Первые ракеты в космосе кратко

Обновлено: 02.07.2024

Вспомните, когда вы в последний раз поднимали голову и смотрели на звезды?

Осталось ли в памяти ощущение величия и необъятности Вселенной, которое появилось после получения первых знаний об окружающем вас мире? А тот момент, когда вы впервые узнали расстояние от Земли до Луны, до других планет Солнечной системы? Какие мысли возникали в вашей голове в этот момент?

Скорее всего, с возрастом эти мысли стали уходить на второй план, ведь человек привыкает ко всему, а семейные и рабочие вопросы затягивают похлеще трясины.

Ближе для всего человечества.

Мы не располагаем достоверными данными о человеке, который первым подал мысль о том, что человек может вырваться за пределы атмосферы Земли с помощью искусственного аппарата.

Но первые задокументированные исследования, в которых теория уже начинала пересекаться с практическими планами реализации, принадлежат перу Константина Циолковского — русского ученого, философа и признанного основоположника теории ракетостроения.

Многие идеи из трудов Циолковского (расчеты полета, конструкции ракет и траектория движения) использовались впоследствии на практике ракетостроителями всего мира. Но все же главным его достижением, на наш взгляд, является не техническая составляющая трудов — основным эффектом стало изменение мышления целого поколения ученых и инженеров, которые знакомились с его теоретическими выкладками.

Прошедшие годы показали, что отцу космонавтики это удалось — его труды сподвигли десятки, а позже сотни и тысячи людей начать работы в этой новой для человечества сфере.

И вот наступила весна 1926 года, и первая ракета на жидком топливе устремилась ввысь. Историческое событие произошло в городе Оберн, расположенном в штате Массачусетс.

Американский ученый и инженер Роберт Годдард полностью организовал и успешно провел первый пуск устройства длиной в человеческую руку на высоту в 12 метров. И хотя такие габариты и дистанция, на которую аппарат Годдарда поднялся в воздух, сейчас выглядят довольно смешно, в тот момент этот запуск заложил основу будущего ракетной промышленности США.

Существенную роль в развитии новой сферы сыграл известный летчик Чарльз Линдберг, который помог найти Годдарду инвестора — известного финансиста и филантропа Дэниэла Гуггенхайма.

Первые $100 тысяч США, полученные ученым в 1930 году, были потрачены с пользой: ракеты его разработки достигали высоты практически в три километра, чем привлекли значительное внимание военного ведомства Соединенных Штатов Америки.

С момента запуска первой ракеты в США прошло десять лет, и вот ученые СССР под руководством Сергея Королева начали первые пробные испытания по созданию ракет-носителей. В 1933 году был проведен первый эксперимент по запуску на жидком (гибридном) топливе.

Проект ГИРД-09 стал дебютом советских ученых: ракета с одноразовым двигателем под номером 09 имела массу всего 19 кг и работала на сгущенном канифолью бензине с жидким кислородом в качестве окислителя.

К сожалению, все пробные запуски заканчивались провалами — лучшим результатом стало достижение отметки в полтора километра, после чего ракета выходила из строя по разным причинам. Исследования приостановились, и новый виток попыток покорения космоса начался уже в послевоенное время.

В 1945 году, после окончания Второй Мировой войны, страны-победительницы вновь обратили внимание не только на военные исследования в области ракетостроения — завоевание космического пространства фактически равнялось выдвижению государства в лидеры на политической арене.

Американцы, в свою очередь, предоставили убежище главному разработчику этого оружия – Вернеру фон Брауну, вместе с которым были получены основные чертежи и проекты. Именно он стал главой ракетного проекта США. Вместе с ним работал еще один пионер ракетостроения — Герман Оберт.

Этот ученый практически в одно время с Циолковским, не будучи при этом знакомым с его трудами, пришел к аналогичным выводам о возможностях ракет и подкрепил их целым рядом научных работ. В Советском союзе руководителем проекта в НИИ-88 назначили реабилитированного после репрессий Королева.

Двигатель на горючем из жидкого кислорода в сочетании с этанолом позволял развить огромную скорость и обеспечивал высокую дальность полета в горизонтальной плоскости (до 320 км).

Ракеты, собранные по аналогии с немецкими трофеями, запускались вплоть до 1952 года, и первое время достигали результатов, которые оставляли советские достижения позади.

Таким образом, теоретические предположения о возможности выбраться за пределы Земли и оставаться при этом на радиосвязи были подтверждены в реальности.

Но эта реальность была жестко приправлена происходящим в мире процессом — холодной войной сверхдержав.

В первую очередь политиков волновало не развитие космической промышленности с целью исследований околоземного пространства, а лишь то, возможна ли перевозка грузов не менее тонны. Грузов, предназначенных для войны. В рамках политики это было уже серьезной угрозой, не исключающей возможность атаки с космоса.

Американский спутник весил всего 4,8 кг, но был оснащен счетчиком Гейгера, с помощью которого вокруг планеты был найден радиоактивный пояс Ван-Аллена. Стоит отметить, что американцы также часто сталкивались с неудачами при запуске новых ракет и выведении спутников на орбиту: из 11 моделей всего 3 достигли программных целей.

Так или иначе, но ближнее околоземное пространство было исследовано с помощью автоматических аппаратов. Новой целью космической гонки стала Луна.

Вплоть до 1959 года терпели фиаско и советские ракетостроители. Основной причиной были развивающиеся в процессе полета сильные колебания, разрушающие корпус носителя.

Без возможности отправки в космическое пространство живого человека с последующим его успешным возвращением все дальнейшие исследования теряли смысл, поэтому следующим этапом стала система разработки жизнеобеспечения в условиях космоса.

Технические характеристики ракет по-прежнему не отличались совершенством, запуск не гарантировал успешного исхода миссии. Достаточно обратиться к статистике: с 1957 по 1961 год и у США, и у СССР успешно проходили два запуска из трех.

Первые попытки проверки эффективности систем жизнеобеспечения проводились на животных. Известные Белка и Стрелка были далеко не первыми собаками, запущенными в космос, но первыми, которым удалось там выжить.

Во время полета космонавт размещался в небольшой капсуле с теплозащитой и атмосферой из смеси азота с кислородом под давлением. Конструкция аппарата предусматривала возможность ручного и автоматического пилотирования. Сам полет продолжался 90 минут и завершился успешным возвращением Гагарина на Землю. Советский союз и практически весь цивилизованный мир ликовал.

Оставался открытым вопрос, сможет ли человек выжить вне корабля, находясь в невесомости и используя автономные средства жизнеобеспечения.

Корабли постепенно становятся многоместными: мощности ракет теперь хватает, чтобы отправлять экипажи для разнообразных исследований и брать большее количество научной аппаратуры и полезной нагрузки в целом.

При всех достижениях перелеты оставались достаточно рискованными: не до конца отлаженные системы могли отказать в самый неожиданный момент.

Путешествия людей за пределами Земли и высадка на другие планеты становилась реальностью.

Недостатком ракетных установок и космических кораблей оставался малый срок службы — стоимость аппаратов и потребляемого топлива была так высока, что владеть подобными устройствами могли только государства.

Корабли быстро сгорали в слоях атмосферы, а каждый новый запуск требовал не только денег, но и большого количества времени на подготовку. После первых успехов стало понятно, что разовые запуски невыгодны — за короткий период нахождения космонавтов на орбите времени на полноценное изучение космоса и Земли катастрофически не хватало.

Эта проблема положила начало эпохе разработки орбитальных станций (ОС) длительного срока эксплуатации, в которых люди смогли бы жить и работать на орбите нашей планеты.

Из-за технических проблем в единственном стыковочном шлюзе первый экипаж не смог проникнуть внутрь станции, но успешно вернулся на Землю, совершив первую в мире ночную посадку космического модуля.

Технические проблемы были устранены, и в 1977 году новые ракеты понесли людей на орбиту Земли. Время пребывания экспедиций на борту значительно увеличилось, и в конструкции появилось два стыковочных узла — за счет этого выполнять работы стало проще.

Таким образом, человек научился жить в космосе.

Электрическое питание обеспечивалось солнечными панелями. Вода и кислород отчасти (в меньшей мере) регенерировались системами жизнеобеспечения, а частично — доставлялись с поверхности планеты. Кроме того, сама станция достраивалась с помощью дополнительных стыкуемых модулей, доставленных ракетами с Земли. Сама ОС работала до 1991 года, после чего, согласно плану эксплуатации, штатно сгорела в атмосфере.

Энергию станция получала от солнечных панелей на корпусе. Как раз с ними в процессе запуска и возникли неполадки, которые были устранены ремонтной командой. Личный состав провел необходимые работы по устранению, после чего оставался на орбите еще 28 дней, проводя все необходимые исследования.

В 1998 году сверхдержавы (включая США, Россию, Европу, Японию и Канаду) объединились и создали одну общую многонациональную станцию (МКС).

Многомодульная станция рассчитана на длительное проживание космонавтов, выполняющих мультинациональные научные программы.

Пока это самый внушительный аппарат в космосе: объем конструкции составляет 400 кубических метров, а вес – почти 400 тонн. Поскольку собранную станцию поднять было невозможно (ракет подобной мощности не существовало), МКС собирали прямо на орбите, постепенно присоединяя к ней различные модули.

Командные центры МКС находятся в США и России, а в целом этот дорогостоящий проект (на конец 2018 года в создание, модернизацию и обслуживание станции инвестировано более 150 млрд долларов) существует по настоящее время.

Сейчас главными целями развития ракетостроения являются:

  • Увеличение дальности полета и грузоподъемности возвращаемых аппаратов.
  • Удешевление стоимости запусков (без ущерба для безопасности).

В приоритетах — коммерческая сфера ракетостроения: переброска грузов и космический туризм. Единственным на сегодняшний день рабочим решением является использование многоразовых ракет нового поколения.

И этот вариант развития стал возможным благодаря тому, что космические программы больше не являются монополией государств — к игре присоединились частные компании. Коммерческое ракетостроение и частные перелеты существенно расширят сферу освоения космоса людьми.

На данный момент в МКС применяется частично замкнутая система контроля окружающей среды и жизнеобеспечения (ECLSS), которая способна регенерировать воду и очищать атмосферу. Совершенствование этой системы — одно из приоритетных направлений.

Предполагается, что в будущем для создания полностью замкнутой системы жизнеобеспечения, а также воспроизведения пищи и кислорода будут использоваться биологические процессы.

Дополнительно анализируются способы выращивания растений на борту аппаратов. Все эти меры в комплексе обеспечат широкую автономность орбитальных станций и космических кораблей, избавив находящихся в космосе людей от привязки к Земле и, как следствие, позволят заняться исследованием глубокого космоса.

Важным вопросом, который постепенно перешел от теории к практической реализации в современных космических исследованиях, становится колонизация других планет — преимущественно Луны и Марса.

Но при текущем уровне развития космической техники доставка людей и груза — билет в один конец. Состав атмосфер на планетах и существующие технологические решения не позволяют создавать космодромы для обратного запуска. Устранению этой проблемы посвящен ряд государственных и частных проектов.

Ведутся разработки по усовершенствованию двигателей и топлива. Планируется переход на более эффективные и экономичные виды систем — идеальным было бы создание ядерного двигателя, работающего на газообразном топливе — небольшой объем и огромная мощность позволили бы увеличить скорость движения и максимальную грузоподъемность ракеты.

Но исследования этого вида топлива, проводившиеся с 1950-х годов в США (NERVA) и СССР (РД-0410), не были завершены. Эксперименты закончились неудачно, поскольку в реакторе использовалось твердое топливо и достигнутой максимальной температуры оказалось недостаточно для толчкового выброса.

Работы по газофазному двигателю также не увенчались успехом и были заморожены в 1994 году из-за риска загрязнения окружающей среды продуктами распада и невозможности защитить корпус аппарата от побочных реакций.

Россия пошла по пути освоения электрической энергии: с 2007 года Роскосмос ведет разработку ракетной установки на электротяге. Результатом должна стать возвращаемая конструкция с высокой грузоподъемностью и скоростью, в несколько раз превышающей аналогичный параметр аппаратов на химическом топливе.

Создание однократно запускаемых ракет-носителей стало крайне невыгодным занятием — затраты на производство не окупаются, поскольку на орбиту регулярно выводятся многочисленные спутники, а к другим планетам отправляются исследовательские беспилотники.

Стоимость деталей ракеты и топлива тормозит развитие частного использования космических аппаратов (транспортировка грузов и туризм), поэтому единственным решением являются многоразовые возвращаемые ракеты.

В настоящее время космическими проектами активно занимаются страны, стоявшие у истоков звёздных исследований: США и РФ. При этом сфера космоиндустрии стремительно расширяется, и на арену событий выходят частные компании и капиталы. И здесь уместно упомянуть компанию, которая сейчас занимает лидирующее положение в сфере ракетных инноваций — SpaceX.

Программа Илона Маска является наиболее успешным частным проектом ракетостроения и освоения космоса. Кроме того, уровень амбиций бизнесмена создает серьезную конкуренцию госпрограммам США и РФ.

SpaceX, зародившаяся в начале 2000-х годов, не только стала единственной успешной частной фирмой по производству ракетных технологий — на данный момент корпорация Маска успешно проводит рекордное количество гражданских запусков ракет в космос.

Для достижения своих целей Маск полностью перерабатывает структуру существующих ракет, пытаясь привести их к следующим параметрам:

Для достижения этих целей компания Маска уже 17 лет постоянно совершенствует свои ракеты, покоряя новые вершины ракетостроения. И хотя путь компании нельзя назвать легким — за эти годы аппараты взрывались, падали и разрушались, — но результатом такого труда стали:

  • Falcon 9 — многоразовая ракета, которая активно применяется в космосе для разных задач.
  • Тяжелая Falcon Heavy, которая может вывести рекордную массу весом почти в 64 тонны на орбиту Земли.

Добрый день, мой многоуважаемый читатель. Ваш почтенный слуга, как и миллионы мальчишек родившихся в советском союзе, мечтал стать космонавтом. Я им не стал, в связи со здоровьем и как это не прозвучит странно, ростом. Но далекий и неизвестный космос, влечет меня и по сей день.

В этой статье, я хочу вам поведать о таких интересных и поистине космических штуках, как ракета-носители и полезный груз который они доставляли в космическое пространство.

Плотное освоение космоса началось в середине третей пятилетки, после окончания второй мировой войны. Велись активные разработки во многих странах, но главные передовики естественно были СССР и США. Первенство в удачном запуске и вывода ракета-носителя с ПС-1 (простейший спутник) на околоземную орбиту, принадлежало СССР. До первого удачного запуска, было аж шесть поколений ракет и только седьмое поколение (Р-7) смогло развить первую космическую скорость в 8км/с чтобы преодолеть земное притяжение и выйти на околоземную орбиту. Космические ракеты взяли свое начало из баллистических ракет дальнего радиуса, путем форсирования двигателя. Вначале я вам кое что поясню. Ракета и космический корабль, это разные вещи.


Сама ракета, это всего лишь средство доставки космического корабля в космос. Это первые 30 метров на рисунке. А космический корабль уже крепится на ракету в самом верху. Впрочем, космического корабля там может и не быть, там может располагаться все что угодно, начиная от спутника, заканчивая ядерной боеголовкой. Что и служило большим стимулом и страхом для держав. Первый удачный запуск и вывод спутника на орбиту, значил для страны многое. Но главное из всего прочего, военное преимущество.

Сами ракета-носители, до первого удачного запуска имеют только буквенно-цифровое обозначение. И только после фиксирования удачного вывода полезного груза на заданную высоту, получают название.



Вот самый первый искусственный спутник ПС-1 проходит заключительную проверку всех систем.



ПС-1 в космосе. (картинка не является оригинальной съемкой)

В США и без этого была ядерная истерия. В детских садах, школах, фабриках и заводах, начались бесконечные учения на случай ядерного удара. Это был первый случай, когда американцам нечем было противостоять СССР. Межконтинентальные баллистические ракеты могут долететь до СССР за 11 минут. Прилететь из космоса ядерный заряд может намного быстрее. Конечно, все это слишком сложно, чтобы действительно так считать. Но у страха глаза велики.






Кстати, вот еще что добавьте в копилку эрудита: Как вы думаете, сколько времени ракета летит в космос? Час, два? Может быть пол часа?
Чтобы достичь высоты в 118 км, ракете требуется примерно 500 секунд, что меньше 10 минут. Высота в 118 км(100км) это так называемая линия Кармана, где аэронавтика становится полностью невозможной. Принято полагать, что полет считается космическим, если линия Кармана была преодолена.



Ракета правда американская, но этот рисунок очень удачно отображает атмосферу земли и точки переходов.



Два металлических пентагона с символикой СССР, отправленных вместе с АМС-2 на луну.

(После этой удачи, американцы начали строить павильон, где решили снимать фильм о высадке на луну. Шутка.) 4 октября, этого же года, была запущена аналогичная ракета с АМС Луна-3, которая впервые за всю историю человечества, смогла сфотографировать обратную сторону Луны. Заставив рядовых американцев плакать, забившись в угол. Так как, к сожалению, луна с другой стороны абсолютно такая же и на ней нет лунопарков и лунных городов.



Обратная сторона луны. 1959 год.



Лайка. Она была первым живым существом, побывавшим в космосе, но без шанса вернуться обратно.



Спутник-4



1. Фотоаппаратура; 2. Спускаемый аппарат; 3. Баллоны системы ориентации; 4. Приборный отсек;
5. Антенны телеметрических систем; 6. Тормозная двигательная установка; 7. Датчик ориентации по Солнцу;
8. Построитель вертикали; 9. Антенна программной радиолинии; 10. Антенна системы радиоразведки

После этого случая, каждые два месяца, были запуски на ракета-носителях Восток, каких либо представителей фауны земли. В июле запустили собак Чайку и Лисичку, но к сожалению, На 19-й секунде полёта у ракеты-носителя разрушился боковой блок первой ступени, в результате чего она упала и взорвалась. Собаки Чайка и Лисичка погибли.



Первые собаки полетевшие в космос на возвращаемом космическом корабле(спускаемый аппарат).
Вернуться им было, к сожалению, не суждено.

А в августе 60го, осуществили успешный полет две наши гордости, Белочка и Стрелочка! Но следующую информацию, запиши в свою копилочку: Вместе с Белкой и Стрелкой, на борту было 40 мышей и 2 крысы. Они провели в космосе 1 день и 9 часов. Вскоре после приземления у Стрелки родились шесть здоровых щенков. Одного из них попросил лично Никита Сергеевич Хрущёв. Он отправил его в подарок Каролин Кеннеди, дочери президента США Джона Кеннеди.




Белка и Стрелка, первые собаки, вернувшиеся из космоса.

В декабре этого же года, был запуск Спутника-6. Экипажем корабля были собаки Мушка и Пчёлка, две морские свинки, две белые лабораторные крысы, 14 чёрных мышей линии С57, семь мышей гибридов от мышей СБА и С57 и пять белых беспородных мышей. Серия биологических экспериментов, включавших проведение исследований по возможности полётов нагеофизических и космических ракетах живых существ, наблюдение за поведением высокоорганизованных животных в условиях таких полётов, а также, изучение сложных явлений в околоземном пространстве.
Учёными были проведены исследования воздействия на животных большинства факторов физического и космического характера: изменённой силы тяжести, вибрации и перегрузок, звуковых и шумовых раздражителей различной интенсивности, воздействия космического излучения, гипокинезии и гиподинамии. Полёт продолжался чуть более суток. На 17 витке из-за отказа системы управления тормозным двигателем, спуск начался в нерасчетном районе.[1] Было принято решение уничтожить аппарат путём подрыва заряда, с целью исключить незапланированное падение на чужую территорию. Все живые существа, находившиеся на борту, погибли. Несмотря на то, что аппарат был уничтожен, цели миссии были выполнены, собранные научные данные переданы на Землю при помощи телеметрии и телевидения.



Собаки Мушка и Пчёлка перед полетом в космос.

После этого случая, было еще два удачных и одного не очень, запуска ракет Восток. Американцы негодовали и с каждым днем становились все смурнее и смурней и всячески перехватывали зашифрованные сигналы и пытались их расшифровать, но терпели фэйлы.

12 апреля, 1961 года, СССР преподнес свой завершающий удар и отправил Юру в космос на этом же ракета-носителе, в космическом корабле Восток-1, который выполнил один оборот вокруг Земли и совершил посадку в 10 часов 55 минут. Чтобы понимать, что такое космический корабль Восток-1, приведу его габаритные характеристики:

• Масса аппарата — 4,725 т;
• Диаметр герметичного корпуса — 2,2 м;
• Длина (без антенн) — 4,4 м;
• Максимальный диаметр — 2,43 м

(Как уже писал выше, я не космонавт, просто была возможность посидеть в аналогичном аппарате на земле.) Это очень неудобный летательный аппарат я вам скажу. С моим ростом в 190см, было крайне неудобно сидеть в кресле ковше, да еще и в скафандре. По этому Гагарин и был отобран по росту, весу и здоровью. (170/70/отличное) Но даже Гагарин скорее всего чувствовал себя дискомфортно в такой крохотной капсуле.

Хочу отметить, что первый полет человека был полностью автоматическим, но Юра мог в любой момент переключить корабль на ручное управление. Для этого, надо было ввести специальный защитный код, для отключения автоматики, который был в запечатанном конверте, который был в яйце, яйцо в утке, утка….короче перед полетом, Королев шепнул Юрке этот код, все-таки мало ли? А делалось все ради того, что никто не знал, как поведет себя нервная система человека в космосе и не сойдет ли он с ума. По этому код для ручного управления поместили в конверт, который сумел бы открыть только вменяемый человек.



Наша всеобщая гордость!

Хочу вам рассказать некоторые интересные подробности о первом полете человека.



Старт ракет всегда приходится на неровное время.



В 9-57 Гагарин махал рукой лично президенту Америки, пролетая над оной.



Автобус везущий космонавтов к ракете, голубого цвета.



Тот самый автобус.



Гагарин мог в любой момент отказаться от полета, и его заменил бы Титов, которого в свою очередь мог заменить Нелюбов.

Карандаши в космосе лучше привязывать. Кстати, из-за невесомости, обычные авторучки в космосе не пишут.

При спуске космического аппарата, из-за проблем в тормозно-двигательной установке корабль начал вращаться в течении 10 минут с амплитудой полного оборота в 1 секунду. Гагарин, не стал пугать Королева и обтекаемо сообщил о нештатной ситуации, что говорит о его стальных нервах. Все спускаемые аппараты типа Восток, садятся по баллистической траектории, что приводит к перегрузкам до 10 джи. К тому же, корабль сильно нагревается и дико потрескивает в нижних слоях атмосферы, что может очень сильно давить на психику. Когда корабль достигает отметки в 7 км над землей, происходит катапультирование космонавта, который спускается отдельно от спускаемого аппарата на собственных парашютах. Что такое катапультирование на корабле Восток? Когда спускаемый аппарат выпускает парашют и скорость с 900 км/ч постепенно падает до 72км/ч, под сидением космонавта срабатывает пиротехнический заряд и кресло вместе с космонавтом со свистом вылетает в свободное падение. Потом космонавт должен успеть отсоединиться от кресла и уже самостоятельно спуститься на парашюте на землю. И это при диких перегрузках, постоянным страхом и недоверием к автоматике. У Гагарина после катапультирования не сработал клапан подачи кислорода и он начал задыхаться. Спустя некоторое время, клапан открылся и Юра глубоко вздохнул. Когда парашют раскрылся, его стало сносить прямиком в Волгу. Напомню, что вода в апреле немного холодная и он снова оказался на волосок от гибели, и спасло его умение маневрировать с помощью строп. Думаю, не передать словами, что он успел за этот час с небольшим натерпеться. Оно того стоило. Юрий Алексеевич Гагарин, самый знаменитый (современник) человек на земле, из когда либо живших.



При спуске, капсула начинает гореть в нижних слоях атмосферы.



Парашют раскрывается на скорости 900км/ч



Приземляется капсула со скоростью 7м/с



Вот так обгорает спускаемый аппарат.



Предстартовая проверка всех систем.



Королев не скрывая волнения общается с Гагариным во время полета.


Самый знаменитый человек на планете!

На обложке журнала Тайм.



На обложке журнала Лайф.



Но сам он был очень скромным.

На этом я закончу первую часть об освоении космоса СССР. Если вам интересно продолжение я с удовольствием буду писать. В последствии я расскажу и о других странах, в том числе и о США, которые тоже очень много сделали в этой сфере деятельности.

Что такое космическая ракета? Чем она отличается от обычной? Космическая ракета – это ракета составная, многоступенчатая, работающая на жидком топливе. Никто в готовом виде такую ракету сразу не придумал!

Первые простые ракеты появились ещё в 13 веке в Китае.



Эскизы и чертёжи первых многоступенчатых ракет появились в трудах военного техника Конрада Хааса (1556 г.) и учёного Казимира Семеновича (1650 г.). Именно он, по мнению многих специалистов, является первым изобретателем многоступенчатой ракеты. Но это были военно-инженерные проекты. Ни Хаас, ни Семенович не предполагали их использование в космических целях.

Но дело в том, что обычная многоступенчатая ракета на твёрдом топливе (в основном предлагался порох) не годилась для космических полётов. Нужен был принципиально иной вид топлива.




ТАСС-ДОСЬЕ. 4 октября 2017 года исполняется 60 лет со дня запуска первого в мире искусственного спутника Земли. С этого космического аппарата, созданного Советским Союзом, началось освоение космического пространства человечеством.

Редакция ТАСС-ДОСЬЕ подготовила материал об истории советской ракетно-космической программы.

Циолковский и первые ракеты в СССР

Первым идею полетов в космос высказал основоположник практической космонавтики, русский ученый Константин Циолковский (1857-1935).

Космические пророчества Циолковского Спутники, орбитальные станции, выход в открытый космос и другие идеи ученого, опередившие свое время

Космические пророчества Циолковского

В своем труде "Грезы о земле и небе и эффекты всемирного тяготения" (1895) он писал: "Еще с юных лет я нашел путь к космическим полетам. Это - центробежная сила и быстрое движение". Впоследствии в своих работах он подробно описал теорию полета и конструкцию ракет, предложенных им для исследования атмосферы.

Идеи Циолковского начали воплощаться в 1933 году, когда инженеры московской Группы изучения реактивного движения (ГИРД) под руководством Сергея Королева провели испытания экспериментальной ракеты на гибридном топливе ГИРД-09 (конструкции Михаила Тихонравова). Она поднялась на высоту 400 м, всего находилась в полете 18 секунд. В 1938 году работы по ракетам на жидком топливе в СССР были прерваны в связи с арестом Королева. К созданию баллистических ракет он вернулся только в 1945 году.

Становление ракетно-космической промышленности

После окончания Великой Отечественной войны среди советских трофеев оказались комплектующие немецких баллистических ракет "Фау-2" (V-2, сокращение от Vergeltungswaffe-2 - "Оружие возмездия - 2"), а также их завод по производству близ города Нордхаузен. Первоначально завод был занят американскими военными, которые вывезли оттуда все собранные ракеты, но затем был передан в Советскую зону оккупации Германии в обмен на Западный Берлин.

Кроме того, в плену у советских войск оказались около ста немецких ученых-ракетчиков. При этом основной разработчик "Фау-2" Вернер фон Браун сдался в плен американцам, захватив с собой всю документацию. Уже летом 1945 года специальная группа, руководить которой назначили освобожденного из заключения незадолго до этого Королева, приступила к изучению немецких ракет.

13 мая 1946 года вышло секретное постановление Совета министров СССР №1017-419сс "Вопросы реактивного вооружения". Документ предусматривал создание при Совмине СССР специального комитета по реактивной технике во главе с заместителем председателя Совета министров Георгием Маленковым, а также научно-исследовательских институтов (НИИ), конструкторских бюро (КБ) и полигонов по этой тематике.

Человечество отмечает 60 лет с начала космической эры

В их число входило специальное конструкторского бюро НИИ-88, при котором в августе того же года был образован отдел №3 для разработки баллистических ракет дальнего действия под руководством Королева. В апреле 1950 года отдел был преобразован в особое конструкторское бюро №1 (ОКБ-1) НИИ-88. В августе 1956 года ОКБ-1 вместе с опытным заводом №88 было выделено из состава НИИ-88 и стало самостоятельной организацией (впоследствии - ЦКБЭМ, НПО "Энергия", ныне - Ракетно-космическая корпорация "Энергия" им. С. П. Королева).

Специалистами ОКБ-1 на основе узлов и агрегатов немецкой "Фау-2" была собрана баллистическая ракета и 18 октября 1947 года произведен ее запуск. Копия "Фау-2" пролетела 247 км, поднявшись на высоту 86 км.

Конструкторским бюро Королева из отечественных материалов на базе немецкой ракеты была разработана ракета Р-1. С 1950 года, изучив все недостатки немецкой конструкции, коллектив Королева, с участием таких ученых, как Валентин Глушко, Николай Пилюгин и др., занялся ее коренной переработкой. В 1949 году начались испытания Р-2, чья дальность увеличилась с 300 до 600 км. В 1955 году впервые стартовала советская стратегическая баллистическая ракета Р-5М (8К51), а в 1957 году - межконтинентальная Р-7 (8К71).

Несмотря на то, что первоначально у американцев было преимущество в виде команды фон Брауна, и их ракетная программа до середины 1950-х годов опережала советскую, руководство США совершило ряд просчетов. Так, баллистическая ракета Jupiter-C, сравнимая по классу с "семеркой", была запущена почти на год раньше, в сентябре 1956 года, однако президент Дуайт Эйзенхауэр запретил использовать ее для запуска спутника.

Специально разработанная для космических полетов облеченная ракета Vanguard оказалась крайне ненадежной. В результате американцам пришлось возобновлять программу по космическому запуску с помощью ракеты Jupiter-C, четырехступенчатая модификация которой под названием Juno 1 смогла вывести на орбиту спутник Explorer 1 лишь 1 февраля 1958 года.

Начало космической эры

4 октября 1957 года с помощью переоборудованной МБР Р-7 (получила индекс 8К71ПС) в космос был выведен первый искусственный спутник Земли. Запуск был осуществлен с 5-го Научно-исследовательского испытательного полигона Минобороны СССР (ныне - космодром Байконур).

Спутник один. История первого космического устройства О том, как простой советский спутник в одиночку положил начало эпохе космических исследований

Читайте также: