Полярные моменты инерции поперечного сечения кратко

Обновлено: 30.06.2024

В части 2 конспекта лекций содержаться основные теоретические положения и расчётные формулы по следующим темам: Геометрические характеристики плоских сечений, Кручение, Срез и смятие.

Целью конспекта лекций является оказание помощи студентам при изучении предмета, при решении и защите расчетно-графических работ по сопротивлению материалов.

К геометрическим характеристикам плоских сечений относятся:

· площадь сечения F,

· момент сопротивления кручению Wρ,

· момент сопротивления изгибу Wx

Статические моменты площади Sx , Sy

Статический момент площади сечения относительно данной оси равен сумме произведений элементарных площадок на расстояние до соответствующей оси.

Свойство: Статические моменты площади сечения равны нулю (Sx=0 и Sy=0), если точка пересечения координатных осей совпадает с центром тяжести сечения. Ось, относительно которой статический момент равен, называется центральной. Точка пересечения центральных осей называется центром тяжести сечения.

Где F - суммарная площадь сечения.

Пример 1:

Определить положение центра тяжести плоского сечения, состоящего из двух прямоугольников с вырезом.

Отрицательная площадь вычитается.

Осевые моменты инерции Jx ; Jy

Осевой момент инерции равен сумме произведений элементарных площадок на квадрат расстояния до соответствующей оси.

Единица измерения [см 4 ], [мм 4 ].

Не бывает равным 0.

Свойство: Принимает минимальное значение, когда точка пересечения координатных осей совпадает с центром тяжести сечения.

Чем дальше площадь удалена от центральной оси, тем осевой момент инерции сечения больше. Жесткость конструкции повышается.

Осевой момент инерции сечения применяют при расчетах на прочность, жесткость и устойчивость.

Полярный момент инерции сечения Jρ

Взаимосвязь полярного и осевого моментов инерции:

Полярный момент инерции сечения равен сумме осевых моментов.

Свойство:

при повороте осей в любую сторону, один из осевых моментов инерции возрастает, а другой убывает (и наоборот). Сумма осевых моментов инерции остается величиной постоянной.

Центробежный момент инерции сечения Jxy

Центробежный момент инерции сечения равен сумме произведений элементарных площадок на расстояния до обеих осей

Единица измерения [см 4 ], [мм 4 ].

, если координатные оси являются осями симметрии (пример – двутавр, прямоугольник, круг), или одна из координатных осей совпадает с осью симметрии (пример – швеллер).

Таким образом для симметричных фигур центробежный момент инерции равен 0.

Координатные оси u и v, проходящие через центр тяжести сечения, относительно которых центробежный момент равен нулю, называются главными центральными осями инерции сечения. Главными они называются потому, что центробежный момент относительно них равен нулю, а центральными – потому, что проходят через центр тяжести сечения.

У сечений, не обладающих симметрией относительно осей x или y, например у уголка, не будет равен нулю. Для этих сечений определяют положение осей u и v с помощью вычисления угла поворота осей x и y

Центробежный момент относительно осей u и v -

Формула для определения осевых моментов инерции относительно главных центральных осей u и v:

где - осевые моменты инерции относительно центральных осей,

- центробежный момент инерции относительно центральных осей.

ПРЕДИСЛОВИЕ

В части 2 конспекта лекций содержаться основные теоретические положения и расчётные формулы по следующим темам: Геометрические характеристики плоских сечений, Кручение, Срез и смятие.

Целью конспекта лекций является оказание помощи студентам при изучении предмета, при решении и защите расчетно-графических работ по сопротивлению материалов.

К геометрическим характеристикам плоских сечений относятся:

· площадь сечения F,




· момент сопротивления кручению Wρ,

· момент сопротивления изгибу Wx

Статические моменты площади Sx , Sy

Статический момент площади сечения относительно данной оси равен сумме произведений элементарных площадок на расстояние до соответствующей оси.

Свойство: Статические моменты площади сечения равны нулю (Sx=0 и Sy=0), если точка пересечения координатных осей совпадает с центром тяжести сечения. Ось, относительно которой статический момент равен, называется центральной. Точка пересечения центральных осей называется центром тяжести сечения.

Где F - суммарная площадь сечения.

Пример 1:

Определить положение центра тяжести плоского сечения, состоящего из двух прямоугольников с вырезом.

Отрицательная площадь вычитается.

Осевые моменты инерции Jx ; Jy

Осевой момент инерции равен сумме произведений элементарных площадок на квадрат расстояния до соответствующей оси.

Единица измерения [см 4 ], [мм 4 ].

Не бывает равным 0.

Свойство: Принимает минимальное значение, когда точка пересечения координатных осей совпадает с центром тяжести сечения.

Чем дальше площадь удалена от центральной оси, тем осевой момент инерции сечения больше. Жесткость конструкции повышается.

Осевой момент инерции сечения применяют при расчетах на прочность, жесткость и устойчивость.

Полярный момент инерции сечения Jρ

Взаимосвязь полярного и осевого моментов инерции:

Полярный момент инерции сечения равен сумме осевых моментов.

Свойство:

при повороте осей в любую сторону, один из осевых моментов инерции возрастает, а другой убывает (и наоборот). Сумма осевых моментов инерции остается величиной постоянной.

Центробежный момент инерции сечения Jxy

Центробежный момент инерции сечения равен сумме произведений элементарных площадок на расстояния до обеих осей

Единица измерения [см 4 ], [мм 4 ].

, если координатные оси являются осями симметрии (пример – двутавр, прямоугольник, круг), или одна из координатных осей совпадает с осью симметрии (пример – швеллер).

Таким образом для симметричных фигур центробежный момент инерции равен 0.

Координатные оси u и v, проходящие через центр тяжести сечения, относительно которых центробежный момент равен нулю, называются главными центральными осями инерции сечения. Главными они называются потому, что центробежный момент относительно них равен нулю, а центральными – потому, что проходят через центр тяжести сечения.

У сечений, не обладающих симметрией относительно осей x или y, например у уголка, не будет равен нулю. Для этих сечений определяют положение осей u и v с помощью вычисления угла поворота осей x и y

Центробежный момент относительно осей u и v -

Формула для определения осевых моментов инерции относительно главных центральных осей u и v:

Характеристики плоских сечений

При некоторых видах деформаций прочность и жесткость (способность противостоять деформации) элементов конструкций зависит не только от величины поперечного сечения, но и от формы этого сечения.
Самый простой пример - обыкновенную школьную линейку можно легко изогнуть относительно широкой стороны поперечного сечения и совершенно невозможно изогнуть относительно его короткой стороны. При этом общая площадь сечения в обоих случаях одинакова. На основании этого примера становится очевидным, что на сопротивление некоторым видам деформации оказывает влияние (иногда - решающее) не только величина площади сечения бруса, но и его геометрическая форма.
При изучении деформаций изгиба и кручения нам потребуется знание некоторых геометрических характеристик плоских сечений, которые оказывают влияние на способность конструкций сопротивляться деформациям относительно той или иной оси либо полюса (точки).

Чтобы понять суть явления и влияния этих геометрических характеристик на сопротивление бруса, например, изгибу, следует обратиться к основополагающим постулатам сопромата. Как известно из установленного в 1660 году английским физиком Робертом Гуком закона, напряжение в сечениях бруса прямо пропорционально его относительному удлинению. Очевидно, что волокна, расположенные дальше от оси изгиба, растягиваются (или сжимаются) сильнее, чем расположенные вблизи оси. Следовательно, и напряжения возникающие в них будут бόльшими.
Можно привести условную сравнительную аналогию между напряжением в разных точках сечения бруса с моментом силы - чем больше плечо силы - тем больше ее момент (относительно оси или точки). Аналогично - чем дальше от какого-либо полюса (оси) отстоит точка в сечении, тем большее напряжение в ней возникает при попытке изогнуть или скрутить брус относительно этого полюса (оси).

Статический момент площади

Статическим моментом площади плоской фигуры относительно оси, лежащей в той же плоскости, называется взятая по всей площади сумма произведений элементарных площадок (Si) на расстояния (ri)от них до этой оси.

статический момент площади сечения

Если упростить это определение, то статический момент инерции плоской фигуры относительно какой-либо оси (лежащей в той же плоскости, что и фигура) можно получить следующим образом:

  • разбить фигуру на крохотные (элементарные) площадки (рис. 1);
  • умножить площадь каждой площадки на расстояние ri от ее центра до рассматриваемой оси;
  • сложить полученные результаты.

Статический момент площади плоской фигуры обозначают S с индексом оси, относительно которой он рассматривается: Sx , Sy , Sz .

Примечание: в разных учебниках или других источниках информации обозначение тех или иных физических величин может отличаться от приведенных на этом сайте. Как вы понимаете, от условного обозначения величин суть описываемых явлений и закономерностей не изменяется.

Анализ этих формул позволяет сделать вывод, что статический момент площади фигуры относительно оси, лежащей в этой же плоскости, равен произведению площади фигуры на расстояние от ее центра тяжести до этой оси.
Из этого вывода следует еще один вывод - если рассматриваемая ось проходит через центр тяжести плоской фигуры, то статический момент этой фигуры относительно данной оси равен нулю.

Единица измерения статического момента площади - метр кубический (м 3 ).
При определении статического момента площади сложной фигуры можно применять метод разбиения, т. е. определять статический момент всей фигуры, как алгебраическую сумму статических моментов отдельных ее частей. При этом сложная геометрическая фигура разбивается на простые по форме составные части - прямоугольники, треугольники, окружности, дуги и т. п., затем для каждой из этих простых фигур подсчитывается статический момент площади, и определяется алгебраическая сумма этих моментов.

Полярный момент инерции

Полярным моментом инерции плоской фигуры относительно полюса (точки), лежащего в той же плоскости, называется сумма произведений элементарных площадок (Si) этой фигуры на квадрат их расстояний (r 2 i) до полюса.
Полярный момент инерции обозначают Iρ (иногда его обозначают Jρ ), а формула для его определения записывается так:

Единица измерений полярного момента инерции - м 4 , из чего следует, что он не может быть отрицательным.
Понятие полярного момента инерции понадобится при изучении деформаций кручения круглых валов, поэтому приведем формулы для определения полярного момента квадратного, круглого и кольцевого сечения.


Рассмотрим формулы для определения геометрических характеристик плоских сечений: статического момента площади фигуры, осевых моментов инерции и радиуса инерции сечения.

При расчете элементов конструкций на прочность, жесткость и устойчивость приходится кроме общеизвестной характеристики – площади поперечного сечения A, оперировать такими геометрическими характеристиками сечений, как статический момент площади, момент инерции, момент сопротивления, радиус инерции.

Статический момент площади

Интегралы вида:

называются статическими моментами площади сечения A относительно осей X и Y соответственно.


В тех случаях, когда сечение может быть разделено на простейшие фигуры площади Ai и координаты центров тяжести xi и yi которых известны, статические моменты площади сложной фигуры определяются через суммирование

Статические моменты площади имеют размерность [м 3 ] и могут принимать любые числовые значения. Для осей XC, YC, проходящих через центр тяжести сечения C (центральные оси), статические моменты равны нулю:

Координаты центров тяжести сечения определяются относительно так называемых вспомогательных осей по формулам:

Если сечение имеет ось симметрии, то центр тяжести находится на этой оси и его положение определяется одной координатой.

При наличии двух и более осей симметрии центр тяжести совпадает с точкой пересечения этих осей.

Моменты инерции


Моментами инерции площади сечения называют интегралы вида:

где:
Ix, Iy — осевые моменты инерции площади сечения относительно осей OX, OY соответственно;
Ixy — центробежный момент инерции;
Iρ — полярный момент инерции.

Размерность момента инерции [м 4 ], Ix, Iy, I ρ всегда положительны, Ixy может принимать любые значения, при этом, если хотя бы одна из осей является осью симметрии, Ixy=0.


Зависимости между моментами инерции относительно параллельных осей выражаются формулами:

где a, b – расстояния между осями X, XC и Y, YC.

Оси, относительно которых Ixy=0, называют главными, а осевые моменты инерции относительно них – главными моментами инерции.

Главные оси, проходящие через центр тяжести сечения, называют главными центральными осями, а соответствующие им моменты инерции – главными центральными моментами инерции.

Главные оси характерны тем, что их моменты инерции принимают экстремальные значения (Imax, Imin).


Момент инерции сложного сечения относительно какой-либо оси находится суммированием моментов инерции составляющих его частей относительно той же оси:

Радиусы инерции


Величины

называют радиусами инерции сечения относительно осей OX и OY соответственно.


Эллипс, построенный в главных осях, с полуосями, равными главным радиусам инерции

называют эллипсом инерции.

Поля́рный моме́нт ине́рции — интегральная сумма произведений площадей элементарных площадок dA на квадрат расстояния их от полюса — ρ 2 (в полярной системе координат), взятая по всей площади сечения. То есть:

J_<p0></p>
<p> = \int_A \rho ^2\, dA

Эта величина используется для прогнозирования способности объекта оказывать сопротивление кручению. Она имеет размерность единиц длины в четвёртой степени (м 4 , cм 4 ) и может быть лишь положительной.

Для площади сечения, имеющей форму круга радиусом r полярный момент инерции равен:

J_<p0></p>
<p> = \int_0^ <2\pi>\int_0^r \rho^2 \rho\, d\rho\, d\phi = \frac<\pi r^4>

Если совместить начало декартовой прямоугольной системы координат 0 с полюсом полярной системы (см. рис.), то

J_<p0></p>
<p> = J_x + J_y

\rho^2 = x^2 + y^2

потому что .

Содержание

Применение

Полярный момент инерции используется в формулах, которые описывают зависимость между касательными напряжениями и крутящим моментом, который их вызывает. Касательное напряжение:

\tau = \frac<T r></p>
<p>>

— крутящий момент, — расстояние от оси кручения >" width="" height="" />
— полярный момент инерции.

Полярный момент инерции для некоторых случаев


Для круглого сплошного сечения:

J_<p0></p>
<p> = \frac<\pi D^4>

где D — диаметр круга.

Для кольцевого сечения (полый вал):

J_<p0></p>
<p> = \frac<\pi D^4> \left( 1 - \frac \right)

D — внешний диаметр кольца, d — внутренний диаметр кольца.

См. также

Литература

  • Феодосьев В.И. Сопротивление материалов. Изд. 10-е, перераб. и доп. - М.: МГТУ им. Н. Э. Баумана, 1999 год. Рецензенты академик РАН Образцов И. Ф. и д. т. н профессор Чирков И. П.
  • Классическая механика
  • Сопротивление материалов

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Полярный момент инерции" в других словарях:

полярный момент инерции — polinis inercijos momentas statusas T sritis fizika atitikmenys: angl. polar moment of inertia vok. polares Trägheitsmoment, n rus. полярный момент инерции, m pranc. moment d’inertie polaire, m … Fizikos terminų žodynas

Момент инерции — Размерность L2M Единицы измерения СИ кг·м² СГС … Википедия

Сопротивление материалов* — Когда, при составлении проекта сооружения или машины, форма, главные размеры частей и силы, которым они будут подвержены, уже определены на основании требований задания, данных механики и технологии, приходится еще определять остальные размеры… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Сопротивление материалов — Когда, при составлении проекта сооружения или машины, форма, главные размеры частей и силы, которым они будут подвержены, уже определены на основании требований задания, данных механики и технологии, приходится еще определять остальные размеры… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

ЖЁСТКОСТЬ — мера податливости тела деформации при заданном типе нагрузки: чем больше Ж., тем меньше деформация. В сопротивлении материалов и теории упругости Ж. характеризуется коэффициентом (или суммарным внутр. усилием) и характерной деформацией упругого… … Физическая энциклопедия

Список обозначений в физике — Необходимо проверить качество перевода и привести статью в соответствие со стилистическими правилами Википедии. Вы можете помочь … Википедия

КРУЧЕНИЕ — деформация, возникающая в стержне при приложении к его концу (торцу) системы сил, к рая приводится к паре сил с вектором момента вдоль оси стержня, т. е. к крутящему моменту. Для стержня круглого сечения радиуса а используется гипотеза плоских… … Физическая энциклопедия

Кручение (в сопротивлении материалов) — Кручение (в сопротивлении материалов), вид деформации, характеризующийся взаимным поворотом поперечных сечений стержня, вала и т. д. под влиянием моментов (пар сил), действующих в этих сечениях. Поперечные сечения круглых стержней (валов) при К.… … Большая советская энциклопедия

Кручение — I Кручение (в сопротивлении материалов) вид деформации, характеризующийся взаимным поворотом поперечных сечений стержня, вала и т. д. под влиянием моментов (пар сил), действующих в этих сечениях. Поперечные сечения круглых стержней… … Большая советская энциклопедия

Читайте также: