Применение глюкозы и фруктозы кратко химия

Обновлено: 08.07.2024

Углеводы – важнейшая составляющая растительных организмов. Углеводы также являются элементом биосистемы. Они входят в пищевой рацион людей и многих животных. Углеводы, или сахариды – органические соединения, общая формула которых Cn(H2O)n. В них может присутствовать гидроксильная группа – ОН, либо карбонильная группа –С=О, либо альдегидная группа – СНО. Углеводы составляют около 80 % сухого вещества растений и около 2 % сухого вещества животных. Углеводы синтезируются в растительных организмах в результате процесса фотосинтеза. Реакция получения углеводов протекает в присутствии света. 6 СО2 + 6 Н2О →С6Н12О6 + 6 О2

План урока:

Виды углеводов

Номенклатура углеводов

Моносахариды

Моносахариды, или монозы – гетерофункциональные соединения, которые включают одну альдегидную или кетонную группу и гидроксильные группы. Моносахариды классифицируются на альдегидоспирты и кетоспирты.

Кристаллические монозы при растворении в воде показывают свою оптическую активность. Если в течение первого часа они будут показывать себя как левовращающие, то к концу часа они могут поменять сторону вращения.

Изомерия моносахаридов

Для молекул углеводов моносахаридов характерно несколько видов изомерии.

  • Изомерия между альдегидоспиртами и кетоспиртами.

Например, глюкоза изомерна фруктозе.

Оптическая изомерия углеводов связана с различным положением гидроксильной группы при наличии ассиметричного центра. Число оптических изомеров можно определить по формуле:

N=2 n , где n – количество ассиметричных атомов углерода.

Оптические изомеры глюкозы

В кольчато-цепной таутомерии отражается динамическое равновесие между циклической и открытой формой моносахаридов в растворе.

Физические свойства моносахаридов

Моносахариды – прозрачные кристаллы со сладким вкусом. Они хорошо растворимы в воде, но не растворимы в эфирах. У углеводов моносахаридов небольшая температура кипения.

У моносахаридов разные степени сладости. Например, фруктоза в три раза слаще глюкозы.

Химические свойства моносахаридов

В зависимости от характера реагента в реакцию вступают линейная или циклическая форма.

Взаимодействие с бромной водой:

Взаимодействие с аммиачным раствором оксида серебра (качественная реакция на альдегиды):

Взаимодействие с гидроксидом меди:

Взаимодействие с реактивом Фелинга:

Взаимодействие с сильным окислителем – концентрированной азотной кислотой:

Щелочи с высокой концентрацией вызывают осмоление сахаров. При взаимодействии с разбавленным раствором щелочи образуется ендиол.

В растворе глюкозы, хранящемся в стеклянной склянке, через 5 суток хранения будет 66,5 % глюкозы, 31 % фруктозы и 2,5 % монозы. Такой же процесс происходи и в живых организмах, но под действием ферментов.

  • Реакции циклических формы моносахаридов
  • Образование ярко-синего комплекса сахарата меди (II)

В мягких условиях алкилирование протекает только у той гидроксильной группы, где связь самая непрочная (при полуацетальном гидроксиле).

Спиртовое брожение протекает в присутствии дрожжей:

Молочнокислое брожение протекает в присутствии молочнокислых бактерий:

В результате маслянокислого брожения образуется масляная кислота.

Биологическая роль моносахаридов

Моносахариды – источник энергии. Человеческий мозг в день требует не менее 160 г углеводов. Фруктоза применяется в метаболических процессах, а галактоза находится в эритроцитах у людей с третьей группой крови. Рибоза – часть ДНК.

Применение моносахаридов

Процессы брожения моносахаридов используют при производстве спиртов, кисломолочных продуктов, сыров, при квашении овощей и т.д. Моносахариды применяются не только в пищевой, но и в медицинской промышленности. Производные глюкозы используются в качестве инъекций. Глюкозу применяют для получения аскорбиновой кислоты (витамина С).

Дисахариды

Дисахариды – вещества, которые включают остатки двух моносахаридов, между которыми гликозидная связь.

Строение углеводов – дисахаридов

Для дисахаридов характерно наличие гликозидной связи. Она формируется при взаимодействии полуацетального (гликозидного) гидроксила и полуацетального или спиртового гидроксила.

  • Связь между полуацетальными гидроксилами двух моносахаридов
  • Связь между полуацетальным гидроксилам одного моносахарида и спиртовым гидроксилом другого моносахарида

Классификация дисахаридов

Дисахариды можно поделить на две группы.

Они характеризуются одним полуацетальным гидроксилом. Этот гидроксил при таутомерном превращении формирует альдегидную группу. Поэтому сахариды мальтоза и лактоза обладают восстановительными свойствами.

У них нетполуацетального гидроксида, поэтому им не характерны восстановительные свойства.

Физические свойства дисахаридов

Дисахариды – твердые кристаллические вещества со сладким вкусом. Они хорошо растворяются в воде.

Химические реакции углеводов – дисахаридов

Гидролиз дисахаридов проходит в присутствии кислот или ферментов. В ходе реакции дисахарид расщепляется на моносахариды. При этом происходит процесс инверсии (обращения). Смесь с равными молярных количествах компонентов включает вещества с разными вращениями.

Природный инвертный сахар – мед.

Применение дисахаридов

Дисахариды – один из источников энергии. Лактоза – необходимый компонент питания детей. Мальтоза входит в состав проросших зерен злаков, меде, патоке и других продуктах. Она также синтезируется при гидролизе крахмала в присутствии ферментов.

Полисахариды

Полисахариды – природные углеводы, которые состоят из множества остатков моносахаридов. Для полисахаридов характерна высокая молекулярная масса. Они содержат тысячи остатков моносахаридов, между которыми располагаются гликозидные связи.

Крахмал и целлюлоза

Также в число полисахаридов входит гликоген, который синтезируется в человеческих или животных организмах с помощью биохимических превращений из углеводов растений.Его строение схоже с крахмалом, т.к. он тоже состоит из остатков α-глюкозы.

Физические свойства полисахаридов

Полисахариды – аморфные соединения. Они не растворимы в спирте и неполярных растворителях, но некоторые представители полисахаридов растворимы в воде. Например, амилоза при взаимодействии с водой образует коллоидные растворы, а пектин формирует гели. Такие макромолекулы как клетчатка и хитин совсем не растворяются с водой.

Химические свойства полисахаридов

Гидролиз полисахаридов протекает в разбавленных минеральных кислотах. Эта реакция характеризуется разрывом гликозидных связей.

Применение полисахаридов

Сложные углеводы широко применяются в промышленности и медицине. Например, крахмал используют при добывании глюкозы и спирта, а также при изготовлении клея пластмасс. Из целлюлозы изготавливают картон, бумагу и вискозу.

Клеточная стенка растений состоит из целлюлозы, а грибов – из хитина. Полисахариды выполняют в организме человека и животных защитную, структурную, запасающую и другие функции.

Глюкоза С6Н12O6 представляет собой наиболее распространенный и наиболее важный моносахарид — гексозу. Она является структурной единицей большинства пищевых ди- и полисахаридов.

Биологическая роль глюкозы


Глюкоза образуется в природе в процессе фотосинтеза, протекающего под действием солнечного света в листьях растений:

Глюкоза – ценное питательное вещество. Она является обязательным компонентом крови и тканей животных и непосредственным источником энергии для клеточных реакций. При окислении ее в тканях освобождается энергия, необходимая для нормальной жизнедеятельности организмов:


Глюкоза – необходимый компонент обмена углеводов. Она необходима для образования в печени гликогена (запасной углевод человека и животных).

Уровень содержания глюкозы в крови человека постоянен. Во всем объеме крови взрослого человека содержится 5-6 г глюкозы. Такого количества достаточно для покрытия энергетических затрат организма в течение 15 минут его жизнедеятельности.

При снижении ее уровня в крови или высокой концентрации и невозможности использования, как это происходит при сахарном диабете, наступает сонливость, может наступить потеря сознания (гипогликемическая кома).

Строение глюкозы. Изомерия

В молекуле глюкозы присутствуют альдегидная и гидроксильная группы.

Моносахаридам свойственна также иная структура, возникающая в результате внутримолекулярной реакции между карбонильной группой с одним из спиртовых гидроксидов. Такая реакция внутри одной молекулы сопровождается ее циклизацией.


Известно, что наиболее устойчивыми являются 5-ти и 6-ти членные циклы. Поэтому, как правило, происходит взаимодействие карбонильной группы с гидроксилом при 4-м или 5-м углеродном атоме.

В результате взаимодействия карбонильной группы с одной из гидроксильных глюкоза может существовать в двух формах: открытой цепной и циклической.

Образование циклической формы глюкозы при взаимодействии альдегидной группы и спиртового гидроксила при С5 приводит к появлению нового гидроксила у С1 называемого полуацетальным (крайний правый). Он отличается от других большей реакционной способностью, а циклическую форму в этом случае называют также полуацетальной.

В кристаллическом состоянии глюкоза находится в циклической форме, а при растворении частично переходит в открытую и устанавливается состояние подвижного равновесия.


Например, в водном растворе глюкозы существуют следующие структуры:

Подвижное равновесие между взаимопревращающимися структурными изомерами (таутомерами) называется таутомерией. Данный случай относится к цикло-цепной таутомерии моносахаридов.

Циклические α- и β-формы глюкозы представляют собой пространственные изомеры, отличающиеся положением полуацетального гидроксила относительно плоскости кольца.

В α-глюкозе этот гидроксил находится в транс-положении к гидроксиметильной группе -СН2ОН, в β-глюкозе – в цис-положении.

С учетом пространственного строения шестичленного цикла

формулы этих изомеров имеют вид:


Аналогичные процессы происходят и в растворе рибозы:

В твердом состоянии глюкоза имеет циклическое строение.

Обычная кристаллическая глюкоза – это α-форма. В растворе более устойчива β-форма (при установившемся равновесии на неё приходится более 60% молекул).

Доля альдегидной формы в равновесии незначительна. Это объясняет отсутствие взаимодействия с фуксинсернистой кислотой (качественная реакция альдегидов).

Явление существования веществ в нескольких взаимопревращающихся изомерных формах было названо А. М. Бутлеровым динамической изомерией. Позднее это явление было названо таутомерией.

Для глюкозы кроме явления таутомерии характерны структурная изомерия с кетонами (глюкоза и фруктоза – структурные межклассовые изомеры) и оптическая изомерия:


Физические свойства глюкозы

Она содержится в растительных и живых организмах, особенно много ее содержится в виноградном соке (отсюда и название – виноградный сахар), в спелых фруктах и ягодах. Мед в основном состоит из смеси глюкозы с фруктозой.

В крови человека ее содержится примерно 0,1 %

Получение глюкозы

Основным способом получения моносахаридов, имеющим практическое значения, является гидролиз ди- и полисахароидов.

1. Гидролиз полисахаридов

Глюкозу чаще всего получают гидролизом крахмала (промышленный способ получения):

2. Гидролиз дисахаридов3. Альдольная конденсация формальдегида (реакция А.М. Бутлерова)

Первый синтез углеводов из формальдегида в щелочной среде осуществил А.М. Бутлеров в 1861 году.


4. Фотосинтез

В природе глюкоза образуется в растениях в результате фотосинтеза:


Применение глюкозы

Глюкоза применяется в медицине в качестве укрепляющего лечебного средства при явлениях сердечной слабости, шоке, для приготовления лечебных препаратов, консервирования крови, внутривенного вливания, при самых разнообразных заболеваниях (особенно при истощении организма).

Широко применяют глюкозу в кондитерском деле (изготовление мармелада, карамели, пряников и т. д.)

Глюкоза находит широкое применение в текстильной промышленности при крашении и печатании рисунков.

Глюкоза применяется в качестве исходного продукта при производстве аскорбиновых и глюконовых кислот, для синтеза ряда производных сахаров и т.д.

Она применяется в производстве зеркал и елочных игрушек (серебрение).

В микробиологической промышленности как питательная среда для получения кормовых дрожжей.

Большое значение имеют процессы брожения глюкозы. Так, например, при квашении капусты, огурцов, молока происходит молочнокислое брожение глюкозы, так же как и при силосовании кормов. Если подвергаемая силосованию масса недостаточно уплотнена, то под влиянием проникшего воздуха происходит маслянокислое брожение и корм становится непригоден к применению.

На практике используется также спиртовое брожение глюкозы, например при производстве пива.


Фруктоза

В отличие от глюкозы она может без участия инсулина проникать из крови в клетки тканей. По этой причине фруктоза рекомендуется в качестве наиболее безопасного источника углеводов для больных диабетом.

Как и глюкоза, она может существовать в линейной и циклических формах. В линейной форме фруктоза представляет собой кетоноспирт с пятью гидроксильными группами.

Строение ее молекулы можно выразить формулой:

Имея гидроксильные группы, фруктоза, как и глюкоза, способна образовывать сахараты и сложные эфиры. Однако вследствие отсутствия альдегидной группы она в меньшей степени подвержена окислению, чем глюкоза. Фруктоза, также как и глюкоза, не подвергается гидролизу.

Фруктоза вступает во все реакции многоатомных спиртов, но, в отличие от глюкозы, не реагирует с аммиачным раствором оксида серебра.

Теория по теме Углеводы. Краткие конспект по углеводам. Классификация углеводов, химические свойства углеводов, способы получения углеводов. Свойства и получение моносахаридов (глюкоза, фруктоза), олигосахаридов (сахароза и др.), полисахаридов.

Углеводы (сахара) – органические соединения, имеющие сходное строение, состав большинства которых отражает формула Cx(H2O)y, где x, y ≥ 3.

Исключение составляет дезоксирибоза, которая имеют формулу С5Н10O4 (на один атом кислорода меньше, чем рибоза).

По числу структурных звеньев

  • Моносахариды — содержат одно структурное звено.
  • Олигосахариды — содержат от 2 до 10 структурных звеньев (дисахариды, трисахариды и др.).
  • Полисахариды — содержат n структурных звеньев.

Некоторые важнейшие углеводы:

По числу атомов углерода в молекуле

  • Пентозы — содержат 5 атомов углерода.
  • Гексозы — содержат 6 атомов углерода.
  • И т.д.

По размеру кольца в циклической форме молекулы

  • Пиранозы — образуют шестичленное кольцо.
  • Фуранозы — содержат пятичленное кольцо.

1. Горение

Все углеводы горят до углекислого газа и воды.

Например, при горении глюкозы образуются вода и углекислый газ

2. Взаимодействие с концентрированной серной кислотой

Например, при действии концентрированной серной кислоты на глюкозу образуются углерод и вода

Моносахариды – гетерофункциональные соединения, в состав их молекул входит одна карбонильная группа (группа альдегида или кетона) и несколько гидроксильных.

Моносахариды являются структурными звеньями олигосахаридов и полисахаридов.

Важнейшие моносахариды

Глюкоза – это альдегидоспирт (альдоза).

Она содержит шесть атомов углерода, одну альдегидную и пять гидроксогрупп.


Глюкоза существует в растворах не только в виде линейной, но и циклических формах (альфа и бета), которые являются пиранозными (содержат шесть звеньев):

α-глюкоза β-глюкоза


Химические свойства глюкозы

Водный раствор глюкозы

В водном растворе глюкозы существует динамическое равновесие между двумя циклическими формами — α и β и линейной формой:


Качественная реакция на многоатомные спирты: реакция со свежеосажденным гидроксидом меди (II)

При взаимодействии свежеосажденного гидроксида меди (II) с глюкозой (и другими моносахаридами происходит растворение гидроксида с образованием комплекса синего цвета.

Реакции на карбонильную группу — CH=O

Глюкоза проявляет свойства, характерные для альдегидов.


  • Реакция с гидроксидом меди (II) при нагревании. При взаимодействии глюкозы с гидроксидом меди (II) выпадает красно-кирпичный осадок оксида меди (I):


  • Окисление бромной водой. При окислении глюкозы бромной водой образуется глюконовая кислота:


  • Также глюкозу можно окислить хлором, бертолетовой солью, азотной кислотой.
  • Каталитическое гидрирование. При взаимодействии глюкозы с водородом происходит восстановление карбонильной группы до спиртового гидроксила, образуется шестиатомный спирт – сорбит:


  • Брожение глюкозы. Брожение — это биохимический процесс, основанный на окислительно-восстановительных превращениях органических соединений в анаэробных условиях.

Спиртовое брожение. При спиртовом брожении глюкозы образуются спирт и углекислый газ:

Молочнокислое брожение. При молочнокислом брожении глюкозы образуется молочная кислота:


Маслянокислое брожение. При маслянокислом брожении глюкозы образуется масляная кислота (внезапно):


  • Образование эфиров глюкозы (характерно для циклической формы глюкозы).

Глюкоза способна образовывать простые и сложные эфиры.

Наиболее легко происходит замещение полуацетального (гликозидного) гидроксила.

Например, α-D-глюкоза взаимодействует с метанолом.

При этом образуется монометиловый эфир глюкозы (α-O-метил-D-глюкозид):


Простые эфиры глюкозы получили название гликозидов.

В более жестких условиях (например, с CH3-I) возможно алкилирование и по другим оставшимся гидроксильным группам.

Моносахариды способны образовывать сложные эфиры как с минеральными, так и с карбоновыми кислотами.

Например, β-D-глюкоза реагирует с уксусным ангидридом в соотношении 1:5 с образованием пентаацетата глюкозы (β-пентаацетил-D-глюкозы):


Получение глюкозы

Гидролиз крахмала

В присутствии кислот крахмал гидролизуется:

Синтез из формальдегида

Реакция была впервые изучена А.М. Бутлеровым. Синтез проходит в присутствии гидроксида кальция:

Фотосинтез

В растениях углеводы образуются в результате реакции фотосинтеза из CO2 и Н2О:

Фруктоза — структурный изомер глюкозы. Это кетоноспирт (кетоза): она тоже может существовать в циклических формах (фуранозы).

Она содержит шесть атомов углерода, одну кетоновую группу и пять гидроксогрупп.

Фруктоза α-D-фруктоза β-D-фруктоза



Фруктоза – кристаллическое вещество, хорошо растворимое в воде, более сладкое, чем глюкоза.

В свободном виде содержится в мёде и фруктах.

Химические свойства фруктозы связаны с наличием кетонной и пяти гидроксильных групп.

При гидрировании фруктозы также получается сорбит.

Дисахариды – это углеводы, молекулы которых состоят из двух остатков моносахаридов, соединенных друг с другом за счет взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой).

Сахароза (свекловичный или тростниковый сахар) С12Н22О11

Молекула сахарозы состоит из остатков α-глюкозы и β-фруктозы, соединенных друг с другом:


В молекуле сахарозы гликозидный атом углерода глюкозы связан из-за образования кислородного мостика с фруктозой, поэтому сахароза не образует открытую (альдегидную) форму.

Сахароза подвергается гидролизу подкисленной водой. При этом образуются глюкоза и фруктоза:

Мальтоза С12Н22О11

Это дисахарид, состоящий из двух остатков α-глюкозы, она является промежуточным веществом при гидролизе крахмала.


Мальтоза является восстанавливающим дисахаридом (одно из циклических звеньев может раскрываться в альдегидную группу) и вступает в реакции, характерные для альдегидов.

При гидролизе мальтозы образуется глюкоза.

Полисахариды — это природные высокомолекулярные углеводы, макромолекулы которых состоят из остатков моносахаридов.

Основные представители — крахмал и целлюлоза — построены из остатков одного моносахарида — глюкозы.

Крахмал и целлюлоза имеют одинаковую молекулярную формулу: (C6H10O5)n, но совершенно различные свойства.

Это объясняется особенностями их пространственного строения.

Крахмал состоит из остатков α-глюкозы, а целлюлоза – из β-глюкозы, которые являются пространственными изомерами и отличаются лишь положением одной гидроксильной группы:


Крахмал

Крахмалом называется полисахарид, построенный из остатков циклической α-глюкозы.


В его состав входят:

  • амилоза (внутренняя часть крахмального зерна) – 10-20%
  • амилопектин (оболочка крахмального зерна) – 80-90%

Цепь амилозы включает 200 — 1000 остатков α-глюкозы (средняя молекулярная масса 160 000) и имеет неразветвленное строение.

Амилопектин имеет разветвленное строение и гораздо большую молекулярную массу, чем амилоза.

Свойства крахмала

  • Гидролиз крахмала: при кипячении в кислой среде крахмал последовательно гидролизуется:


  • Крахмал не дает реакцию “серебряного зеркала” и не восстанавливает гидроксид меди (II).
  • Качественная реакция на крахмал: синее окрашивание с раствором йода.

Целлюлоза

Целлюлоза (клетчатка) – наиболее распространенный растительный полисахарид. Цепи целлюлозы построены из остатков β-глюкозы и имеют линейное строение.


Свойства целлюлозы

  • Образование сложных эфиров с азотной и уксусной кислотами.

Нитрование целлюлозы.

Так как в звене целлюлозы содержится 3 гидроксильные группы, то при нитровании целлюлозы избытком азотной кислоты возможно образование тринитрата целлюлозы, взрывчатого вещества пироксилина:


Ацилирование целлюлозы.

При действии на целлюлозу уксусного ангидрида (упрощённо-уксусной кислоты) происходит реакция этерификации, при этом возможно участие в реакции 1, 2 и 3 групп ОН.

Получается ацетат целлюлозы – ацетатное волокно.


Целлюлоза, подобно крахмалу, в кислой среде может гидролизоваться, в результате тоже получается глюкоза. Но процесс идёт гораздо труднее.

Моносахариды

Моносахариды – это самые простые углеводы, состоящие из одного звена. Обычно это твердые сладкие вещества, хорошо растворимые в воде, хуже – в спиртах и практически не вступающие в реакцию с эфиром.

Общая характеристика

Исследователям впервые удалось получить глюкозу в 1811 году: русский ученый Константин Сигизмунд гидролизовал это вещество из крахмала, а через 33 года другой русский ученый К. Шмидт придумал углеводам их название.

В пище моносахариды представлены 3 веществами: глюкозой, фруктозой, галактозой.

В природе простейшие углеводы обычно представлены в форме глюкозы.

Все они обладают общей формулой – С6Н12О6. И поскольку каждый из них имеет в составе 6 атомов углерода, принадлежат к гексозной группе. Меж тем, несмотря на общую молекулярную формулу, расположение атомов в каждом из этих веществ отличается. Это позволяет называть их структурными изомерами.

Классификация простых углеводов

В современной науке применяют разные классификации для определения типов моносахаридов.

Но для начала важно сказать, что существует две формы этих веществ:

Классификация моносахаридов

Моносахариды открытой формы – это вещества, молекула которых состоит из карбонильной и нескольких гидроксильных групп. Это значит, что они могут быть альдегидоспиртами и кетоноспиртами. Отсюда и названия групп – альдозы и кетозы.

Моносахариды циклической формы могут создавать так называемые циклы, замыкаясь в кольца. Этот вид вещества более устойчив, поэтому и в природе они представлены в большем количестве.

Кроме того, моносахариды различают по длине углеродной цепи (количеству атомов углерода). Отсюда и систематизация веществ на триозы, тетрозы, пентозы, гексозы и так далее.

Изомеры моносахаридов

Биохимические свойства

От функциональных групп моносахаридов зависят и их свойства. Соответственно, они могут вступать в реакции окисления и восстановления.

В результате окисления моносахаридов создаются разные классы кислот. Альдоновые кислоты образуются в результате окисления альдегидной группы С1 –атома до карбоксильной группы. Альдаровые кислоты возникают после окисления альдегидной или первичной спиртовой группы С6– атома углерода. Альдуроновая кислота создается вследствие окисления первичной спиртовой группы С6-углерода.

Восстановление моносахаридов под воздействием ферментов или других веществ сопровождается образованием полиспиртов, например, сорбитола или рибитола. Последний, кстати, является компонентом витамина В2.

Функции простых сахаров

Моносахариды в первую очередь являются источниками энергии. Большинство из них, как и другие углеводы, в 1 грамме вещества содержат примерно 4 килокалории.

Мозгу же для адекватного функционирования требуется не меньше 160 г этого сладкого вещества.

Моносахариды и сахар в крови

В роли питательных веществ

Моносахариды в качестве питательных веществ используются в натуральной и полуискусственной формах.

В природе натуральные моносахариды – это:

  • глюкоза (декстроза);
  • фруктоза;
  • галактоза;
  • манноза;
  • рибоза;
  • дезоксирибоза.

Все они являются гексозами, то есть состоят из 6 атомов углерода.

Полуискусственные моносахара

Гексозы (содержат 6 атомов углерода):

  • D и L-аллоза;
  • D и L-альтроза;
  • D и L-фукоза;
  • D и L-гулоза;
  • D-сорбоза;
  • D-тагатоза.

Моносахариды в фруктовых соках

Пентозы (содержат 5 атомов углерода):

  • D и L-арабиноза;
  • D и L-ликсоза;
  • рамноза;
  • D-рибоза;
  • рибулоза и ее синтетическая форма;
  • D-ксилоза (древесный сахар).

Тетрозы (содержат 4 атома углерода):

  • D и L-эритроза;
  • эритрулоза;
  • D и L-треоза.

Примеры продуктов, содержащих моносахариды:

  • фрукты и фруктовые соки (глюкоза, фруктоза);
  • мед (глюкоза, фруктоза);
  • сиропы (глюкоза, фруктоза);
  • десертные вина (глюкоза, фруктоза);
  • напитки (безалкогольные, энергетики, ликеры), шоколад, молочные десерты (в основном глюкоза).

Характеристика пищевых моносахаров

Глюкоза

Этот вид моносахара считается наиболее важным в природе. Глюкоза – составляющий элемент дисахаридов и полисахаридов. В природных условиях образуется в результате фотосинтеза. Также производится из полисахаридов, таких как целлюлоза и крахмал, в результате гидролиза и ферментирования. В процессе ферментирования глюкозы образовываются диоксид углерода и этиловый спирт. И эта способность характерна для всех углеводов, так как в результате позволяет крови транспортировать сахара ко всем клеткам организма. В человеческом организме играет роль поставщика энергии и необходима для работы мышц.

Фруктоза

Главное отличие фруктозы от глюкозы – в неустойчивости к щелочным и кислым растворам. Активно применяется для производства мороженого, как вещество, предотвращающее образование кристаллов. Употребляемая в больших количествах, вызывает расстройство пищеварения. А также увеличивает концентрацию липидов в крови, что, как полагают, является фактором риска развития кардиологических болезней.

Галактоза

Как правило, она, не встречается в природе, но гидролизуется из лактозы, которая содержится в молоке. Хотя галактоза не так активно растворяется в воде и является менее сладким веществом, чем глюкоза, она имеет ряд других преимуществ. В частности, образует гликолипиды и гликопротеины, которые содержатся во многих тканях.

Моносахарид галактоза представлен сразу в двух формах: циклической и ациклической. Содержится в тканях растений, а также является элементом некоторых полисахаридов, в том числе и бактериальных, поэтому нередко становится участником процессов брожения и трансформации в так называемые лактозные дрожжи. В человеческом организме представлена в составе лактозы (молочный сахар) и некоторых других веществ. В результате химических реакций легко трансформируется в глюкозу, что помогает более легкому усвоению углевода. Также при определенных обстоятельствах способна переходить в галактуроновую или аскорбиновую кислоту. В женском организме галактоза может воспроизводиться из глюкозы, чтобы дальше трансформироваться в лактозу, содержащуюся в молочных железах.

Наличие галактозы обнаружено в молоке, помидорах и многих других овощах и фруктах. В пищевой промышленности галактоза активно используется в качестве активного ингредиента энергетических напитков.

Галактоза обладает разными уникальными свойствами. В частности, она способствует более быстрой потере и затем удержанию веса, служит профилактическим средством против диабета у взрослых. Также является стабильным источником энергии для спортсменов и лиц, работающих физически.

Потребность в моносахаридах

А вот кому стоит более тщательно считать калории и потребление углеводов в сутки, так это лицам с ожирением разных стадий, гипертоникам, пожилым, а также ведущим малоподвижный образ жизни.

Кроме того, моносахариды необходимы людям с дефицитом кальция и витамина С, так как эти углеводы помогают усвоению названных полезных веществ.

Понять, что организм испытывает нехватку моносахаридов можно по сниженному сахару в крови, резкому похудению, депрессивных состояниях, а также постоянному чувству голода. Наоборот, сигналом к уменьшению сладких порций служат дистрофия печени, признаки гипертонии и кислотно-щелочной дисбаланс. Также не следует злоупотреблять сахарами людям с непереносимостью молока и молочных продуктов.

Моносахариды – важная часть нашего ежедневного питания. Они необходимы человеку для пополнения жизненных сил, хорошего настроения и правильной работы мозга. Так позаботьтесь о том, чтобы эти вещества присутствовали в вашем рационе.

  1. Ю. С. Шабаров, Т. С. Орецкая, П. В. Сергиев. – Моно- и дисахариды (учебное пособие для студентов III курса), Часть I, 5-е издание, Москва, МГУ им. М. В. Ломоносова, 2010 г. – 82 с.
  2. Ю. С. Шабаров, Т. С. Орецкая. – Моно- и дисахариды (учебное пособие для студентов III курса), Часть II, 5-е издание, Москва, МГУ им. М. В. Ломоносова, 2010 г. – 86 с.

Специальность: инфекционист, гастроэнтеролог, пульмонолог .

Общий стаж: 35 лет .

Образование: 1975-1982, 1ММИ, сан-гиг, высшая квалификация, врач-инфекционист .

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Углеводы

Описание презентации по отдельным слайдам:

Углеводы

Что такое углеводы? Углеводы – полифункциональные соединения это органические.

Что такое углеводы? Углеводы – полифункциональные соединения это органические вещества, молекулы которых состоят из атомов углерода, водорода и кислорода, причем водород и кислород находятся в них, как правило, в таком же соотношении, как и в молекуле воды (2:1). Общая формула углеводов Сn(H2O)m

Функции углеводов 1. Энергетическая ( 1г – 4,5 ккал) 2. Запасная. 3. Глюкоза.

Функции углеводов 1. Энергетическая ( 1г – 4,5 ккал) 2. Запасная. 3. Глюкоза – пища для мозга. 4. Рибоза и дезоксирибоза входят в состав ДНК и РНК. 5. Целлюлоза (клетчатка) – строительный материал растительных клеток.

На долю углеводов приходится около 80% сухого вещества растений и около 20% ж.

На долю углеводов приходится около 80% сухого вещества растений и около 20% животных. Пища человека состоит примерно на 70% из углеводов.

Углеводы используются с глубокой древности - самым первым углеводом (точнее с.

Углеводы используются с глубокой древности - самым первым углеводом (точнее смесью углеводов), с которой познакомился человек, был мёд. Родиной сахарного тростника является северо-западная Индия-Бенгалия. Европейцы познакомились с тростниковым сахаром благодаря походам Александра Македонского в 327 г. до н.э. Крахмал был известен ещё древним грекам. Историческая справка

1. Свекловичный сахар в чистом виде был открыт лишь в 1747 г. немецким химико.

1. Свекловичный сахар в чистом виде был открыт лишь в 1747 г. немецким химиком А. Маргграфом 2. В 1811 г. русский химик Кирхгоф впервые получил глюкозу гидролизом крахмала 3. Впервые правильную эмпирическую формулу глюкозы предложил шведский химик Я. Берцеллиус в 1837 г. С6Н12О6 4. Синтез углеводов из формальдегида в присутствии Са(ОН)2 был произведён А.М. Бутлеровым в 1861 г.

Углеводы = сахариды Простые или моносахариды Сложные Дисахариды С12Н22О11 П.

Углеводы = сахариды Простые или моносахариды Сложные Дисахариды С12Н22О11 Полисахариды (С6Н10О5)n Глюкоза Фруктоза С6Н12О6 Галактоза Рибоза С5Н10О5 Дезоксирибоза С5Н10О4 сахароза лактоза мальтоза крахмал гликоген целлюлоза хитин Чем больше молекулярная масса углеводов, тем менее растворимое вещество и не сладкое на вкус. Классификация углеводов

Крахмал Целлюлоза Гликоген (С6Н10О5)n (гидролизуются на большое количество м.

Крахмал Целлюлоза Гликоген (С6Н10О5)n (гидролизуются на большое количество молекул моносахаридов) Классификация углеводов Моносахариды Дисахариды Полисахариды Глюкоза ( виноградный сахар) Фруктоза Рибоза С6Н12О6 (не гидролизуются) Сахароза (свекловичный или тростниковый сахар) Лактоза (молочный сахар) С12Н22О11 (гидролизуются на 2 молекулы моносахаридов)

Моносахариды - пентозы Рибоза Дезоксирибоза

Моносахариды - пентозы Рибоза Дезоксирибоза

Глюкоза Фруктоза Галактоза Моносахариды - гексозы

Глюкоза Фруктоза Галактоза Моносахариды - гексозы

Дисахариды Сахароза (обычный пищевой сахар). Она содержится в большом количес.

Дисахариды Сахароза (обычный пищевой сахар). Она содержится в большом количестве сахарной свекле, сахарном тростнике.

Мальтоза Мальтоза (солодовый сахар). Мальтозу можно получить при гидролизе кр.

Мальтоза Мальтоза (солодовый сахар). Мальтозу можно получить при гидролизе крахмала под действием ферментов, содержащихся в солоде.

Крахмал – резервный полисахарид многих растений. В промышленности его получа.

Крахмал – резервный полисахарид многих растений. В промышленности его получают из картофеля. Это белый порошок. Полисахариды

Целлюлоза (клетчатка) – широко распространена в природе: из неё построены тк.

Целлюлоза (клетчатка) – широко распространена в природе: из неё построены ткани растений. Вата, фильтровальная бумага – наиболее чистые формы целлюлозы (до 96%). Составная часть древесины – целлюлоза. Полисахариды

Гликоген – животный крахмал, который откладывается в печени и является резерв.

Гликоген – животный крахмал, который откладывается в печени и является резервным веществом в организме человека и животных. Полисахариды

ГЛЮКОЗА

Твердое, кристаллическое вещество Без цвета Имеет сладковатый вкус (слаще сах.

Твердое, кристаллическое вещество Без цвета Имеет сладковатый вкус (слаще сахара) Хорошо растворимо в воде Физические свойства глюкозы

Строение глюкозы С6Н12О6 – молекулярная формула ГЛЮКОЗА – АЛЬДЕГИДОСПИРТ, т.к.

Строение глюкозы С6Н12О6 – молекулярная формула ГЛЮКОЗА – АЛЬДЕГИДОСПИРТ, т.к. в реакции с Cu (OH)2 без нагревания образуется раствор ярко-синего цвета, а при нагревании – желтый и красный осадки.

Полная структурная формула глюкозы О СН2 – СН – СН – СН – СН – С ﺍ ﺍ ﺍ ﺍ ﺍ Н.

Полная структурная формула глюкозы О СН2 – СН – СН – СН – СН – С ﺍ ﺍ ﺍ ﺍ ﺍ Н ОН ОН ОН ОН ОН

Сокращенная структурная формула глюкозы О СН2 – СН - С ﺍ ﺍ Н ОН ОН 4

Сокращенная структурная формула глюкозы О СН2 – СН - С ﺍ ﺍ Н ОН ОН 4

Глюкоза является бифункциональным соединением – альдегидоспиртом Глюкоза обр.

Глюкоза является бифункциональным соединением – альдегидоспиртом Глюкоза образует 2 циклические формы: α-глюкоза, β-глюкоза

Свойства как многоатомного спирта ( по – ОН группе), 2. Свойства как альдегид.

Свойства как многоатомного спирта ( по – ОН группе), 2. Свойства как альдегида (по -СОН группе), 3. Специфические свойства глюкозы. Химические свойства глюкозы

1. Реакции по гидроксильной группе - ОН а) Глюкоза + Сu(OH)2 без нагревания –.

1. Реакции по гидроксильной группе - ОН а) Глюкоза + Сu(OH)2 без нагревания – ярко-синий раствор б) С карбоновыми кислотами (образуются сложные эфиры)

2.Реакции по альдегидной группе а) Реакции окисления О t О СН2 – СН – С + [О].

2.Реакции по альдегидной группе а) Реакции окисления О t О СН2 – СН – С + [О] → СН2 – СН – С ﺍ ﺍ Н ﺍ ﺍ ОН ОН ОН 4 ОН ОН 4 глюконовая кислота [О] – Cu(OH)2, Ag2O

б) Реакция восстановления О CН2 – СН – С + Н2 → СН2 – СН - СН2 ﺍ ﺍ Н ﺍ ﺍ ﺍ О.

б) Реакция восстановления О CН2 – СН – С + Н2 → СН2 – СН - СН2 ﺍ ﺍ Н ﺍ ﺍ ﺍ ОН ОН 4 ОН ОН 4 ОН сорбит

а) спиртовое брожение С6Н12О6 → 2 С2Н5ОН + 2СО2↑ Этиловый спирт б) молочнокис.

а) спиртовое брожение С6Н12О6 → 2 С2Н5ОН + 2СО2↑ Этиловый спирт б) молочнокислое брожение С6Н12О6 → 2СН3-СНОН –СООН Молочная кислота в) маслянокислое брожение С6Н12О6 → С3Н7СООН + 2Н2↑ + 2СО2↑ г) Полное окисление С6Н12О6 +6О2→ 6Н2О + 6СО2 +Q 3. Специфические свойства глюкозы

Получение глюкозы 1. Фотосинтез 6 СО2 + 6 Н2О → С6Н12О6 + 6 О2 ↑ 2. Гидролиз.

Получение глюкозы 1. Фотосинтез 6 СО2 + 6 Н2О → С6Н12О6 + 6 О2 ↑ 2. Гидролиз дисахаридов и полисахаридов

Применение глюкозы Глюкоза – виноградный сахар

Применение глюкозы Глюкоза – виноградный сахар

1. В кондитерском деле (патока)

1. В кондитерском деле (патока)

2. Для производства кисломолочных продуктов

2. Для производства кисломолочных продуктов

3. Для получения этилового спирта, пива

3. Для получения этилового спирта, пива

4. Для получения зеркал, елочных игрушек, украшений

4. Для получения зеркал, елочных игрушек, украшений

5. Для отделки тканей

5. Для отделки тканей

6. В медицине – укрепляющее лечебное средство

6. В медицине – укрепляющее лечебное средство

Фруктоза – изомер глюкозы С6Н12О6 СН2 – С – СН – СН – СН – СН2 ﺍ ﺍﺍ ﺍ ﺍ ﺍ l О.

Фруктоза – изомер глюкозы С6Н12О6 СН2 – С – СН – СН – СН – СН2 ﺍ ﺍﺍ ﺍ ﺍ ﺍ l ОН О ОН ОН ОН ОН Фруктоза - кетоноспирт

Итоги урока: В сбалансированном питании углеводы составляют 60% от суточного.

Итоги урока: В сбалансированном питании углеводы составляют 60% от суточного рациона Углеводы Недостаток углеводов в пище вреден и приводит к тому, что в организме начинается усиленное использование энергетических возможностей белков и жиров. В этом случае резко увеличивает количество продуктов их расщепления, вредных для человека. По составу их можно классифицировать на Сложные крахмал (С6Н10О5)n простые глюкоза С6Н12О6 Они содержат две функциональные группы: 1) гидроксогруппу, структурная формула которой -ОН 2) карбонильную, структурная формула которой -НС=О Избыток углеводов в пище вреден и приводит к ожирению. Обильное потребление сахара отрицательно сказывается на функции кишечной микрофлоры, приводит к нарушению обмена холестерина и повышению его уровня в сыворотке крови. Углеводы в организме человека могут запасаться! глюкоза С6H12O6 окисление до углекислого газа СО2 и воды Н2О с выделением энергии (1 г. углеводов – 4,1 ккал.)

Краткое описание документа:

Презентация по теме: "Углеводы. Моносахариды". В презентации рассмотрены классификация и функции углеводов. Подробно освещены строение глюкозы, её физические и химические свойства, а также приведены способы получения глюкозы: фотосинтез и лабораторные синтезы. В красочной форме представлены области применения глюкозы.

Читайте также: