Показательные уравнения это кратко

Обновлено: 28.06.2024

Решение уравнений – навык, который необходим каждому нацеленному на успешную сдачу ЕГЭ и ОГЭ школьнику. Это поможет решить задания №5, 13 и 15 из профильного уровня математики.

Одна из их разновидностей – степенные уравнения, которые иногда также называют показательными. Основная отличительная особенность – наличие переменной \(х\) не в основании степени, а в самом показателе. Как это выглядит:

Не бойтесь – это самый общий вид показательных уравнений. Реальные примеры выглядят как-то так:

Внимательно посмотрите на приведенные уравнения. В каждом из них присутствует, так называемая, показательная (степенная) функция. При решении необходимо помнить об основных свойствах степени, а также использовать особые правила, помогающие вычислить значение \(х\). Познакомиться с понятием степени и ее свойствами можно тут и тут.

И вам понадобится умение решать обыкновенные линейные и квадратные уравнения, те, что вы проходили в 7-8 классе. Вот такие:

И так, любое уравнение, в котором вы увидите показательную (степенную) функцию, называется показательным уравнением. Кроме самой показательной функции в уравнении могут быть любые другие математические конструкции – тригонометрические функции, логарифмы, корни, дроби и т.д. Если вы видите степень, значит перед вам показательное уравнение.

Ура! Теперь знаем, как выглядят показательные уравнения, но толку от этого не очень много. Было бы неплохо научиться их решать. Отличная новость – на наш взгляд показательные уравнения одни из самых простых типов уравнений, по сравнению с логарифмическими, тригонометрическими или иррациональными.

Простейшие показательные уравнения

Давайте начнем с самых простых типов уравнений и разберем сразу несколько примеров:

Пример 1 $$ 2^x=8;$$

Что такое решить уравнение? Это значит, что нужно найти такое число, которое при подстановке в исходное уравнение вместо \(х\) даст верное равенство. В нашем примере нужно найти такое число, в которое нужно возвести двойку, чтобы получить восемь. Ну это просто:

Значит, если \(х=3\), то мы получим верное равенство, а значит мы решили уравнение.

Решим что-нибудь посложнее.

Такое уравнение выглядит сложнее. Попробуем преобразовать правую часть уравнения:

Мы применили свойство отрицательной степени по формуле:

Теперь наше уравнение будет выглядеть так:

Заметим, что слева и справа у нас стоят показательные функции, и там, и там основания одинаковые и равны \(3\), только вот степени разные – слева степень \((4х-1)\), а справа \((-2)\). Логично предположить, что если степени у такой конструкции будут равны, при условии, что основания одинаковые, то мы получим верное равенство. Так и поступим:

Такое мы решать умеем, ведь это обыкновенное линейное уравнение.

Поздравляю, мы нашли корень нашего показательного уравнения.


Пример 3 $$125^x=25;$$

Попробуем поступить так, как в предыдущем примере – преобразуем левую и правую часть, чтобы слева и справа была показательная функция с одинаковым основанием. Как это сделать? Обращаем внимание, что \(125=5*5*5=5^3\), а \(25=5*5=5^2\), подставим:

Воспользуемся одним из свойств степеней \((a^n)^m=a^\):

И опять мы получили две показательные функции, у которых одинаковые основания и для того, чтобы равенство выполнялось, необходимо приравнять из степени:

И еще один пример:

Пример 4 $$2^x=-4;$$

Те, кто хорошо знает свойства степеней, знают, что показательная функция не может быть отрицательной. Действительно, попробуйте возводить \(2\) в различную степень, вы никогда не сможете получить отрицательное число.

Внимание! Показательная функция не может быть отрицательной, поэтому, когда вы встречаете примеры на подобии примера 4, то знайте, что такого быть не может. Здесь корней нет, потому что показательная функция всегда положительна.

Теперь давайте разработаем общий метод решения показательных уравнений. И научимся решать более сложные примеры.

Общий метод решения показательных уравнений

Пусть у нас есть вот такой пример:

Где \(a,b\) какие-то положительные числа. (\(a>0, \; b>0\).

Согласно разобранным выше примерам, логично предположить, что для того, чтобы решить данное уравнение, нужно его преобразовать к виду, где слева и справа стоят показательные функции с одинаковым основанием. Так и поступим.

Слева у нас уже стоит \(a^x\), с этим ничего делать не будем, а вот справа у нас стоит загадочное число \(b\), которое нужно попытаться представить в виде \(b=a^m\). Тогда уравнение принимает вид:

Раз основания одинаковые, то мы можем просто приравнять степени:

Вот и весь алгоритм решения. Просто нужно преобразовать исходное уравнение таким образом, чтобы слева и справа стояли показательные функции с одинаковыми основаниями, тогда приравниваем степени и вуаля – сложное показательное уравнение решено. Осталось только разобраться, как так преобразовывать. Опять разберем на примерах:

Замечаем, что \(16=2*2*2*2=2^4\) это степень двойки:

Основания одинаковые, значит можно приравнять степени:

$$x=4.$$
Пример 6 $$5^=125 \Rightarrow 5^=5*5*5 \Rightarrow 5^=5^3 \Rightarrow –x=3 \Rightarrow x=-3.$$
Пример 7 $$9^=81 \Rightarrow (3*3)^=3*3*3*3 \Rightarrow(3^2)^=3^4 \Rightarrow 3^=3^4 \Rightarrow 8x=4 \Rightarrow x=\frac.$$

Здесь мы заметили, что \(9=3^2\) и \(81=3^4\) являются степенями \(3\).

Все здорово, но проблема в том, что такая схема решения показательных уравнений работает не всегда. Что делать, если привести к одинаковому основанию не получается. Например:

Пример 8 $$ 3^x=2;$$

\(3\) и \(2\) привести к одинаковому основанию затруднительно. Но тем не менее мы должны это сделать. Воспользуемся следующей схемой преобразований: пусть есть некоторое положительное число \(b>0\), тогда его можно представить в виде степени любого, нужного вам, положительного числа не равного единице \(a>0, \; a \neq 1\):

Эта очень важная формула, рекомендуем ее выучить. Вернемся к нашему примеру и по формуле представим \(2\) в виде \(3\) в какой-то степени, где \(a=3\), а \(b=2\):

Подставим данное преобразование в наш пример:

Получили равенство двух показательных функций с одинаковым основанием, значит можем приравнять их степени:

Так в ответ и запишем. Никакой ошибки здесь нет, дело в том, что такие логарифмы можно посчитать только на калькуляторе, поэтому на ЕГЭ или в контрольной работе вы просто оставляете ответ в таком виде.

Кто забыл, что такое логарифм, можно посмотреть здесь.

Рассмотрим еще несколько аналогичных примеров.

Те, кто хорошо знает свойства логарифмов, могут поиграться с последней формулой и получить ответ в разном виде:

Все эти варианты ответа верные, их можно смело писать в ответ.

И так, мы с вами научились решать любые показательные уравнения вот такого вида: \(a^x=b\), где \(a>0; \; b>0\).

Но это еще далеко не все. Часто вы будете встречать показательные уравнения гораздо более сложного типа. В ЕГЭ по профильной математике это номер 15 из 2й части. Но бояться тут не нужно, все на первый взгляд сложные уравнения при помощи обычно не самых сложных преобразований сводятся к уравнениям типа \(a^x=b\), где \(a>0; \; b>0\). Рассмотрим типы сложных уравнений, которые могут попасться:

Решение показательных уравнений при помощи замены

Пример 10 $$ 9^x-5*3^x+6=0;$$

Самое первое, что вы должны всегда делать, это пытаться привести все имеющиеся показательные функции к одинаковому основанию.

Здесь это сделать легко, замечаем, что \(9=3^2\), тогда \(9^x=(3^2)^x=3^=(3^x)^2\). Здесь мы воспользовались свойством степеней: \((a^n)^m=a^\). Подставим:

Квадратное уравнение, которое решается через дискриминант:

Оба корня больше нуля, значит оба нам подходят. Сделаем обратную замену и уравнение сводится к решению двух простых показательных уравнений:

И второй корень:

И еще один пример на замену:

Воспользуемся нашим правилом, что все нужно приводить к одинаковому основанию – а стоп, тут и так у всех показательных функций основание \(3\). Давайте еще внимательно посмотрим на наш пример, очень похоже на то, что он тоже делается через замену. Но у нас тут нет одинаковых показательных функций, основания то одинаковые, а вот степени отличаются. Но если быть внимательным, то можно заметить, что в первой степени можно разбить свободный член \(3=2+1\) и вынести общий множитель \(2\):

Подставим в исходное уравнение:

Теперь показательные функции одинаковы и можно сделать замену:

Обратная замена, и наше уравнение сводится к простейшему:

И второе значение \(t\):

Тут у нас две показательные функции с основаниями \(7\) и \(3\), и как сделать из них одинаковые основания непонятно. Этот пример решается при помощи деления. Давайте поделим все наша уравнение на \(3^x\):

Здесь нам придется воспользоваться свойствами степеней:

Разберем каждое слагаемое:

Теперь подставим получившееся преобразования в исходное уравнение:

Теперь видно, что в нашем уравнении есть одинаковая функция, которую можно убрать в замену \(t=(\frac)^x\):

Сделаем обратную замену:

И последний пример на замену:

Первым делом нужно сделать так, чтобы все показательные функции были с одинаковым основанием и в идеале с одинаковой степенью. Для этого нам понадобятся формулы для степеней:

Разберем каждое слагаемое нашего уравнения:

Все десятичные дроби всегда разумно представить в виде обыкновенных дробей. И будьте внимательны - отрицательная степень не имеет никакого отношения к знаку показательной функции!

И последнее слагаемое со степенью:

Подставим все наши преобразования в исходное уравнение:

Теперь можно сделать замену \(t=2^x\) или можно обойтись без замены, просто приведя подобные слагаемые (вынести общий множитель \(2^x\)):

Особенно стоит подчеркнуть прием, который мы использовали при решении 13-го примера. Всегда старайтесь избавляться от десятичных дробей. Переводите их в обыкновенные дроби.

И другой тип степенных уравнений, где обычно не нужно делать замену, а необходимо отлично знать все свойства степеней, некоторые из них мы уже обсудили выше. Все про свойства степеней можно посмотреть тут

Вот такое уравнение, в котором у нас, во-первых, показательных функции перемножаются, а еще хуже то, что у них у всех разные основания. Катастрофа, а не пример. Но ничего, все не так страшно, как кажется. Внимательно посмотрите на основания: у нас есть в основании \(2\), \(5\) и \(10\). Очевидно, что \(10=2*5\). Воспользуемся этим и подставим в наше уравнение:

Воспользуемся формулой \((a*b)^n=a^n*b^n\):

И перекинем все показательные функции с основанием \(2\) влево, а с основанием \(5\) вправо:

Сокращаем и воспользуемся формулами \(a^n*a^m=a^\) и \(\frac=a^\):

Самая главная идея при решении показательных уравнений – это любыми доступными способами свести все имеющиеся степенные функции к одинаковому основанию. А еще лучше и к одинаковой степени. Вот почему необходимо знать все свойства степеней, без этого решить уравнения будет проблематично.

Как же понять, где какие преобразования использовать? Не бойтесь, это придет с опытом, чем больше примеров решите, тем увереннее будете себя чувствовать на контрольных в школе или на ЕГЭ по профильной математике. Сначала потренируйтесь на простых примерах и постепенно повышайте уровень сложности. Успехов в изучении математики!

Частые ошибки, необходимая краткая теория, статистика прошлых лет во 2й части ЕГЭ по математике профильного уровня.

Подробный разбор метода координат в стереометрии. Формулы расстояния и угла между скрещивающимися прямыми. Уравнение плоскости. Координаты вектора. Расстояние от точки до плоскости. Угол между плоскостями. Выбор системы координат.

Урок по теме логарифмы и их свойства. Разбираемся, что такое логарифм и какие у него свойства. Научимся считать выражения, содержащие логарифмы. И рассмотри несколько возможных заданий №9 из ЕГЭ по профильной математике.

Разбираем, как вычислить степень с рациональным (дробным) показателем. Свойства степени с рациональным показателем. Примеры решения задания №9 из ЕГЭ по математике профильного уровня.

Что такое корень n-й степени. Познакомимся со свойствами коня n-й степени и методами оценки значения корня. Разберем какая у него областью определения.

Знакомимся с понятием степени с натуральным показателем и ее свойствами. Разбор преобразования сложные степенных выражений на примерах.

Цикл уроков про степени и логарифмы и их свойства. Учимся решать показательные и логарифмические уравнения и неравенства. Задания №9 и №15 ЕГЭ по профильной математике.

Индивидуальные занятия с репетитором для учеников 6-11 классов. Для каждого ученика я составляю индивидуальную программу обучения. Стараюсь заинтересовать ребенка предметом, чтобы он с удовольствием занимался математикой и физикой.

Показательные уравнения, как и любые другие, требуют поиска неизвестной переменной. Особенность в том, что она или выражение с ней находится в показателе степени.

Основные понятия и свойства

В показательных уравнениях, которые часто называют степенными, в основании находятся исключительно числа. Переменная же есть только в показателе.

Показательные уравнения

Она может быть одна или являться частью выражения. Если она появляется в другом месте, приходится иметь дело с уравнениями смешанного типа.

Школьники знакомятся с простыми вычислениями уже в 7 классе, более сложные решают выпускники и студенты вузов. Если фигурирует несколько переменных и представлено больше одного уравнения, говорят об их системе.

Тогда необходимо выразить одну неизвестную через другую и искать результат методом подстановки. Поэтому умение находить значения, в которые возводят натуральные числа, пригодится на долгие годы.

Изучаются также и показательные функции: она может быть восходящей и нисходящей, в зависимости от значения переменной или выражения.

2 x = 4 – показательное уравнение с иксом в степени;

2 x = x + 12 – смешанное, ведь икс находится также и в основании.

2 – основание, оно должно соответствовать двум условиям, а именно: быть больше нуля и отличаться от единицы;

2. Если математическое выражение возводится в отрицательное значение, то его можно заменить дробью, где числитель – единица, а знаменатель первоначальное выражение, но уже в положительной степени. Числитель – значение, находящееся над чертой, знаменатель – под ней. Математически правило записывается в следующем виде:

3. Чтобы возвести число в степень, нужно умножить его на себя такое количество раз, которое равно ее значению, то есть р 5 = р·р·р·р·р.

4. Если нужно умножить два положительных числа, отличных от единицы и равных между собой, то нужно сложить их показатели и возвести в полученное значение основание: p 5 ·p 3 = p 5+3 = p 8 .

5. Когда требуется разделить одно число на другое, имеющие отличные показатели, нужно вычесть из одного другой и возвести в полученное значение неизменное основание: p 9 /p 3 = p 9-3 = p 6 .

6. Если необходимо возвести одну степень в другую, то нужно их перемножить. Само основание при этом остается без изменений. Его нужно возвести в полученное после арифметических действий значение: (p 3 ) 4 = p 3*4 = p 12 .

Применение свойств и правил помогает упростить выражения, быстрее произвести вычисления и получить результат.

Примеры решения показательных уравнений

Закрепить материал помогут подробные объяснения при решении показательных уравнений. Разъяснения на практике помогут изучить сложные моменты и облегчат усвоение знаний.

Задание 1

Упростить и решить уравнение: 5 3x+14 = 5 7+2x

В обеих частях примера одинаковые основания, значит, можно приравнять математические выражения, находящиеся в показателе. В результате получится:

Путем переноса чисел в одну часть, а переменных в другую, не сложно решить пример. Главное, не забывать менять знак на противоположный, плюс на минус и наоборот:

Задание 2

Выполнить вычисление и найти х:

Основания обеих частей примера – 4, оно не меняется, следовательно, можно воспользоваться изученными свойствами и получить простейшее уравнение:

012

Задание 3

Упростить и найти значение х:

Дроби в примере разные. Поэтому приравнять их показатели сразу не получится. Но стоит обратить внимание, что числитель одной равен знаменателю другой и наоборот.

Чтобы решить, придется вспомнить о правиле возведения в отрицательную степень, когда выражение представляется в виде дроби. Значит, числитель можно поменять местами со знаменателем.

При равных основаниях приравниваются степени: -х = 2х + 3.

Далее придется выполнить простое задание, чтобы найти неизвестную переменную:

Задание 4

Вычислить: (3 x ) 2 = 81.

Можно представить в следующем виде: (3 x ) 2 = 3 4 .

Если воспользоваться изученными свойствами, получается: 3 2x = 3 4 .

Далее выполнить простые действия, чтобы получить результат:

702

Задание 5

Решить уравнение: 5 x+1 + 7·5 x-2 = 132.

Если воспользоваться свойством степеней, применяемых для умножения значений с одинаковым основанием, можно преобразовать уравнение. Общий множитель прежде всего нужно поставить за скобки, это правило регулярно применяется при решении:

5 x-2 (5 3 + 7) = 132;

Если обе части уравнения разделить или умножить на одно и то же число, результат не изменится. В данном случае необходимо разделить на число 132. Это помогает избавиться от громоздких вычислений, удлиняющих ход решения:

Далее необходимо вспомнить, что любое значение, возведенное в ноль, равно единице:

Остается только приравнять показатели и решить элементарный пример:

Задание 6

Решить показательное уравнение √4 x = 16.

Квадратный корень можно заменить степенью 1/2. Получается, что 4 имеет показатель x/2.

Значит, уравнение преобразуются в следующее:

А дальше необходимо действовать по уже проверенному и закрепленному методу:

Чтобы быстро решать показательные уравнения, нужно знать свойства степеней и умело ими пользоваться на практике. Это позволит легко находить неизвестные переменные. Полученные знания обязательно пригодятся для вычисления более сложных задач.

Существуют онлайн калькуляторы, позволяющие легко и просто решить степенные уравнения. Требуется просто вписать их в ячейку и немного подождать, пока машина справится с подсчетами. Но гораздо интереснее самому произвести арифметические действия и получить верный результат.

Интернет не всегда есть под рукой, а подобные примеры – основа решения более трудных задач, которые могут встретиться на экзамене ЕГЭ по математике. Например, логарифмических. Они могут содержать тригонометрические элементы и объемные алгебраические конструкции.



Показательными в алгебре называют уравнения с неизвестным, которое записано в показателе степени.

Простейшее показательное уравнение в теории имеет вид:

Здесь a > 0 , a ≠ 1 .

Пример формулы простейшего показательного уравнения:

При решении показательных уравнений многие математики советуют привести их к следующему виду:

После преобразования необходимо решить уравнение:

Виды показательных уравнений

Существуют разные типы показательных уравнений, как и неравенств. К примеру, самым простым из них является:

Знак перед b определяет количество корней показательного уравнения:

  • при b ≤ 0 решения отсутствуют x ∈ ∅ ;
  • когда b > 0 , x = log a b .

Показательным является уравнение в кратком виде:

В этом случае, неизвестная определяется таким образом:

  1. При b ≤ 0 ⇒ x ∈ ∅ .
  2. При b > 0 ⇒ f x = log a b .

Показательное уравнение может быть записано таким способом:

Данное уравнение является равносильным следующему уравнению:

Другой вариант записи показательного уравнения:

φ x f x = φ x g x

В этом случае возможны следующие решения:

  • при φ x = 1 все части данного уравнения являются равными для каких-либо f x , g x ;
  • при φ x > 0 , φ x ≠ 1 такое уравнение равносильно уравнению f x = g x ;
  • при φ x = 0 уравнение равносильно f x > 0 , g x > 0 .

Записанное показательное уравнение является равносильным совокупности систем:

φ x = 1 , x ∈ R , φ x > 0 , φ x ≠ 1 , f x = g x , φ x = 0 , f x > 0 , g x > 0 .

Существуют показательные уравнения, которые допускается привести к квадратным. Как пример:

A · a 2 x + B · a x + C = 0

В этом случае A отлично от нуля, B и C являются какими-либо числами, a>0 и не равно единице.

В процессе решения подобных показательных уравнений требуется выполнить замену:

При этом t должно быть больше нуля. Получим:

A · a f x + B · a - f x + C = 0

Здесь A, B, a являются какими-либо числами, отличными от нуля. При этом а отлично от единицы, C определяется, как произвольное действительное число. Умножим все части уравнения на a f x > 0 , чтобы свести его к квадратному уравнению:

A · a f x 2 + B + C · a f x = 0

Выполним обратную замену a f x = t , t > 0 и запишем квадратное уравнение:

A t 2 + C t + B = 0

Следующим видом показательных уравнений являются однородные.

Однородные показательные уравнения первой степени являются такими уравнениями, которые записаны в виде:

Свести подобное уравнение к показательному a f x = b несложно. Достаточно обе части равенства разделить на a f x > 0 (или b f x > 0 ) :

a f x b f x = 1 ⇒ a b f x = 1 ⇒ f x = 0

Однородным показательным уравнением второй степени называют уравнение в виде:

A · a 2 f x + B · a f x · b f x + C · b 2 f x = 0

Подобные уравнения решают, согласно стандартному алгоритму. В первую очередь следует сократить обе части уравнения на a 2 f x > 0 , либо на b 2 f x > 0 . Таким образом, выражение примет следующий вид:

A · a 2 f x + B · a f x · b f x + C · b 2 f x = 0 , : b 2 f x > 0

A · a 2 f x b 2 f x + B · a f x · b f x b 2 f x + C = 0

A · a b 2 f x + B · a b f x + C = 0

Если заменить a b f x = t , где t больше нуля, то получится квадратное уравнение:

A t 2 + B t + C = 0

Метод решения показательных уравнений через приведение к одинаковому основанию

В процессе решения показательных уравнений a x = b обычно b заменяют какой-то степенью числа а. В результате уравниваются основания. Важно правильно определить общий множитель, и решение значительно упроститься.

При идентичных основаниях, но отличающихся показателях степени, умножение чисел предполагает сложение степеней, а в процессе деления степени вычитаются.

Рассмотрим правило на примере решения показательного уравнения, содержащего корень:

Заметим, что для чисел 64 и 8 общим множителем является число 2. Запишем степени:

Подставим полученные значения и преобразуем уравнение:

( 1 2 12 ) - x = 1 2 3

1 2 - 12 x = 1 2 2 3

( 1 2 ) - 12 x = ( 1 2 ) 2 3

В результате получилась дробь.

Попробуем решить следующее показательное уравнение. Здесь будет преобразована каждая часть выражения:

( 0 , 5 ) x 2 × 4 x + 1 = 64 - 1

Вычислим, каким должно быть общее основание:

0 , 5 = 1 2 = 2 - 1

В результате получим:

( 2 - 1 ) x 2 × ( 2 2 ) x + 1 = ( 2 6 ) - 1

2 - x 2 × 2 2 x + 2 = 2 - 6

2 - x 2 2 x + 2 = 2 - 6

- x 2 + 2 x + 2 = - 6

Заметим, что для данного показательного уравнения имеется пара решений: -2 и 4

Метод решения показательных уравнений через приведение к одинаковой степени

Не всегда при решении показательных уравнений получается использовать предыдущий метод. В некоторых случаях можно упростить задачу с помощью преобразования показателей степени. Данная методика имеет место лишь в том случае, когда в выражении используются операции умножения или деления.

Умножить числа, которые отличаются основаниями, но имеют идентичные степенные показатели, можно путем умножения лишь оснований. Степень при этом не меняется:

a x b x = ( a b ) x

Потренируемся использовать записанное правило. Решим пример:

5 2 x - 4 = 49 2 - x

В этом случае можно заметить отсутствие общих множителей в обеих частях выражения. Это не позволит найти общее основание и преобразовать уравнение. Тогда поработаем с показателями:

5 2 x - 4 = 49 2 - x

5 2 x - 4 = 7 4 - 2 x

5 2 x - 4 = 1 7 2 x - 4

Закрепить принцип решения показательных уравнений с помощью приведения к одинаковой степени можно на следующем примере:

Приведем части уравнения слева и справа к одному показателю степени. С помощью свойства степенных функций преобразуем правую часть:

2 x - 2 = 1 5 x - 2

Затем следует умножить полученное выражение на 5 x - 2 :

2 x - 2 × 5 x - 2 = 1

Примеры решения показательных уравнений

Найти корни уравнения:

Заметим, что здесь b = 25 > 0 . Таким образом:

Руководствуясь свойствами логарифма, преобразуем выражение:

x = log 5 5 2 = 2 · log 5 5 = 2 · 1 = 2

x 2 x + 1 = x 3 x - 4

Заметим, что данное уравнение равносильно системе:

x = 1 , x ∈ R , x > 0 , x ≠ 1 , 2 x + 1 = 3 x - 4 , x = 0 , 2 x + 1 > 0 , 3 x - 4 > 0

⇒ x = 1 x ∈ 0 ; 1 ∪ 1 ; + ∞ , - x = - 5 , x = 0 , x > - 1 2 , x > 4 3 ⇒

⇒ x = 1 x ∈ 0 ; 1 ∪ 1 ; + ∞ , x = 5 , x = 0 , x > 4 3 ,

Ответ: x 1 = 1 , x 2 = 5

Требуется найти решения уравнения:

2 x - 3 · 4 x = 2 16 x

В первую очередь преобразуем все части равенства так, чтобы основанием было число 2:

Решим приведенное уравнение:

3 x - 3 = 1 2 - 4 x ⇒ 7 x = 7 2 ⇒ x = 1 2 .

Найти корни уравнения:

5 x - 2 · 5 x - 2 = 23

Здесь требуется вынести число 5 в самой маленькой степени, то есть в степени ( х - 2 ). В процессе разделим каждое из слагаемых на этот множитель:

5 x - 2 · 5 x - x - 2 - 2 = 23 ⇒ 5 x - 2 · 5 x - x + 2 - 2 = 23 ⇒ 5 x - 2 · 25 - 2 = 23 ⇒

⇒ 5 x - 2 · 23 = 23 ⇒ 5 x - 2 = 1

x - 2 = log 5 1 ⇒ x - 2 = 0 ⇒ x = 2

С учетом, что 1 = a 0 , уравнение 5 x - 2 = 1 допустимо записать таким образом:

5 x - 2 = 1 ⇒ 5 x - 2 = 5 0 ⇒ x - 2 = 0 ⇒ x = 2

Необходимо решить уравнение:

4 x + 1 - 3 · 2 x = 10

Здесь необходимо привести выражение к единому основанию:

4 x · 4 - 3 · 2 x - 10 = 0 ⇒ 4 · 2 2 x - 3 · 2 x - 10 = 0 ⇒ 4 · 2 x 2 - 3 · 2 x - 10 = 0

Заменим 2 x = t , при этом t больше нуля. Получим:

4 t 2 - 3 t - 10 = 0

Получилось квадратное уравнение, которое можно решить:

D = - 3 2 - 4 · 4 · - 10 = 9 + 160 = 169 = 13 2

t 1 = 3 + 13 2 · 4 = 16 8 = 2

Если выполнить обратную замену, то получится простейшее показательное уравнение 2 x = 2 :

Найти корни уравнения:

3 x + 3 2 - x = 10

3 x + 3 2 · 3 - x = 10 .

Умножим уравнение на 3 x > 0 . Получим:

3 x 2 + 9 = 10 · 3 x ⇒ 3 x 2 - 10 · 3 x + 9 = 0

Заменим 3 x = t , при этом t больше нуля. Получится квадратное уравнение:

t 2 - 10 t + 9 = 0

Согласно теореме Виета, решениями такого уравнения являются:

Выполним обратную замену:

3 x = 9 , 3 x = 1 ⇒ 3 x = 3 2 , 3 x = 3 0

Ответ: x 1 = 2 , x 2 = 0

Вычислить корни уравнения:

В этом случае целесообразно разделить уравнение, то есть все его части, на 3 x + 1 > 0 :

x + 1 = log 2 3 1 ⇒ x + 1 = 0 ⇒ x = - 1

Требуется решить уравнение:

4 x + 6 x = 2 · 9 x

В этом случае следует перенести все слагаемые в левую часть. Затем можно выполнить тождественные преобразования:

2 2 x + 2 · 3 x - 2 · 3 2 x = 0

2 x 2 + 2 x · 3 x - 2 · 3 x 2 = 0 , : 3 2 x > 0

2 3 x 2 + 2 3 x - 2 = 0

Выполним замену 2 3 x = t , где t не равно нулю. В итоге получится квадратное уравнение:

\[ a^<x></p>
<p> =b \ (1) \]

В зависимости от знака такое уравнение имеет различное количество корней:

Задание Решить уравнение 5^<x>=25
Решение Поскольку для данного уравнения
, то

\[x=\log _<5></p>
<p> 25\]

Согласно свойствам логарифма, получаем:

\[x=\log _</p>
<p> 5^ =2\cdot \log _ 5=2\cdot 1=2\]

\[ a^<f\left(x\right)></p>
<p> =a^ <g\left(x\right)>\ (2) \]

Уравнения такого типа равносильны уравнению


Задание Найти корни уравнения x^<2x+1>=x^
Решение Заданное уравнение эквивалентно совокупности



Решение показательных уравнений сведением к общему основанию

Если левая и правая части заданного показательного уравнения содержат только произведения, частные, корни или степени, то рациональнее при помощи основных формул для степеней привести обе части равенства к одному основанию, то есть к уравнению вида (2).

Задание Решить уравнение 2^<x-3>\cdot 4^ =\frac > <16^>
Решение Приведем обе части заданного уравнения к основанию два:

\[2^<x-3></p>
<p> \cdot \left(2^ \right)^ =\frac > > > <\left(2^<4>\right)^ > \]

\[2^<x-3></p>
<p> \cdot 2^ =\frac > > > > \Rightarrow 2^ =2^ -4x> > \Rightarrow 2^ =2^ -4x> > \]

Пришли к уравнению вида (2), тогда его решение:

\[3x-3=\frac</p>
<p> -4x\Rightarrow 7x=\frac \Rightarrow x=\frac .\]

Решение показательных уравнений вынесением общего множителя

a^<kx+b></p>
<p>Если показательное уравнение содержит выражение вида
, причем показатели степени отличаются только свободным коэффициентом, то для решения необходимо вынести за скобки наименьшую степень .

Задание Решить уравнение 5^<x>-2\cdot 5^ =23
Решение Выносим пять в наименьшей степени, то есть в степени . При этом нужно каждое слагаемое поделить на указанный множитель:

\[5^</p>
<p> \cdot \left(5^ <x-\left(x-2\right)>-2\right)=23\Rightarrow 5^ \cdot \left(5^ -2\right)=23\Rightarrow 5^ \cdot \left(25-2\right)=23\Rightarrow \]

\[\Rightarrow 5^</p>
<p> \cdot 23=23\Rightarrow 5^ =1\]

\[x-2=\log _<5></p>
<p> 1\Rightarrow x-2=0\Rightarrow x=2\]

Замечание. Если учесть, что " width="50" height="17" />
, то уравнение =1" width="70" height="17" />
можно было свести к уравнению (2):

\[5^</p>
<p> =1\Rightarrow 5^ =5^ \Rightarrow x-2=0\Rightarrow x=2\]

Приведение показательных уравнений к квадратным

К показательным уравнениям, которые можно привести к квадратным, относятся следующие уравнения.

\[ A\cdot a^<2x></p>
<p> +B\cdot a^ +C=0 \]


где — некоторые числа, .

В этом случае выполняется замена


Задание Решить уравнение 4^<x+1>-3\cdot 2^ =10
Решение Приведем уравнение к одному основанию:

\[4^</p>
<p> \cdot 4-3\cdot 2^ -10=0\Rightarrow 4\cdot \left(2^ \right)^ -3\cdot 2^ -10=0\Rightarrow 4\cdot \left(2^ \right)^ -3\cdot 2^ -10=0\]


тогда будем иметь:

\[4t^<2></p>
<p> -3t-10=0\]

Решим полученное квадратное уравнение:

\[D=\left(-3\right)^</p>
<p> -4\cdot 4\cdot \left(-10\right)=9+160=169=13^ \]


2^<x></p>
<p>Обратная замена приводит к простейшему показательному уравнению =2
:

\[2^<x></p>
<p> =2^ \Rightarrow x=1 \]

\[A\cdot a^<f\left(x\right)></p>
<p> +B\cdot a^ <-f\left(x\right)>+C=0\]


где — некоторые ненулевые числа, причем , — произвольное действительное число. Для сведения к квадратному обе части уравнения необходимо умножить на :

\[A\cdot \left(a^<f\left(x\right)></p>
<p> \right)^ +B+C\cdot a^ <f\left(x\right)>=0\]


Далее заменой получаем квадратное уравнение

\[At^<2></p>
<p> +Ct+B=0\]

Задание Решить уравнение 3^<x>+3^ =10
Решение Запишем заданное уравнение следующим образом:

\[3^<x></p>
<p> +3^ \cdot 3^ =10.\]


Умножив на , будем иметь:

\[\left(3^</p>
<p> \right)^ +9=10\cdot 3^ \Rightarrow \left(3^ \right)^ -10\cdot 3^ +9=0\]


После замены получаем квадратное уравнение

\[t^<2></p>
<p> -10t+9=0\]

t_<1></p>
<p>корни которого по теореме Виета, =9,\; t_ =1
Обратная замена:

\[\left[\begin</p>
<p>  =9,> \\ =1> \end\right. \Rightarrow \left[\begin  =3^ ,> \\ =3^ > \end\right. \Rightarrow \left[\begin  \\ \end\right \]

Однородные показательные уравнения

\[a^<f\left(x\right)></p>
<p> =b^ <f\left(x\right)>\]

Делением обеих его частей на (или ), сводим уравнение к показательному вида =b" width="72" height="18" />
:

Задание Решить уравнение 2^=3^
Решение Поделим обе части заданного уравнения на
:

\[\left(\frac<2></p>
<p> \right)^ =1\]

\[x+1=\log _<\frac<2></p>
<p> > 1\Rightarrow x+1=0\Rightarrow x=-1\]

\[A\cdot a^<2f\left(x\right)></p>
<p> +B\cdot a^ <f\left(x\right)>\cdot b^ <f\left(x\right)>+C\cdot b^ <2f\left(x\right)>=0\]

Схема решения таких уравнений следующая:

1) Делим обе части уравнения или на , или на , в результате получаем:


A\cdot \left(\frac </p>
<p>\right)^ <2f\left(x\right)>+B\cdot \left(\frac \right)^ <f\left(x\right)>+C=0
;


2) заменой последнее уравнение сводится к квадратному:

\[At^<2></p>
<p> +Bt+C=0\]

Задание Решить уравнение 4^+6^ =2\cdot 9^
Решение Перенесем все слагаемые в лево и выполним некоторые тождественные преобразования:

\[\left(2^</p>
<p> \right)^ +\left(2\cdot 3\right)^ -2\cdot \left(3^ \right)^ =0 \]


\[\left(\left(\frac</p>
<p> \right)^ \right)^ +\left(\frac \right)^ -2=0\]


После замены , получаем квадратное уравнение

\[t^<2></p>
<p> +t-2=0\]


После обратной замены получаем простейшее показательное уравнение

\[\left(\frac</p>
<p> \right)^ =1\Rightarrow \left(\frac \right)^ =\left(\frac \right)^ \Rightarrow x=0\]

Читайте также: