Превышение в геодезии это кратко

Обновлено: 05.07.2024

Нивелирование- метод определение превышения, т.е. разности высот между двумя или более точками поверхности.

Способы нивелирования

Геометрическое нивелирование

Такое нивелирование производится с помощью нивелира и вертикальной рейки, т.е. горизонтальным лучом визирования. Это самый популярный метод нивелирования, так как является самым простым и универсальным. С помощью него создана государственная нивелирная сеть и высотные сети различного значения. Ограничен высотой рейки, поэтому неудобен для использования в горной местности. Существует 2 метода нивелирования "из середины" и "вперед". Более удобным и точным считается первый способ, так как нет необходимости определять высоту прибора.

Точность однократного измерения такого метода нивелирования составляет:

При техническом нивелировании от 1-2 мм, до 0,1 мм при нивелировании I класса.

Тригонометрическое нивелирование

В основе способа лежит линейно-угловая засечка. Для измерений используются угломерные приборы, такие как теодолит и тахеометр. Превышение определяют с помощью измерения угла наклона и расстояния. Такой метод нашел широкое применение в строительстве, используется для создания картограммы земляных работ, при топографических съемках и др. Точность измерений до 3 мм, но может быть ограничена в горной местности из-за преломления отвесных линий.

Барометрическое нивелирование

Прибором для измерения служит барометр. Измерения происходят за счет определения разности атмосферного давления на различных высотах. Для определения превышения в точке с известной высотой измеряют температуру и атмосферное давление, тоже самое делают в искомой точке. По разности показателей определяют высоту. Метод используют геологи и геофизики в труднодоступных местах. Невысокая точность измерений (не более 0,5м) не позволяет использовать метод в строительстве.

Гидростатическое нивелирование

Для измерений используют свойства жидкости в сообщающихся сосудах. Жидкость всегда находится на одном уровне в них, вне зависимости от высоты. Высокая точность измерений (0,1 мм) позволяет использовать гидростатические нивелиры в строительных работах, при наблюдении за деформациями сооружений и т.д. Возможно использование на расстоянии, ограниченном длиной трубок, соединяющих сосуды.

Радиолокационное нивелирование

Производится с помощью установленных на воздушных и водных суднах эхолотов и высотомеров. С их помощью автоматически определяется профиль пройденного пути.

Спутниковое нивелирование

Для проведения используются GNSS-приемники. Превышения определяются с помощью измерений аппаратурой, использующей спутниковые системы ГЛОНАСС, GPS, BeiDou, Galileo, QZSS, SBAS и т.д. Точность определения превышений статическим методом может достигать первых миллиметров. Может применяться для создания сетей сгущения, топографических съемок и других видов работ.

Классы нивелирования

Нивелирная сеть - сеть точек земной поверхности, высота которых определена над уровнем моря. Также называется высотная опорная геодезическая сеть. Точки, определенные геометрическим нивелированием, закрепляют на местности марками или реперами. Нивелирная сеть служит основой для топографических съемок.

В России для определения высот используется государственная нивелирная сеть I, II, III и IV классов. Она предназначена для обозначения единой высоты на территории всей страны, используется для инженерно-геодезических и топографических работ. Нивелирная сеть I и II классов является главной высотной основой Российской Федерации. Для создания этих сетей используются специальные программы и самое современное геодезическое оборудование. Помимо определения единой системы высот так же выполняет задачи по изучению поверхности Земли и гравитационного поля, движения земной коры и т.д. Сеть I класса является наиболее точной и служит исходной для сетей следующего класса.

Класс нивелирования зависит от размера максимально допустимой погрешности. Чем выше точность измерений, тем строже допуск. Таким образом, I и II класс относят к высокоточному нивелированию, а III и IV класса - к точному.

Помимо государственной нивелирной сети нивелирование с точностью II, III и IV класса применяется при геодезическом сопровождении строительства и эксплуатации сооружений, железнодорожных работах.

В работах где не так важна высокая точность допустимо применение технического нивелирования, точность такого нивелирования 50мм√L.Например, на изыскательных работах при строительстве дорог или для определения высот при строительстве. Для осуществления технического нивелирования допустимо использование точных или технических нивелиров, а также нивелирных реек шашечного типа.

Инструменты для проведения нивелирования

В зависимости от выбранного метода нивелирования и поставленных задач необходимо выбрать оборудование. Это могут быть оптические, цифровые и лазерные нивелиры, тахеометры, теодолиты. Для достижения максимальной точности оборудование должно быть высокого качества и от проверенных производителей. Инженеры компании "Геодезия и Строительство" помогут выбрать среди разнообразия инструментов, а также проведут обучение при необходимости.

Уклономназывается превышение, которое приходится на единицу горизонтального расстояния.

Вычисляется по формуле i= ∆h/L. Уклон может выражаться в метрах, в процентах %, в промилях ‰ или в градусах.

Для нахождения уклона в %, надо тангенс уклона в метрах умножить на 100.

Для нахождения уклона в ‰, надо тангенс уклона в метрах умножить на 1000.

Чтобы выразить уклон в градусах, надо тангенс в метрах найти по таблице Брадиса в градусах и минутах.

На топографической карте уклон в градусах можно измерить по графику заложений внизу карты.

Превышение –разница высот между двумя точками.

Превышение можно найти несколькими методами.

1). Геометрическим нивелированием с помощью горизонтального луча нивелира и нивелирной рейки.

2). Тригонометрическим нивелированием по измеренному теодолитом вертикальному углу наклона между точками и расстоянию между ними по формуле ∆h = L* tg γ * (b-J). Где: b – высота теодолита, J – высота рейки или вешки на точке, L – расстояние между точками в метрах, tg γ – вертикальный угол.

3). Физическим нивелированием при помощи барометра (измеряя атмосферное давление), при помощи радиолокатора. Физические методы менее точны.

Вопрос № 15.

Ориентирование направлений. Начальные направления.

Ориентированием линии называется определение направления на местности относительно принятого начального направления.

За начальноенаправление в геодезии принимается северное направление меридиана. Начальным меридианом может быть астрономический, магнитный или осевой меридиан. Для ориентирования линий на местности служат азимуты, дирекционные углы и румбы.

Азимут, это угол, который отсчитывается от северного направления меридиана.

Если угол отсчитывается от астрономического меридиана, то он называется истинным азимутом.

Если угол отсчитывается от магнитного меридиана, то он называется магнитным азимутом.

Если угол отсчитывается от осевого меридиана, то он называется дирекционным углом. Азимуты и дирекционные углы могут изменяться от 0º до 360º.

Румбслужит для большего удобства при ориентировании. Он может изменяться от 0º до 90º. За начальное направление для него принимается либо северное направление меридиана, либо южное (в зависимости от четверти). В 1 и 4 четвертях румб отсчитывается от северного направления меридиана, а во 2 и в 3 четвертях румб отсчитывается от южного направления меридиана.

Уклономназывается превышение, которое приходится на единицу горизонтального расстояния.

Вычисляется по формуле i= ∆h/L. Уклон может выражаться в метрах, в процентах %, в промилях ‰ или в градусах.

Для нахождения уклона в %, надо тангенс уклона в метрах умножить на 100.

Для нахождения уклона в ‰, надо тангенс уклона в метрах умножить на 1000.

Чтобы выразить уклон в градусах, надо тангенс в метрах найти по таблице Брадиса в градусах и минутах.

На топографической карте уклон в градусах можно измерить по графику заложений внизу карты.

Превышение –разница высот между двумя точками.

Превышение можно найти несколькими методами.

1). Геометрическим нивелированием с помощью горизонтального луча нивелира и нивелирной рейки.

2). Тригонометрическим нивелированием по измеренному теодолитом вертикальному углу наклона между точками и расстоянию между ними по формуле ∆h = L* tg γ * (b-J). Где: b – высота теодолита, J – высота рейки или вешки на точке, L – расстояние между точками в метрах, tg γ – вертикальный угол.

3). Физическим нивелированием при помощи барометра (измеряя атмосферное давление), при помощи радиолокатора. Физические методы менее точны.

Вопрос № 15.

Ориентирование направлений. Начальные направления.

Ориентированием линии называется определение направления на местности относительно принятого начального направления.

За начальноенаправление в геодезии принимается северное направление меридиана. Начальным меридианом может быть астрономический, магнитный или осевой меридиан. Для ориентирования линий на местности служат азимуты, дирекционные углы и румбы.

Азимут, это угол, который отсчитывается от северного направления меридиана.

Если угол отсчитывается от астрономического меридиана, то он называется истинным азимутом.




Если угол отсчитывается от магнитного меридиана, то он называется магнитным азимутом.

Если угол отсчитывается от осевого меридиана, то он называется дирекционным углом. Азимуты и дирекционные углы могут изменяться от 0º до 360º.

Румбслужит для большего удобства при ориентировании. Он может изменяться от 0º до 90º. За начальное направление для него принимается либо северное направление меридиана, либо южное (в зависимости от четверти). В 1 и 4 четвертях румб отсчитывается от северного направления меридиана, а во 2 и в 3 четвертях румб отсчитывается от южного направления меридиана.

Профиль - Вертикальное сечение, разрез какого-либо участка земной поверхности, земной коры, гидросферы или атмосферы по заданной линии.

Пикет - Точка на местности (обозначенная знаком), служащая ориентиром для установки рейки при нивелировании и для закрепления трассы на местности. Закрепляет заданный интервал.

План - 1) Чертеж, изображающий в условных знаках на плоскости (в масштабе 1:10 000 и крупнее) часть земной поверхности (топографический план) и построенный без учета кривизны Земли. 2) Горизонтальный разрез или вид сверху какого-либо сооружения или предмета. 3) То же, что горизонтальная проекция.

Пятка рейки - Основание рейки, предназначенное для установки ее на репер, башмак или костыль.

Палетка - Прозрачная пластинка с нанесенной на нее сеткой линий (реже - точек), предназначенная для вычисления площадей на планах и картах, отсчета координат и т. д.

Планшет - 1) Часть мензулы, квадратная деревянная доска (размер стороны от 40 до 70 см), на которую наклеивается чертежная бумага. 2) Дощечка или папка, на которой укрепляются компас и бумага при глазомерной съемке.

Параллель - Линия сечения поверхности земного шара плоскостью, параллельной плоскости экватора. Все точки этой линии имеют одинаковую широту.

Проектный уклон - Тангенс угла наклона проектной линии или плоскости.

Привязка геодезическая - Интеграция (объединение) новых геодезических данных с ранее созданными.

Проектная линия - Линия, определяющая положение сооружений в плане и по высоте.

Пространственные данные - Цифровые данные о пространственных объектах, включающие сведения об их местоположении, форме и свойствах, представленные в координатно–временной системе.

Параллакс - Видимое изменение положение предмета (тела) вследствие перемещения глаза наблюдателя.

Пеленг - Угол между направлением на наблюдаемый объект и одной из основных плоскостей, принятых за начало отсчета угловых координат. В морской и воздушной навигации обычно то же, что азимут.

Полигонометрический пункт - Геодезический пункт, координаты которого определены методом полигонометрии, а положение на местности обозначено металлическими столбами или бетонными монолитами.

Первый вертикал - Плоскость перпендикулярная к меридиану.

Полигонометрия - Метод построения геодезической сети в форме ломаной линии, в которой измеряют все стороны и углы.

Постобработка (спутниковых наблюдений) - Окончательная обработка данных в камеральных условиях с целью получения координат пунктов.

Планиметр - Механическое или электронное устройство для измерения площадей объектов по планам и картам.

Прямая геодезическая задача - Вычисление геодезических координат - широты и долготы некоторой точки, лежащей на земном эллипсоиде, по координатам другой точки и по известным длине и дирекционному углу данного направления, соединяющей эти точки.

Полевое трассирование - Перенос запроектированной трассы на местность с уточнением ее изменения и закрепление в натуре.

Пантометр - Угломерный геодезический инструмент, применявшийся при съемке лесов и торфяных болот.

Плоскогорье - Обширный участок земной поверхности, представляющий собой горную равнину, характеризующуюся значительным эрозионным расчленением.

Произвольные проекции - Картографические проекции, искажающие углы и площади. Выделяются равнопромежуточные, сохраняющие масштаб длин по одному из направлений (например, по меридианам или параллелям), и ортодромические, в которых большие круги шара (ортодромы) изображаются прямыми. Применяются для карт мира.

Прямоугольные координаты - Система плоских координат образованная двумя взаимноперпендикулярными прямыми линиями, называемыми осями координат x и y. Точка их пересечения называется началом или нулем системы координат. Ось абсцисс – OX, ось ординат – OY.

Полярные координаты - Система плоских координат образованная направленным прямым лучом OX, называющимся полярной осью. Чаще всего за полярную ось принимают ось северного направления какого-либо меридиана. Начало координат - точка O - называется полюсом системы.

Перекрытие снимка - В фотограмметрии, доля площади снимка (аэроснимка), перекрываемая смежным снимком.

Плановая аэрофотосъемка - Фотографирование местности при положении оптической оси аэрофотоаппарата, близком к вертикальному.

Пункт геодезический - Закрепленная на местности точка геодезической сети.

Пеленгация - Определение направления на какой-либо объект - его угловых координат. Осуществляется оптическими, радиотехническими, акустическими и другими методами.

Плановая разбивочная основа - Геодезическое построение на строительной площадке, обеспечивающее взаимную увязку всех проектных элементов комплекса и служащее для получения исходных данных для выноса в натуру.

Перспективная аэрофотосъемка - Фотографирование местности аэрофотоаппаратом, оптическая ось которого отклонена от вертикали на некоторый постоянный угол.

Погрешности измерений - Отклонение результата геодезических измерений от истинного (действительного) значения измеряемой геодезической величины.

Поликонические проекции - Картографические проекции, параллели которых - дуги эксцентрических окружностей, а меридианы - кривые, симметричные относительно среднего прямолинейного меридиана. Применяются для карт мира.

Полюсы магнитные Земли - Точки на земной поверхности, где магнитная стрелка располагается по вертикали, т. е. где магнитный компас неприменим для ориентировки по странам света.

Палеогеографические карты - Отображают физико-географические условия геологического прошлого (распределение суши, моря и речной сети, характер рельефа материков, климатические особенности и т. п.).


Вершина А является родительской горой для Б, превышение которой 570 м. Для вершины В родительской горой является Б, с превышением 280 м, что недостаточно для 500-метрового критерия независимости, поэтому В не независимая вершина, а часть (один из пиков) горы Б

Превышение (топографическое превышение) — понятие в классификации относительных высот гор, являющееся одним из главных критериев позволяющих считать вершины независимыми горами. Превышение вершины — это высота этой вершины относительно самой низкой точки на кривой, проведенной по наиболее высокому водоразделу от этой вершины к первой более высокой вершине на этом водоразделе, называемой родительской горой.

Для гор высотой более 6750 метров общепринят 500-метровый критерий независимости [1] . Некоторые вершины, которые принято считать независимыми, не проходят по 500-метровому превышению: Гашербрум III, Нупцзе, Моламенкинг и др [1] .

Топографическое превышение вершины можно получить, если вычесть из её высоты над уровнем моря величину, на которую необходимо спуститься, чтобы подняться на более высокую вершину. Если представить, что уровень моря поднимется так, что рассматриваемая вершина станет наивысшей точкой острова, то тогда её высота над уровнем моря и есть превышение.

Более высокий пик через основу седловины часто непосредственно прилегает к более низкому пику, однако это не всегда верно в случае достаточно глубоких седловин. Подобные случаи могут быть выявлены лишь с помощью тщательного анализа географической информации. Например:

  • Основа седловины горы Мак-Кинли на Аляске (6194 м) имеет высоту 26 м (Панамский канал), превышение составляет 6178 м, её родительская гора — Чимборасо (6310 м).
  • Основа седловины горы Уитни (4421 м) имеет высоту 1347 м на континентальном разделе в штате Нью-Мексико в США (отстоящую на расстояние 1022 км). На другом конце седла находится пик Орисаба (5636 м), наивысшая точка Мексики. У самой Орисабы основное седло на континентальном разделе в канадской провинции Британская Колумбия, её родительской горой является гора Логан (5951 м).
  • Основа седловины горы Митчелл, наивысшей горы Аппалачей, находится в Чикаго — самой низкой точке между бассейнамиреки Святого Лаврентия и Миссисипи.

Если основа седловины горы расположена достаточно близко к пику этой же горы, вычисление превышения не представляет особых сложностей и может быть выполнено вручную с использованием топографической карты.

В более сложных случаях, таких, например, как описаны выше, обычно используют компьютер. Американская геологическая служба USGS использует специальную программу WinProm, написанную Эдвардом Эрлом (Edward Earl).

Понятие высоты, несмотря на кажущуюся очевидность, является одним из наиболее сложных и тонких понятий геодезии. Это связано с двойственным смыслом высоты: с одной стороны, это расстояние между точками в пространстве, т.е. чисто геометрическое понятие; с другой стороны, в физическом понимании, это величина, определяющая энергетический уровень той или иной точки в поле силы тяжести.
Если две точки лежат на одной отвесной линии, геометрическую высоту можно измерить непосредственно как расстояние между ними; так измеряют высоты различных предметов (высота геодезического сигнала, инструмента над центром, высота человека, дерева, дома и т.д.). Очевидно, что геодезическую высоту, т.е. высоту в геометрическом смысле, так измерить нельзя: в точке поверхности Земли неизвестны ни направление нормали к эллипсоиду, вдоль которой нужно измерять высоту, ни положение отсчетной точки на эллипсоиде, которая к тому же физически недоступна, поскольку эллипсоид проходит, как правило, внутри Земли.

Физическое понятие высоты связано с работой в поле силы тяжести. Так, если точки лежат на одной уровенной поверхности, например, на поверхности какого-либо водоема, где отсутствуют течения, естественно, считать, что высоты этих точек одинаковы. Если же вода течет от одной точки к другой, говорят, что высота первой точки больше. В этом случае мерой высоты выступает работа, которую совершает сила тяжести при перемещении водной часы, т.е. разность потенциалов между указанными точками. Поскольку потенциал на уровенной поверхности постоянен, разность потенциалов любых точек, лежащих на двух различных уровенных поверхностях, всегда постоянна. Поэтому разность потенциалов является мерой высоты или высотой в физическом понимании. Как известно, разность потенциалов можно получить в результате геометрического нивелирования и измерений силы тяжести.

Можно связать две системы высот - в геометрическом и физическом понимании - т.е. перейти от разности потенциалов к высоте как расстоянию в линейной мере, если известна напряженность поля силы тяжести. В однородном поле, когда сила тяжести постоянна, геометрическое и физическое понятия высоты совпадают. В реальном поле Земли для связи двух систем высот нужно знать силу тяжести всюду вне отсчетной поверхности (эллипсоида или геоида). Поскольку сила тяжести внутри Земли по измерениям на ее поверхности однозначно не определяется, используют различные модели поля силы тяжести. Можно рассматривать разность потенциалов в нормальном гравитационном поле, что позволяет достаточно просто перейти от измеренной разности потенциалов к высоте в геометрическом понимании. Известны и иные способы задания поля силы тяжести, приводящие к другим системам высот; основные из них будут рассмотрены ниже.

Еще одной причиной, по которой высоту рассматривают и изучают отдельно от плановых координат, является различие в методах получения этих величин: до недавнего времени плановые координаты находили из обработки линейных и угловых измерений, выполненных на поверхности Земли, а высоты преимущественно из геометрического нивелирования, сопровождаемого измерениями силы тяжести. Определение высоты по измерениям расстояний и вертикальных углов затруднено из-за влияния вертикальной рефракции, из-за чего вертикальные углы измеряют со значительно меньшей точностью, чем горизонтальные.

Спутниковые методы позволяют определить прямоугольна координаты точек поверхности Земли, по которым, используя зависимости математических формул, можно найти геодезические координаты. Однако так можно найти только высоту в геометрическом понимании, поскольку прямоугольные координаты не содержат информации о поле силы тяжести. Кроме того, из-за тропосферных влияний и методических особенностей высота и в этом случае определяется с несколько меньшей точностью, чем плановые координаты.

Что такое высота и где ее начало

Для определения положения точки, находящейся на физической поверхности Земли относительно исходной уровенной поверхности, помимо плоских координат, необходима третья координата — высота Н.

Высота – это измерение объекта или его местоположения, отмеряемое в вертикальном направлении. Высота в любой точки земной поверхности отсчитывается от разных поверхностей, таких как геоид, квазигеоид или референц-эллипсоид.

Геоид, квазигеоид и эллипсоид вращения

Квазигеоид — это поверхность близкая к поверхности геоида, определяемая только по результатам измерений на земной поверхности без привлечения данных по распределению масс. Поверхность квазигеоида определена значениями потенциала силы тяжести на земной поверхности, и для изучения квазигеоида результаты измерений не нужно редуцировать внутрь притягивающей массы. Квазигеоид отступает от геоида в высоких горах на 2–4 м, на низменных равнинах — на 0,02-0,12 м, на морях и океанах поверхности геоида и квазигеоида совпадают.

Фигуру квазигеоида определяют методом астрономо-гравиметрического нивелирования или через предварительное определение возмущающего потенциала по материалам наземных гравиметрических съёмок и наблюдений за движением искусственных спутников Земли. Последние данные необходимы в связи с недостаточной гравиметрической изученностью некоторых областей Земли Поверхность геоида, из-за ее сложности, математически никак не выражается, поэтому на ней нельзя решать геодезические задачи. Для решения таких задач взамен поверхности геоида принимают поверхность эллипсоида вращения.

Эллипсоида вращения — это близкая по форме к геоиду поверхность, но математически правильная, на которую можно перенести результаты измерений, выполненных на физической поверхности Земли. Эллипсоид вращения, размеры которого подбираются при условии наилучшего соответствия фигуре квазигеоида для Земли в целом (общеземной эллипсоид) или отдельных её частей (референц-эллипсоид). Для России принят референц-эллипсоид Крассовского форма и размеры которого были вычислены советским геодезистом А. А. Изотовым, и который в 1940 году назван именем Ф. Н. Красовского.

Высота точки местности в географии, топографии и геодезии может измеряться от разных уровней отсчёта:
1. Абсолютная высота отсчитывается от уровня моря или геоида (линия НА и линия НВ);
2. Относительная высота (превышение) отсчитывается от какого-либо условного уровня (линия НС);
3. Геодезическая (эллипсоидальная) высота — высота относительно эллипсоида вращения.


Абсолютная и относительная высоты

В нашей стране с 1946 г. счет абсолютных высот ведется от нуля Кронштадтского футштока соответствующего среднему уровню Балтийского моря в спокойном его состоянии (Балтийская система высот). Вся нивелирная сеть на территорию России опирается на один исходный пункт, не имеет внешнего контроля и уравнивается как свободная система. В середине 1980-х в связи с предстоящим строительством гидротехнического комплекса защиты Ленинграда (ныне Санкт-Петербурга) от наводнений были созданы дублеры в Кронштадте и г. Ломоносове (на основе репера № 6521 и маяка Шепелевский)
Высоты, отсчитанные от иной уровенной поверхности, называются относительными на рисунке изображены линией НС. При съемке небольших участков, при обмерных работах, а также на стройплощадке часто применяют относительную или условную систему отсчета высот.

Что такое превышение

Численное значение высоты точки называется отметкой точки. Разность высот двух точек, называется превышением. Превышение h точки В над точкой А, равное разности высот точек А и В, определяется как h = НВ – НА. Зная высоту точки А, для определения высоты точки В на местности измеряют превышение hAB. Высоту точки В вычисляют по формуле HВ = HA + hAB. Измерение превышений и последующее вычисление высот точек называется нивелированием.

Геодезическая высота

Геодезической (эллипсоида́льной) высотой некоторой точки физической поверхности земли называется отрезок нормали к эллипсоиду от его поверхности до данной точки. Вместе с геодезическими широтой и долготой (B и L соответственно) она определяет положение точки относительно заданного эллипсоида. Физически эллипсоида не существует, следовательно геодезическая высота не может быть непосредственно измерена наземными методами. Определить её возможно с помощью спутниковых измерений, а также посредством обработки рядов триангуляции, астрономо-геодезического нивелирования.
Как видно из определения геодезическая высота зависит от расположения и параметров выбранного эллипсоида, поэтому геодезическую высоту разделяют на две части. Одна из них характеризует физическую поверхность Земли относительно уровенной поверхности (информацию о ней получают в большей степени нивелированием), вторая, более гладкая, характеризует отличие отсчётного эллипсоида от геоида. Первую часть называют гипсометрической, а вторую — гладкой или геоидальной частью. Уровенная поверхность имеет несравненно более плавную форму в сравнении с физической, следовательно геоидальная часть меняется гораздо медленнее гипсометрической.

Системы геодезических высот

Ортометрическая высота точки — это расстояние (H) вдоль отвесной линии от точки до поверхности геоида. Ортометрическая высота для практических целей является "высотой над уровнем моря". Чтобы вычислить значение ортометрической высоты, нужно знать плотность пород вдоль силовой линии или измерять силу тяжести внутри Земли. Поэтому ортометрическую высоту нельзя найти по измерениям только на поверхности Земли. Альтернативой ортометрической высоте являются нормальная высота. Ортометрические высоты по Гельмерту используют многие европейские страны, Турция и страны Американского континента. Поскольку гравитация не является постоянной на больших площадях, ортометрическая высота также не является постоянной. Так на территории США гравитация на 0,1% сильнее на севере Соединенных Штатов, чем на юге, поэтому ровная поверхность, имеющая ортометрическую высоту в 1000 метров в Монтане, будет иметь высоту в 1001 метр в Техасе.

Нормальные высоты — это высоты от поверхности квазигеоида, один из нескольких типов высоты. Нормальная высота точки вычисляется из геопотенциальных чисел путем деления геопотенциального числа точки, т. е. ее разности геопотенциалов с уровнем моря, на среднюю нормальную гравитацию, вычисленную вдоль отвеса точки. (Точнее, вдоль эллипсоидной нормали, усредняя по диапазону высот от 0-эллипсоид-H*; процедура, таким образом, рекурсивна. Нормальные высоты, таким образом, зависят от выбранного опорного эллипсоида. Система нормальных высот принята в России, странах СНГ и некоторых европейских странах (Швеция, Германия, Франция и др.). Нормальные значения гравитации можно вычислить через плотность земной коры вокруг отвеса. Нормальные высоты занимают видное место в теории гравитационного поля Земли, разработанной школой М. С. Молоденского. Эталонная поверхность, с которой измеряются нормальные высоты, называется квазигеоидом, представляющим собой "средний уровень моря", аналогичный геоиду и близкий к нему, но лишенный физической интерпретации эквипотенциальной поверхности. В геодезии (топографии) нормальную высоту называют абсолютной, а разность нормальных высот — относительной высотой. Численное значение абсолютной высоты принято называть отметкой.
Геопотенциальное число ― это та работа, которую нужно совершить, чтобы подняться от уровня моря до точки Р поверхности Земли.

Динамическая высота — это геопотенциальное число, переведенное в линейную меру, получить его можно разделив геопотенциальное число на любое постоянное значение С силы тяжести. Выбирая в качестве С разные значения постоянной, можно построить разные системы динамических высот. Динамические вы соты были введены К.Ф.Гауссом, который предложил рассматривать высоты как геопотенциальные числа, т.е. принять С = 1. Динамическая высота постоянна, если следовать одному и тому же гравитационному потенциалу, когда они перемещаются с места на место. Из-за изменения силы тяжести поверхности, имеющие постоянную разницу в динамической высоте, могут быть ближе или дальше друг от друга в различных местах. Динамические высоты обычно выбираются так, чтобы они имели сопряжения с геоидом. Когда оптическое выравнивание выполнено, путь близко соответствует следующему значению динамической высоты по горизонтали, но не ортометрической высоте для вертикальных изменений, измеренных на выравнивающем стержне. Таким образом, небольшие поправки должны быть применены к полевым измерениям, чтобы получить либо динамическую высоту, либо ортометрическую высоту, обычно используемую в технике. Паспорта данных Национальной Геодезической службы США дают как динамические, так и ортометрические значения. Динамическая высота может быть вычислена с использованием нормальной силы тяжести на 45-градусной широте и геопотенциального числа местоположений.

Читайте также: