Природа химической связи в комплексных соединениях кратко

Обновлено: 07.07.2024

Теоретические представления о природе комплексообразования возникли из попыток дать объяснение химическому взаимодействию устойчивых молекул с ионами и атомами различных элементов – например, молекулы иода с иодид-ионом, молекулы монооксида углерода с атомами железа, кобальта, никеля и т.п.

Одновременно шел поиск причин заметной неспецифичности таких взаимодействий, в результате чего оказываются прочно связаны между собой и ионы, и атомы, и молекулы. Например, в хлориде дихлороакватриамминкобальта(III) [Co(NH3)3(H2O)Cl2]Cl с комплексообразователем связаны и хлорид-ионы, и нейтральные молекулы аммиака и воды.

Химические связи в комплексных (координационных) соединениях отличаются большим разнообразием, что обусловлено всевозможными сочетаниями ковалентных связей разной полярности, кратности и степени делокализации электронных пар.

В свое время было предложено много различных теорий связи в координационных соединениях, но значительная часть этих теорий уже стала достоянием истории. В настоящем разделе рассматриваются основные понятия только теории валентных связей (метода валентных связей) и теории кристаллического поля.

Теория валентных связей

Теория валентных связей была первой из квантовомеханических теорий, использованной для приближенного объяснения характера химических связей в комплексных соединениях. В основе ее применения лежала идея о донорно-акцепторном механизме образования ковалентных связей между лигандом и комплексообразователем. Лиганд считается донорной частицей, способной передать пару электронов акцептору – комплексообразователю, предоставляющему для образования связи свободные квантовые ячейки (атомные орбитали) своих энергетических уровней.

Для образования ковалентных связей между комплексообразователем и лигандами необходимо, чтобы вакантные s-, p- или d-атомные орбитали комплексообразователя подверглись гибридизации определенного типа. Гибридные орбитали занимают в пространстве определенное положение, причем их число соответствует координационному числу комплексообразователя.

При этом часто происходит объединение неспаренных электронов комплексообразователя в пары, что позволяет высвободить некоторое число квантовых ячеек – атомных орбиталей, которые затем участвуют в гибридизации и образовании химических связей.

Неподеленные пары электронов лигандов взаимодействуют с гибридными орбиталями комплексообразователя, и происходит перекрывание соответствующих орбиталей комплексообразователя и лиганда с появлением в межъядерном пространстве повышенной электронной плотности. Электронные пары комплексообразователя, в свою очередь, взаимодействуют с вакантными атомными орбиталями лиганда, упрочняя связь по дативному механизму. Таким образом, химическая связь в комплексных соединениях является обычной ковалентной связью, достаточной прочной и энергетически выгодной.

Электронные пары, находящиеся на гибридных орбиталях комплексообразователя, стремятся занять в пространстве такое положение, при котором их взаимное отталкивание будет минимально. Это приводит к тому, что структура комплексных ионов и молекул оказывается в определенной зависимости от типа гибридизации.

Типы гибридизации комплексообразователей и структура комплексов

Рассмотрим образование некоторых комплексов с позиций теории валентных связей. Прежде всего отметим, что валентные орбитали атомов комплексообразователей близки по энергии: E(n-1)dEnsEnpEnd

Для элементов II периода возможна гибридизация только s – и р-орбиталей. К числу таких комплексных соединений относятся, например: K2[BeF4]; K2[Be(SO4)2], где комплексообразователь находится в состоянии sp 3 -гибридизации.

Для элементов III–VI периодов в гибридизации принимают участие и d -орбитали (III–V периоды), а в VI–VII периодах к ним присоединяются и f –орбитали.

Таким образом, у элементов каждого нового периода сохраняются возможности комплексообразования предыдущего периода и появляются новые. При последовательном переходе от одного периода к другому растет максимально возможное координационное число элементов.

Рассмотрим образование некоторых комплексов с позиций метода ВС, двигаясь по данной таблице сверху вниз:

1) Ag 4d 10 5s 1 → Ag + 4d 10 5s 0 5p 0

Как видно, s– и p-орбитали у иона серебра свободны, а аммиак имеет не-поделенную пару электронов (:NH3), которая может участвовать в образовании донорно-акцепторной связи между ионом серебра и молекулами аммиака. В принципе, ион Ag + может образовывать комплексы с координационным числом 2, 3 и 4. Эти комплексы получены, но самыми устойчивыми и прочными оказались комплексы с КЧ = 2 [Ag(NH3)2]Cl и Na[Ag(NО3)2].


  1. Al 3s23p1→ Al3+

Исходя из представленной электронной схемы, максимально возможное значение КЧ может быть равным 4, но у А1 имеется еще свободная 3d -орбиталь. Поэтому у А1, наряду с наиболее широко распространенными комплексами с КЧ = 4 (например, типа К[AlF4]), существуют соединения и с КЧ = 6: [Al(H2O)6]Cl3; K3[Al(OH)6].

3. Катион [ Zn(NH3)4] 2+ включает комплексообразователь цинк(II). Электронная оболочка этого условного иона имеет формулу [Ar] 3d 10 4s 0 4p 0 и может быть условно изображена так:

Вакантные 4s- и 4p-орбитали атома цинка(II) образуют четыре sp 3 -гибридные орбитали, ориентированные к вершинам тетраэдра.

Каждая молекула аммиака имеет неподеленную пару электронов у атома азота. Орбитали атомов азота, содержащие неподеленные пары электронов, перекрываются с sp 3 -гибридными орбиталями цинка(II), образуя тетраэдрический комплексный катион тетраамминцинка(II) [Zn(NH3)4] 2+ :

Поскольку в ионе [Zn(NH3)4] 2+ нет неспаренных электронов, то он проявляет диамагнитные свойства.

Цель. Сформировать понятие о составе, классификации, строении и основах номенклатуры комплексных соединений; рассмотреть их химические свойства и показать значение; расширить представления учащихся о многообразии веществ.

Оборудование. Образцы комплексных соединений.

I. Организационный момент.

II. Изучение нового материала (лекция).

III. Подведение итогов и постановка домашнего задания.

План лекции

1. Многообразие веществ.

2. Координационная теория А.Вернера.

3. Строение комплексных соединений.

4. Классификация комплексных соединений.

5. Природа химической связи в комплексных соединениях.

6. Номенклатура комплексных соединений.

7. Химические свойства комплексных соединений.

8. Значение комплексных соединений.

I. Организационный момент

II. Изучение нового материала

Многообразие веществ

Мир веществ многообразен, и мы уже знакомы с группой веществ, которые принадлежат к комплексным соединениям. Данными веществами стали заниматься с XIX в., но понять их строение с позиций существовавших представлений о валентности было трудно.

Координационная теория А.Вернера

В 1893 г. швейцарским химиком-неоргаником Альфредом Вернером (1866–1919) была сформулирована теория, позволившая понять строение и некоторые свойства комплексных соединений и названная координационной теорией*. Поэтому комплексные соединения часто называют координационными соединениями.

Соединения, в состав которых входят сложные ионы, существующие как в кристалле, так и в растворе, называются комплексными, или координационными.

Строение комплексных соединений

Согласно теории Вернера центральное положение в комплексных соединениях занимает, как правило, ион металла, который называют центральным ионом, или комплексообразователем.

Комплексообразователь – частица (атом, ион или молекула), координирующая (располагающая) вокруг себя другие ионы или молекулы.

Комплексообразователь обычно имеет положительный заряд, является d-элементом, проявляет амфотерные свойства, имеет координационное число 4 или 6. Вокруг комплексообразователя располагаются (координируются) молекулы или кислотные остатки – лиганды (адденды).

Лиганды – частицы (молекулы и ионы), координируемые комплексообразователем и имеющие с ним непосредственно химические связи (например, ионы: Cl – , I – , NO3 – , OH – ; нейтральные молекулы: NH3, H2O, CO).

Лиганды не связаны друг с другом, так как между ними действуют силы отталкивания. Когда лигандами являются молекулы, между ними возможно молекулярное взаимодействие. Координация лигандов около комплексообразователя является характерной чертой комплексных соединений (рис. 1).

Рис. 1. Координация цианид-ионов вокруг иона железа

Координационное число – это число химических связей, которые комплексообразователь образует с лигандами.

Рис. 2. Тетраэдрическая структура иона [AlBr4] –

Значение координационного числа комплексообразователя зависит от его природы, степени окисления, природы лигандов и условий (температура, концентрация), при которых протекает реакция комплексообразования. Координационное число может иметь значения от 2 до 12. Наиболее распространенными являются координационные числа 4 и 6. Для координационного числа 4 структура комплексных частиц может быть тетраэдрической [AlBr4] – (рис. 2) и в виде плоского квадрата [Pt(NH3)2Cl2] (рис. 3). Комплексные соединения с координационным числом 6 имеют октаэдрическое строение [AlF6] 3– (рис. 4).

Рис. 3. Соединение [Pt(NH3)2Cl2]
со структурой плоского квадрата
Рис. 4. Ион [AlF6]3– октаэдрического строения

Комплексообразователь и окружающие его лиганды составляют внутреннюю сферу комплекса. Частица, состоящая из комплексообразователя и окружающих лигандов, называется комплексным ионом. При изображении комплексных соединений внутреннюю сферу (комплексный ион) ограничивают квадратными скобками. Остальные составляющие комплексного соединения расположены во внешней сфере (рис. 5).

Суммарный заряд ионов внешней сферы должен быть равен по значению и противоположен по знаку заряду комплексного иона:

Рис. 5. Пояснения к изображению формул соединений с комплексным анионом (а)
и комплексным катионом (б)

Заряд комплексного иона легко подсчитать, зная степень окисления составляющих его частей.

Классификация комплексных соединений

Большое многообразие комплексных соединений и их свойств не позволяет создать единую классификацию. Однако можно группировать вещества по некоторым отдельным признакам.

1) По составу.


2) По типу координируемых лигандов.

а) Аквакомплексы – это комплексные катионы, в которых лигандами являются молекулы H2O. Их образуют катионы металлов со степенью окисления +2 и больше, причем способность к образованию аквакомплексов у металлов одной группы периодической системы уменьшается сверху вниз.

б)Гидроксокомплексы – это комплексные анионы, в которых лигандами являются гидроксид-ионы OH – . Комплексообразователями являются металлы, склонные к проявлению амфотерных свойств – Be, Zn, Al, Cr.

в) Аммиакаты – это комплексные катионы, в которых лигандами являются молекулы NH3. Комплексообразователями являются d-элементы.

г) Ацидокомплексы – это комплексные анионы, в которых лигандами являются анионы неорганических и органических кислот.

3) По заряду внутренней сферы.


Природа химической связи в комплексных соединениях

Во внутренней сфере между комплексообразователем и лигандами существуют ковалентные связи, образованные в том числе и по донорно-акцепторному механизму. Для образования таких связей необходимо наличие свободных орбиталей у одних частиц (имеются у комплексообразователя) и неподеленных электронных пар у других частиц (лиганды). Роль донора (поставщика электронов) играет лиганд, а акцептором, принимающим электроны, является комплексообразователь. Донорно-акцепторная связь возникает как результат перекрывания свободных валентных орбиталей комплексообразователя с заполненными орбиталями донора.

Между внешней и внутренней сферой существует ионная связь. Приведем пример.

Электронное строение атома бериллия:


Электронное строение атома бериллия в возбужденном состоянии:


Электронное строение атома бериллия в комплексном ионе [BeF4] 2– :


Пунктирными стрелками показаны электроны фтора; две связи из четырех образованы по донорно-акцепторному механизму. В данном случае атом Be является акцептором, а ионы фтора – донорами, их свободные электронные пары заполняют гибридизованные орбитали (sp 3 -гибридизация).

Номенклатура комплексных соединений

K3[Fe(CN)6] – гексацианоферрат(III) калия,

K2[Zn(OH)4] – тетрагидроксоцинкат калия.

Названия соединений, содержащих комплексный катион, строятся из названий анионов внешней среды, после которых указывается число лигандов, дается латинское название лиганда (молекула аммиака NH3 – аммин, молекула воды H2O – аква от латинского названия воды) и русское название элемента-комплексообразователя; римской цифрой в скобках указывается степень окисления элемента-комплексообразователя, если она переменная. Например:

Химические свойства комплексных соединений

1. В растворе комплексные соединения ведут себя как сильные электролиты, т.е. полностью диссоциируют на катионы и анионы:

Диссоциация по такому типу называется первичной.

Вторичная диссоциация связана с удалением лигандов из внутренней сферы комплексного иона:

Вторичная диссоциация происходит ступенчато: комплексные ионы ([PtCl4] 2– ) являются слабыми электролитами.

2. При действии сильных кислот происходит разрушение гидроксокомплексов, например:

а) при недостатке кислоты

б) при избытке кислоты

3. Нагревание (термолиз) всех аммиакатов приводит к их разложению, например:

Значение комплексных соединений

Координационные соединения имеют исключительно большое значение в природе. Достаточно сказать, что почти все ферменты, многие гормоны, лекарства, биологически активные вещества представляют собой комплексные соединения. Например, гемоглобин крови, благодаря которому осуществляется перенос кислорода от легких к клеткам ткани, является комплексным соединением, содержащим железо (рис. 6), а хлорофилл, ответственный за фотосинтез в растениях, – комплексным соединением магния (рис. 7).

Рис. 6. Гем-группа в молекуле гемоглобина

Значительную часть природных минералов, в том числе полиметаллических руд и силикатов, также составляют координационные соединения. Более того, химические методы извлечения металлов из руд, в частности меди, вольфрама, серебра, алюминия, платины, железа, золота и других, также связаны с образованием легкорастворимых, легкоплавких или летучих комплексов. Например: Na3[AlF6] – криолит, KNa3[AlSiO4]4 – нефелин (минералы, комплексные соединения, содержащие алюминий).

Рис. 7. Хлорофилл c1

Современная химическая отрасль промышленности широко использует координационные соединения как катализаторы при синтезе высокомолекулярных соединений, при химической переработке нефти, в производстве кислот.

III. Подведение итогов и постановка домашнего задания

Домашнее задание.

2) Письменно дать характеристику следующим комплексным соединениям по строению и классифицировать по признакам:

3) Написать уравнения реакций, при помощи которых можно осуществить превращения:


* За открытие этой новой области науки А.Вернер в 1913 г. был удостоен Нобелевской премии.

Существуют 3 типа связи, которые объясняют природу химической связи в комплексных соединениях:

1. Метод В.С. (валентных связей).

2. Теория кристал. поля.

3. Метод МО (молекулярных орбиталей).

1. В основе метода валентных связей лежат положения:

1. связь между комплексообразователем и лигандами донорно – акцепторного механизма.

Лиганды представляют свободные электронные пары, а комплексообразователь свободные орбитали. Мерой прочности такой связи служит степень перекрывания -орбиталей.

2. Орбитали центрального поля участвуют в образовании связи подвергающейся гибридизации, тип которой определяется природой и структурой лиганда.

Магнитные свойства определяются наличием неспаренных валентных электронов.

Если электроны спарены, то комплекс диамагнитен (не обладает магнитными свойствами)

Механизм образования связи и тип её гибридизации зависит также от природы комплексообразователя.

Реакционная способность комплексных соединений во многом зависит от скорости обмена лигандов на ионы или молекулы. Условиями благоприятными для обмена лигандов является:

1) внешняя гибридизация

2) положение у комплексообразователя свободных внутренних d-орбиталей: в случае внешней гибридизации связь лигандов с комплексообразователем значительно слабее, чем при внутренней гибридизации, поэтому их обмен осуществляется с меньшими энергетическими затратами. Данный комплекс более активен (реакционно способен).

Теория кристаллического поля

Она рассматривает воздействия лигандов на d-орбитали комплексообразователя. Лиганды располагаются относительно (+) заряженного иона (–) концами своего диполя. В результате между d-электронами (центрального) и лигандами образуется сила отталкивания, что приводит к увеличению энергии d-электрона. Однако она неоднородна и зависит от расстояния и природы лиганда.

Рассмотрим несколько случаев:

1) если d - располагаются близко к лигандам, то энергия их увеличивается.

2) если d - расположены дальше от лигандов, то энергия их уменьшается.

Т.е. под действием лигандов происходит расщепление энергетического уровня d-орбиталей.

Величина е – расщепления зависит от природы лиганда и конфигурации комплекса.

Для перевода с одной орбитали на другую необходимо затратить энергию (Р).

При этом возможны 2 случая:

1) Если , то электроны центрального поля в комплексе занимают те же орбитали, что и в свободном ионе. В этом случае ион Ме находится в состоянии с высоким значением S.

В настоящее время образование и свойства комплексных соединений объясняют с точки зрения теории метода валентных связей (ВС), теории кристаллического поля (ТКП) и теории молекулярных орбиталей (МО).

Далее кратко на примерах рассмотрим каждую из теорий.

Строение комплексных соединений с точки зрения теории метода валентных связей

Теория метода валентных связей (ВС) рассматривает образование комплексных ионов как донорно-акцепторное взаимодействие неподеленных электронных пар лиганда и свободных орбиталей комплексообразователя.

Рассмотрим комплексный ион [Co(NH3)6] 3+

Ион-комплексообразователь Co 3+ имеет следующую электронную конфигурацию:

1s 2 2s 2 2p 6 3s 2 3p 6 4s 0 3d 6 4p 0 4d 0

В соответствии с правилом Хунда электроны на внешнем энергетическом уровне располагаются следующим образом:

конфигурация иона кобальта

Комплексообразователь имеет координационное число к.ч. = 6, поэтому может присоединить 6 лигандов, каждый из которых имеет неподеленную электронную пару и является, таким образом, донором электронов. Акцептор (комплексообразователь) для размещения шести электронных пар должен предоставить шесть вакантных орбиталей.

При образовании комплексного иона [Co(NH3)6] 3+ четыре неспаренных электрона в d – состоянии Co 3+ сначала образуют электронные пары, в результате чего две 3d-орбитали освобождаются:

конфигурация кобальта2

Затем образуется сам комплексный ион [Co(NH3)6] 3+ , имеющий следующее строение:

конфигурация комплексного иона кобальта

В образовании этого комплексного иона принимают участие внутренние 3d-орбитали и внешние 4s- и 4p-орбитали. Тип гибридизации — d 2 sp 3 .

Наличие только спаренных электронов говорит о диамагнитных свойствах иона.

Строение комплексных соединений с точки зрения теории кристаллического поля

Теория кристаллического поля основывается на допущении, что связь между комплексообразователем и лигандами частично ионная. Однако принимается во внимание влияние электростатического поля лигандов на энергетическое состояние электронов центрального иона.

Рассмотрим две комплексные соли:

K2[Zn(CN)4] – имеет тетраэдрическую пространственную структуру (sp 3 — гибридизация)

K3[Fe(CN)6] – имеет октаэдрическую пространственную структуру (sp 3 d 2 -гибридизация)

Комплексообразователи имеют следующую электронную конфигурацию:

d – электроны одного и того же энергетического уровня одинаковы в случае свободного атома или иона. Но действие электростатического поля лигандов способствует расщеплению энергетических уровней d – орбиталей в центральном ионе. И расщепление тем больше (при одном и том же комплексообразователе), чем сильнее поле, создаваемое лигандами. По своей способности вызывать расщепление энергетических уровней лиганды располагаются в ряд:

CN — > NO2 — > NH3 > SCN — > H2O > OH — > F — > Cl — > Br — > I —

Строение комплексного иона влияет на характер расщепления энергетических уровней комплексообразователя.

При октаэдрическом строении комплексного иона, dγ-орбитали (dz 2 -, dx 2 -y 2 -орбитали) подвержены сильному взаимодействию поля лигандов, и электроны этих орбиталей могут иметь большую энергию, чем электроны dε-орбитали (dxy, dxz, dyz – орбитали).

Расщепление энергетических уровней для электронов в d-состоянии в октаэдрическом поле лигандов можно представить в виде схемы:

расщепление энергетических уровней d-орбитали (октаэдр)

Здесь Δокт – энергия расщепления в октаэдрическом поле лигандов.

При тетраэдрической структуре комплексного иона dγ-орбитали обладают более низкой энергией, чем dε-орбитали:

расщепление энергетических уровней d-орбитали (тетраэдр)

Здесь Δтетр– энергия расщепления в тетраэдрическом поле лигандов.

Энергию расщепления Δ определяют экспериментально по спектрам поглощения веществом квантов света, энергия которых равна энергии соответствующих электронных переходов. Спектр поглощения, а также и окраска комплексных соединений d-элементов, обусловлены переходом электронов с d-орбитали низшей энергии на d-орбиталь с более высокой энергией.

Так, в случае соли K3[Fe(CN)6], при поглощении кванта света, вероятен переход электрона с dε-орбитали на dγ-орбиталь. Этим объясняется, что гексацианоферрат(III) калия K3[Fe(CN)6] имеет оранжево-красную окраску. А соль тетрацианоцинкат калия K2[Zn(CN)4] не может поглощать свет и, вследствие этого, она бесцветна. Это объясняется тем, что переход электронов с dγ-орбитали на dε-орбиталь неосуществим.

Строение комплексных соединений с точки зрения теории молекулярных орбиталей

Метод молекулярных орбиталей (МО) был ранее рассмотрен в разделе Химическая связь и строение молекул.

С помощью этого метода изобразим электронную конфигурацию высокоспинового комплексного иона [Ni(NH3)6] 2+ .

Электронная конфигурация иона Ni 2+ :

1s 2 2s 2 2p 6 3s 2 3p 6 4s 0 3d 8 4p 0 4d 0 или …4s 0 3d 8 4p 0 4d 0

конфигурация иона никеля

В комплексном ионе [Ni(NH3)6] 2+ в образовании химической связи принимают участие 8 электронов центрального иона Ni 2+ и 12 электронов шести лигандов NH3.

Комплексный ион имеет октаэдрическое строение. Образование МО возможно только в том случае, когда энергии исходных взаимодействующих частиц близки по своим значениям, а также ориентированы в пространстве соответствующим образом.

В нашем случае, орбиталь 4s иона Ni 2+ равноценно перекрывается с орбиталями каждого из шести лигандов. В результате этого образуются молекулярные орбитали: связывающая σs св и разрыхляющая σs разр .

Перекрывание трех 4p-орбиталей комплексообразователя с орбиталями лигандов приводит к образованию шести σp-орбиталей: связывающих σх св , σy св , σz св и разрыхляющих σх разр , σy разр , σz разр .

Перекрывание dz 2 и dx 2 y 2 комплексообразователя с орбиталями лигандов способствует образованию четырех молекулярных орбиталей: двух связывающих σ св х 2 y 2 , σ св z 2 и двух разрыхляющих σ разр х 2 — y 2 , σ разр z 2 .

Орбитали dxy, dxz, dyz иона Ni 2+ не связываются с орбиталями лигандов, т.к. не направлены к ним. Вследствие этого, они не принимают участия в образовании σ-связи, и являются несвязывающими орбиталями: πxz, πxy, πyz.

Итого, комплексный ион [Ni(NH3)6] 2+ содержит 15 молекулярных орбиталей. Расположение электронов можно изобразить следующим образом:

Схематично образование молекулярных орбиталей изображено на диаграмме ниже:

Читайте также: