с

тепловой мощностью 1 ГВт в плане радиационной опасности эквивалентна

урановому реактору деления мощностью 1 КВт - типичный университетский

исследовательский реактор. Это обстоятельство во многом является решающим фактором, вызывающим пристальное внимание правительств ведущих стран к термоядерной энергетике при тесном международном сотрудничестве в этой области. Создана специальная международная программа, призванная в ближайшем будущем избавить человечество от надвигающегося энергетического кризиса.

4.Принцип работы управляемого термоядерного синтеза (УТС)

Управляемый термоядерный синтез, процесс слияния лёгких атомных ядер,

происходящий с выделением энергии при высоких температурах в регулируемых, управляемых условиях. Скорости протекания термоядерных реакций малы из-за кулоновского отталкивания положительно заряженных ядер. Поэтому процесс синтеза идёт с заметной интенсивностью только между лёгкими ядрами, обладающими малым положительным зарядом и только при высоких температурах, когда кинетическая энергия сталкивающихся ядер оказывается достаточной для преодоления кулоновского потенциального барьера.

С несравненно большей скоростью идут реакции между тяжёлыми

изотопами водорода (дейтерием 2H и тритием 3H) с образованием сильно

связанных ядер гелия:

Именно названные реакции представляют наибольший интерес для проблемы УТС. В особенности привлекательна вторая реакция, сопровождающаяся большим энерговыделением и протекающая со значительной скоростью. Тритий радиоактивен (период полураспада 12,5 лет) и не встречается в природе. Следовательно, для обеспечения работы предполагаемого термоядерного реактора, использующего в

качестве ядерного горючего тритий, должна быть предусмотрена возможность воспроизводства трития.

5.Трудности и перспективы.

Исследования в области УТС сталкиваются с большими трудностями как чисто физического, так и технического характера. К первым относится

проблема устойчивости горячей плазмы, помещенной в магнитную ловушку. Правда, применение сильных магнитных полей специальной конфигурации подавляет потоки частиц, покидающих зону реакции, и позволяет получить в ряде случаев достаточно устойчивые плазменные образования. Электромагнитное излучение при используемых значениях n и Т плазмы и возможных размерах реактора свободно покидает плазму, но для чисто водородной плазмы эти энергетические потери определяются только тормозным излучением электронов и в случаи (d, t) реакций

перекрываются ядерным энерговыделением уже при температурах выше 4-107 К.

Вторая фундаментальная трудность связана с проблемой примесей. Даже малая добавка чужеродных атомов с большим Z, которые при рассматриваемых температурах находятся в сильно ионизованном состоянии, приводит к резкому увеличению интенсивности сплошного спектра, к появлению линейчатого спектра и возрастанию энергетических потерь выше допустимого уровня. Требуются чрезвычайные усилия (непрерывное совершенствование вакуумных установок, использование тугоплавких и труднораспыляемых металлов в качестве материала диафрагм, применение специальных устройств для улавливания чужеродных атомов и т.д.), чтобы примесей в плазме оставалось ниже допустимого уровня. Точнее - "летальная" концентрация, исключающая возможность протекания

термоядерных реакций, например, для примеси вольфрама или молибдена,

составляет десятые доли процента.

На рис. 3 на диаграмме (nt, Т) указаны параметры, достигнутые на различных

установках. Ближе всего к области, где оказывается удовлетворённым критерий Лоусона и может протекать самоподдерживающаяся

термоядерная реакция, располагаются установки типа токамак и системы с

лазерным нагревом. Было бы, однако, ошибочным на основании имеющихся данных делать категорические заключения о типе того устройства, которое будет положено в основу термоядерного реактора будущего. Слишком быстрыми темпами происходит развитие данной области технической физики, и многие оценки могут измениться на протяжении ближайшего десятилетия.

В будущем термояд позволит преодолеть еще один "кризис человечества", а

именно, перенаселение Земли.

Не секрет, что развитие земной цивилизации предусматривает постоянный и

устойчивый рост населения планеты, поэтому вопрос освоения "новых

территорий", иными словами, колонизация соседних планет Солнечной системы для создания постоянных поселений - вопрос уже совсем недалекого будущего.

Сегодня, как признаются ведущие специалисты в области космонавтики, современные ракетные двигатели уже исчерпали свои возможности и могут использоваться, даже при условии постоянной модификации, только для исследования околоземного пространства.


Управляемый термоядерный синтез — чудо, которое давно ждут и которое всё никак не станет реальностью. Ничего эффективнее построенной на термоядерном синтезе энергетики быть не может. После изобретения термоядерных электростанций энергии станет столько, что хватит всем, притом почти даром. Но титанические усилия учёных до сих пор не увенчались успехом, хотя бьются над этой проблемой уже больше полувека. Так достижимо ли термоядерное совершенство?

Термоядерный синтез гелия из водорода — самая распространённая реакция во Вселенной. И самая эффективная в плане выхода энергии по отношению к массе использованного горючего. А ещё, вероятно, самая экономичная, поскольку во Вселенной вообще мало что есть, кроме водорода.

Если мы получаем энергию не путём термоядерного синтеза, то мы получаем её неоптимальным способом. Любой другой источник заведомо менее производителен, потребляет топливо, запасы которого (по сравнению с запасами водорода) ограничены, а зачастую оно ещё и отравляет окружающую среду отходами. У термоядерного реактора в этом отношении всё идеально, гелий-то не отход, а безвредный газ для воздушных шариков.

И всё же идея термоядерной энергетики не особо популярна у фантастов. Откуда берётся электроэнергия в процветающих мирах будущего, обычно не говорят вообще или упоминают какой-нибудь люксоген с дробной пространственной размерностью. Писатели интуитивно чуяли связанный с термоядерным синтезом подвох. Учёные же, напротив, долгое время принципиальных затруднений не предвидели.

Термоядерный синтез: энергия будущего?

Первыми спровоцировать термоядерные реакции пытались ещё учёные нацистской Германии. Немцы наивно надеялись вызвать детонацию тяжёлого водорода химической взрывчаткой и помещали дейтерий внутрь кумулятивной воронки (на фото — немецкий ядерный объект в 1945 году)

Ни в 1970-е, ни в 1980-е водородные электростанции не появились. Но учёные не сомневались: промышленный синтез возможен даже с доступными технологиями, если их правильно применить.

К 1990-м стало ясно, что без принципиально новых технологий и углубления теоретических знаний по ядерной физике термоядерное пламя приручить не удастся. Прогноз ухудшили до двадцати пяти лет. А в начале XXI столетия — до пятидесяти. Теоретические знания углубились настолько, что стало непонятно, с какой стороны подступиться к задаче.

Термоядерный синтез: энергия будущего? 10

Казалось бы, мелочь. Ну порог, ну и что? С точки зрения физики высоких энергий это не порог, а курам на смех! Мощный ускоритель частиц не просто столкнёт протоны лбами, он расплющит их друг о друга в кварк-глюонную плазму! Но кварки нам не нужны. Так что берём синхротрон попроще и направляем пучок протонов на мишень из содержащего водород материала. Порог реакции будет преодолеваться, и в мишени начнётся синтез.

Термоядерный синтез: энергия будущего? 2

Термоядерный реактор ZETA, 1957 год

Термоядерный синтез окажется экономически целесообразным, только если реакция станет цепной: чтобы необходимая для преодоления барьера температура в камере сгорания достигалась за счёт самого синтеза ядер.

Вторая часть проблемы в том, что проводить протон-протонный синтез не только сложно, но и бессмысленно. При столкновении двух протонов рождается дейтрон — состоящее из протона и нейтрона ядро тяжёлого водорода, плюс позитрон и нейтрино. Львиную долю энергии уносит нейтрино, проходящее сквозь нашу планету, как свет сквозь стекло, и, как следствие, малопригодное для кипячения воды.

Термоядерный синтез: энергия будущего? 3

Итак, имитация природных процессов — не наш путь. Разогретый до миллионов градусов металлический водород нельзя получить в лабораторных условиях. А если б и было можно, то миллиард лет выколачивать из него энергию по искре — идея сомнительная. Термоядерный реактор должен воспроизводить не будничное тление светил, а условия взрыва сверхновой, когда реакции идут при температуре, обеспечивающей преодоление кулоновского барьера при каждом столкновении.

Конечно, удерживать разогретое до температуры 100 миллионов кельвинов вещество можно только в плазменной форме. Причём речь тут о плазме в том смысле, какой вкладывают в этот термин физики. Физическая плазма — не ионизированный газ, а четвёртое агрегатное состояние вещества, наблюдающееся при разрежении столь высоком, что взаимодействием частиц можно пренебречь. Плазма не подчиняется обычным для газа законам. В ней нет давления, она не нагревается при сжатии и, что особенно приятно, не стремится занять весь доступный объём. Ценой минимальных затрат её можно удерживать в магнитной ловушке в форме кольца. Независимо от температуры, ядра послушно будут бегать по кругу вблизи центральной оси откачанной трубы.

Термоядерный синтез: энергия будущего? 4

Тороидальная магнитная ловушка

Ситуация как будто парадоксальная. Нет взаимодействия — не может быть и столкновений, реакций синтеза и разогрева вещества. Но грань между плазмой и газом тонка. Скажем, хотя каждый кубический километр космической туманности представляет собой плазму, облако в целом живёт по законам газа. Туманность настолько велика, что молекула не может покинуть её пределы без взаимодействий с другими. Так и в магнитной ловушке при любой плотности вещество будет газом, ведь пробег бесконечен, и одна частица непременно столкнётся с другой. Притом с ростом температуры (а значит, и скорости, и расстояния, преодолеваемого частицей за единицу времени) будет расти и давление. В плоскости же поперечной линии движения частицы будут существовать по законам плазмы.

Идею пылающего кольца, плотного в одном измерении и представляющего собой высокий вакуум в прочих, уже в 1950-х успешно воплотили в советских установках ТОКАМАК и американских стеллараторах, различающихся способами предварительного разогрева топлива. И в СССР, и в США в качестве термоядерного горючего использовали смесь дейтерия и трития, так как реакции с участием тяжёлого и сверхтяжёлого водорода возможны при меньшей, чем у других элементов, температуре.

Термоядерный синтез: энергия будущего? 5

Новый ТОКАМАК (Казахстан)

Но нет, положительный выход достигнут не был. А в конце прошлого века даже у оптимистов возникло подозрение, что это и к лучшему. Проблема термоядерного синтеза заключалась в тритии. В случае синтеза с участием тяжёлого и сверхтяжёлого водорода 80% выделившейся энергии уносил рождающийся в реакции нейтрон.

Эти не имеющие заряда частицы сочетают высокую проникающую способность с исключительной зловредностью. С электронными оболочками атомов нейтроны не взаимодействуют, что позволяет им преодолевать десятки метров бетона и свинца. Попадая же в атомное ядро, нейтрон или разрушает его, или поглощается им, превращаясь в радиоактивный изотоп. А образующиеся в материале пузырьки газа приводят к потере прочности, деформации и разрушению стальных деталей. В лучшем случае после множества рикошетов нейтрон просто распадается и становится атомом водорода.

Персонал электростанции может укрыться от нейтронного излучения за бассейнами с водой (они в любом случае понадобятся для охлаждения), но защитить сам реактор от нейтронов не выйдет. А энергетическая установка, расходующая 80% выделяющейся энергии на саморазрушение, прослужит недолго.

Термоядерный синтез: энергия будущего? 1

Тритий радиоактивен, но при распаде его ядра выделяются лишь нейтрино и электрон. Последний так слаб, что вредит только если тяжёлый водород включился в состав тканей организма. Брелок с тритиевой подсветкой — это безопасно. Даже если его проглотить

Поскольку тритий как термоядерное горючее не выдерживает критики, надежды связывают с изотопом гелий-3. Порог его реакции с дейтерием существенно выше, поскольку два протона гелиевого ядра отталкивают третий со вдвое большей силой. Но продуктами синтеза оказываются ядро обычного гелия (альфа-частица) и протон, что уже даёт выигрыш впятеро благодаря отсутствию нейтронных потерь.

Кроме того, гелий-3, в отличие от трития, стабилен и встречается в природе. Его много на Луне. Ещё в 1980-х годах подсчитали, что доставка гелия с Луны на Землю экономически оправдана. Для покрытия годичных потребностей человечества в энергии потребуется всего сотня тонн этого газа. Другой вопрос, что добыча такого количества гелия-3 предполагает переработку миллиардов тонн лунного грунта. Так что пока выгоднее производить гелий-3 искусственно. Из трития. И это ставит под вопрос осмысленность разработки даже экспериментальных установок для термоядерных реакций с участием гелия.

Термоядерный синтез: энергия будущего? 11

По разным причинам изотопы первых двух химических элементов в любых комбинациях для энергетики будущего бесполезны. Как и при создании водородной бомбы, исследователи убедились, что только на третий элемент периодической таблицы — литий — можно положиться. Он безопасен, не производит нейтроны при синтезе и, в отличие от реакторных изотопов водорода и гелия, ничего не стоит.

Но в случае с литием уже три протона будут объединёнными силами отталкивать четвёртый! И эта разница — решающая. В тороидальном (в форме бублика) плазменном реакторе изотопы водорода горят на практике. Гелий… должен в теории. Литий же не должен вообще! При температуре детонации его ядер плазма не может иметь необходимую для цепной реакции плотность.

Термоядерный ракетный двигатель

Термоядерный синтез: энергия будущего? 6

Самый мощный и качественно лучший среди всех, что мы можем вообразить. В современном ионном двигателе ядерная энергия преобразуется в электрическую, а электрическая — в кинетическую энергию ускоренного полем ионизированного газа. В сопле термоядерной ракеты энергия синтеза превращается в кинетическую сразу. Рабочим телом служит продукт реакции — гелий, ускоренный термоядерным жаром до 40 000 км/с (13% от скорости света).

Термоядерный синтез: энергия будущего? 7

Литий — ещё один кандидат в спасители термоядерного синтеза

То, что порог вступления лития в термоядерные реакции хоть и высок, но преодолим, экспериментально установлено больше полувека назад. Нужно только с умом взяться за дело. Если капсулу с дейтеридом лития сперва обжать близким ядерным взрывом, а потом, в момент, когда её объём сократится вдесятеро, подорвать внутри капсулы второй ядерный заряд, то на фронте столкновения ударных волн всё получится. И прежде чем брошенные навстречу друг другу атомы поймут, куда им разлетаться, термоядерный заряд успеет выгореть.

Поскольку выделившейся энергии не так-то просто покинуть зону реакции, синтез, невозможный в плазме, в сжатом веществе даже при относительно низкой температуре разгорается по цепному принципу. Не использовать такое преимущество глупо. Импульсные реакторы, в которых термоядерная энергия выделяется в процессе микровзрывов, начали разрабатывать одновременно с плазменными — ещё в 1950-х годах.

Долгое время, впрочем, было больше разговоров, чем реальных дел. Несмотря на примитивность общего замысла, сложность установки не отвечала технологиям прошлого века. Детонацию ведра лития, допустим, можно вызвать встречным взрывом пары атомных бомб. Но чем с достаточной силой ударить по весящей одну сотую грамма крупице термоядерного горючего?!

Термоядерный синтез: энергия будущего? 13

Целевая камера на National Ignition Facility (NIF)

Праздновать победу тем не менее рано. Дело не только в том, что в качестве топливных таблеток NIF использовали стеклянные шарики с дейтерий-тритиевым льдом, а потому превысившая затраты на лазерный импульс энергия выделилась в форме быстрых нейтронов, не имеющих ценности. Добившись успеха с водородом, можно будет перейти к экспериментам с гелием, а затем и с литием, заменив лазеры на более эффективные циклические ускорители…

Термоядерный синтез: энергия будущего? 8

Уголь будущего: сподумен — прозрачный минерал, содержащий литий

А хочется очень! Только термоядерная энергия позволит колонизировать Солнечную систему, переправляя грузы на Марс не тоннами, а миллионами тонн, перегоняя на околоземную орбиту железоникелевые астероиды и добираясь до спутников Нептуна за три-четыре месяца.

Термоядерный синтез: энергия будущего? 12

Энергия синтеза, которую можно получать без ограничений (лития не так много, как водорода, но достаточно), полностью изменит и Землю. Станут возможными глобальные проекты, скажем, по очистке атмосферы от избытка парниковых газов, накопившихся в эпоху углеводородной энергетики.

Углекислый газ из атмосферы в любом случае придётся изымать, одновременно повышая плотность отражающей солнечный свет облачности. Ведь неограниченное производство электроэнергии, большей частью переходящей в тепло, обязательно приведёт к перегреву планеты. Но новые, немыслимые сейчас, возможности термоядерной эры наверняка позволят сгладить остроту проблем, ими же порождённых.

Читайте также: