Перспектива энергии солнца кратко

Обновлено: 02.07.2024

В каждой стране баланс топливно-энергетического комплекса существенно влияет на экономику. Зависимость от углеводородного сырья в мире постепенно снижается благодаря возобновляемым источникам энергии (ВИЭ). Развитие солнечной энергетики в России задерживается из-за достаточного объема горючих полезных ископаемых и урана.

В чем преимущества солнечной энергетики?

В государствах с малыми запасами нефти, газа, угля и урановой руды отмечается нехватка энергоносителей. Выходом для них считается использование нетрадиционных энергоисточников. В отличие от Европы и США масштабное внедрение технологий солнечной энергии в России только начинает развиваться. Этому способствуют следующие факторы:

  1. Экологичность.
    За нулевое воздействие на окружающую среду гелиоэнергетике отдается большее предпочтение. Независимо от способа генерации, процесс безопасен для экологии.
  2. Доступность.
    Солнечные электростанции (СЭС) работают в любой точке мира. Среднегодовые температуры не важны, учитывается только уровень инсоляции территории.
  3. Неисчерпаемость.
    Объем энергетического сырья земных недр стремительно сокращается, а энергии Солнца хватит на 6,5 млрд лет.
  4. Экономичность.
    Расходы на добычу, транспортировку энергоносителя отсутствуют, поэтому солнечные батареи выгодно устанавливать.
  5. Инновации.
    Технологии генерации постоянно усовершенствуются. Кроме стандартных фотоэлектрических установок, японская компания Sharp начала изготавливать накопительные элементы для оконного остекления.

Проблемы развития солнечной энергетики

Несмотря на доступность света Солнца в любой точке мира, полностью перейти на использование возобновляемых источников энергии пока невозможно. Обеспечить бесперебойное энергопотребление нельзя, так как ночью, в пасмурные и дождливые дни уровень инсоляции критически низок или отсутствует.

Строительство солнечных электростанций обходится государствам в немалые суммы. Поэтому Министерства энергетики многих стран не хотят разрабатывать программы поощрения для развития ВИЭ. Рабочие ТЭС и АЭС, достаток углеводородов, урановой руды значительно задерживает переход от традиционного энергоснабжения.

Дополнительным препятствием для активного старта ВИЭ стал кремний для производства модулей. Его содержание в земле превышает количество урана в 100000 раз, но извлечение чистого элемента (99,99%) по старой хлорсилановой технологии стоит около 100$/кг и равняется цене производства гексафторида урана.

Разработаны новые и экономные восстановительные процессы для добычи кремния из природного кварцита (5—15$/кг). Пока производителей, работающих на электрофизических методах восстановления, слишком мало в мире. Из-за этого невозможно удовлетворить имеющийся спрос на недорогие фотоэлектрические панели.

Как развита солнечная энергетика в России?

По данным Института энергетической стратегии теоретический потенциал альтернативной энергетики в России составляет 2300 млрд тонн условного топлива. Но даже эта цифра не влияет на скорость перехода к использованию ВИЭ. Богатство недр российской земли углеводородным сырьем и ураном задерживает прогресс в этой сфере.

На 2017 год общий гелиоэнергетический баланс Германии колебался в пределах 20%, на тот момент в России показатель составлял 0,03%. Это доказывает, что гелиоэнергетика медленно развивается в России и в ближайшее время не может догнать другие страны.

По прогнозам International Energy Agency к 2050 г лидеры в области генерации энергии Солнца смогут производить до 25% общемировой электроэнергии.

Без господдержки предприниматели не стремятся инвестировать в развитие гелиоэнергетики. Причиной этого считается отсутствие желания ждать окупаемости проекта, так как традиционные способы получения электроэнергии дешевле.

Многое зависит от инициативы местных властей. Региональным органам управления доступно разработать собственные программы по развитию гелиоэнергетического электроснабжения. Такие проекты воплощены в жизнь в Бурятии, Краснодарском и Красноярском краях.

Уровень среднегодовой инсоляции в разных регионах РФ позволяет полноценно эксплуатировать СЭС. Даже в областях с низкой солнечной активностью возможно снизить энергопотребление до 50%. Наибольшие перспективы развития принадлежат Крыму, Кавказу, Ставрополью, Дальнему Востоку.

В каких регионах используется?

Новые российские гелиоэнергетические станции функционируют более чем в 25 регионах. По вырабатываемой мощности первыми лидерами стали:

  • Орская 40 МВт и Соль-Илецкая 25 МВт (Оренбургская область);
  • Самарская 50 МВт;
  • Бурибаевская 20 МВт и Бугульчанская 15 МВт (Башкортостан);
  • Кош-Агачская (Алтай) 10 МВт.

Крымские станции работают независимо от Единой энергетической системы страны. На 2019 год открыто 13 СЭС с мощностью 289,5 мегаватт.

Солнечная энергетика: аналитика

Исследования ученых утверждают, что всего 0,0125% генерируемого излучения Солнца обеспечит современные запросы мировой энергетики. По оценкам специалистов (German Advisory Council on Global change) к 2100 году гелиоэнергетика станет доминирующим звеном среди существующих источников энергии.

В Германии, США, Китае поощряются автономные дома, обустроенные солнечными накопительными элементами. Модули, расположенные на крышах, обеспечивают жильцов электричеством, что снижает энергопотребление на 60%.

Анализ рынка солнечной энергетики в России показывает, что страна не готова к быстрому переходу на ВИЭ. Из-за отсутствия государственной поддержки и низкого спроса производство фотоэлектрических модулей ограничено. В этом сегменте представлены только несколько компаний:

Осведомленность о потенциале гелиоэнергетики в РФ крайне мала, поэтому даже сочетание экономических и климатических факторов пока не делает ее конкурентоспособной.

Перспектива развития на территории России

С 2016 года в мире отмечается скачок в использовании альтернативных источников энергии. При такой тенденции РФ не может оставаться в стороне. К концу 2019 года мощность солнечной энергосистемы страны составляет 0,04% (более 320 МВт), но для такой территории этого слишком мало.

В связи с этим Министерство энергетики выбрало 3 направления по увеличению масштабов гелиоэнергетического электроснабжения:

Привлечение инвестиционных вложений. При государственной поддержке инвесторам разрешено подключаться к монополистам энергосетей и зарабатывать на генерации солнечной энергии. Заключенный договор о поставке мощностей гарантирует возврат вложенных денег в течение 15 лет.

Развитие отдаленных регионов. На 75% территории страны нет центрального электроснабжения, что объясняет дороговизну топлива. По этим причинам был одобрен национальный проект по созданию большого количества автономных солнечно-дизельных установок мощностью 100 кВт. В будущем небольшие станции на 10—15 МВт будут работать по всей Сибири и Дальнему Востоку.

Поддержка частных собственников. Разрабатывается разрешение на установку домашних панелей мощностью до 15 кВт и продажу излишек энергии в электросети.

В планах на 2024 год в России планируется строительство станций общей мощностью 1,4 ГВт.

Благодаря научно-техническому прогрессу гелиоэнергетика активно внедряется в экономику многих государств. По статистике цена сгенерированного от Солнца электричества падает каждый год на 4%. При таких тенденциях ожидается смещение мирового энергетического баланса в сторону ВИЭ, что не может не сказаться на развитии солнечной энергетики в России.

Альтернативная энергетика и экология: виды и пути развития

Достоинства и недостатки солнечной энергетики

Нетрадиционные и возобновляемые источники энергии

Плюсы и минусы геотермальной энергетики

Использование энергии морских приливов и отливов

Принцип работы волновых электростанций

Геотермальные электростанции: плюсы и минусы выработки электроэнергии ГеоТЭС

Современный мир развивается день ото дня все более быстрыми темпами, а солнечная энергетика может в этом помочь. Перспективы солнечной энергетики важны для каждой страны, так как скорость потребности в электроэнергии увеличивается.

Несмотря на то, что существует множество способов производства электроэнергии, такие как геотермальная, ядерная, тепловая энергия, гидроэнергия, приливная и т. д., но они имеют некоторые недостатки.

Например, атомная электростанция подвергает окружающий мир вредному излучению и отходам, которые являются токсичными для человека и других живых организмов.

Когда мы берем тепловую электроэнергию, то начальная стоимость этой энергии высока, то есть нужно большое количество угля или газа для производства электроэнергии. Гидроэлектростанция потребует строительство плотин, а также наличие воды, без которой мы не можем производить электричество.

Нынешняя солнечная энергетическая система имеет некоторые недостатки, такие как её отсутствие в ночное время.

Спутник в космосе может получать солнечную энергию все 24 часа полную неделю даже 365 дней в году.

Если солнечные лучи достигающие спутника преобразовать в ток и передать на Землю перспективы солнечной энергетики возрастут многократно.

перспективы солнечной энергетики

Важность разработки чистых источников энергии

Одной из основных проблем, стоящих перед планетой Земля является обеспечение адекватного снабжения чистой энергией.

Сейчас люди сталкиваются с тремя одновременными вызовами: рост населения, потребление ресурсов и деградация окружающей среды — все сходятся в вопросе устойчивого энергоснабжения. Широко распространено мнение о том, что наша нынешняя энергетическая практика не обеспечит все народы мира адекватным образом пригодной для жизни средой.

Таким образом, одной из главных задач нового столетия станет разработка устойчивых и экологически чистых источников энергии.

Одним из так называемых новых возобновляемых источников энергии, на которые почти наверняка будет оказана большая опора, являются перспективы солнечной энергетики.

Энергия от Солнца

Солнечная энергия, захваченная на Земле, знакома всем. Однако альтернативным подходом к использованию солнечной энергии является захват ее в космосе и передача на Землю и передача электроэнергии без проводов. Как и в случае с наземным захватом, космическая солнечная энергия обеспечивает источник, который практически не содержит углерода.
Как будет описано ниже, платформы для сбора энергии, скорее всего, будут работать на геосинхронной орбите, где они будут освещаться 24 часа в сутки (за исключением коротких периодов затмения во время равноденствий). Таким образом, в отличие от систем земного захвата солнца, космическая система не будет ограничена причудами цикла день-ночь. Кроме того, если частота передачи выбрана правильно, то подача энергии на Землю может осуществляться практически независимо от погодных условий. Таким образом, перспективы солнечной энергетики в обеспечении базовой нагрузки электричеством.

Начиная с 1967 года, спутники Солнечной энергии пытаются собирать солнечную энергию в космосе и передавать ее на Землю.
С энергетическим кризисом начала 1970-х годов всерьез рассматривалась как альтернатива производству электроэнергии из ископаемых видов топлива (в 1970-е годы нефть, газ и уголь использовались для производства значительной части электроэнергии). С увеличением мирового спроса на электроэнергию, а также растущей озабоченностью по поводу городского смога и парникового эффекта, снова привлекает основной интерес сбор солнечной энергии из космоса.

солнечная энергетика

Солнечное излучение может быть более эффективно собрано в космосе, где оно примерно в три раза сильнее, чем на поверхности Земли, и его можно собирать 24 часа в сутки (поскольку на высокой околоземной орбите нет облаков или ночи). Солнечная энергия из космоса может быть транспортирована к зонам с самым высоким требованием в любое определенное время.

Большинство из этих систем будут использовать фотоэлектрические элементы, аналогичные тем, которые используются в системах на Земле (например, в домашних солнечных батареях и дорожных знаковых панелях). Другие будут использовать отражатели и механические коллекторы, аналогичные тем, которые используются в специальных крупномасштабных солнечных установках во Франции и Калифорнийской пустыне (Барстоу). Некоторые фотоэлектрические системы также используют отражательные концентраторы.
Большинство из этих систем собирают солнечную энергию в космосе и передают ее через луч микроволновой энергии к земной антенне, которая преобразует луч в электричество для использования на Земле.
Микроволновые лучи имеют довольно низкую длину волны (ниже, чем видимый свет) и, по-видимому, не представляют никакой опасности для атмосферы Земли. На самом деле, телефонные компании излучают микроволны через атмосферу в течение более чем тридцати лет без каких-либо известных проблем.

Высокие стартовые расходы являются самым большим препятствием для развития передачи солнечной энергии из космоса. Однако растущий спрос на электроэнергию может превысить традиционные производственные возможности, что приведет к повышению цен до уровня, когда будет конкурентоспособна солнечная энергия из космоса. Если будут введены ограничения на производство электроэнергии путем сжигания угля (в целях сокращения загрязнения), солнечная энергия из космоса может стать конкурентоспособной еще раньше.

Четыре основных шага в перспективной солнечной энергетике:

  1. Захват солнечной энергии в космосе и преобразование ее в электричество.
  2. Преобразование её в радиочастоту и передача на Землю.
  3. Получение радиочастотных волн на Земле и преобразование их в электричество.
  4. Обеспечение электроэнергией коммунальных сетей с помощью перспективной солнечной энергетики.

Использование фотоэлектрических элементов делает преобразование солнечной энергии в электрическую энергию вполне реализуемым. Существуют различные типы фотоэлектрических элементов. Монокристаллический кремний является одним из типов фотоэлектрических элементов, который образован легированной пластиной, сформированной из монокристалла. Хотя он имеет хорошую эффективность, он менее используется из-за фактора расхода, который возникает из-за необходимости высокого качества кремния. Своим последователем будет поликристаллический кремний в меру эффективности относительно небольшой ценой. Арсенид галлия наиболее часто используется из-за высокой эффективности по сравнению со всеми другими типами.

Другим способом перспективы солнечной энергетики возможны динамические ячейки, которые используют солнечные концентраторы для концентрации на механическом тепловом двигателе (не фотоэлектрическом). Но они дороги и требуют более высокого обслуживания. Это техническое решение не подходит для небольших применений, но имеет высокую эффективность преобразования порядка 30% и выше.

Развитие любого существенного источника энергии требует выделения значительных финансовых инвестиций, технических навыков и т.д. Эксплуатация космической солнечной энергии потребует всего этого, плюс уникальности технических решений. Системы, скорее всего, будут работать на геосинхронной орбите. Эта орбита находится на такой высоте, что платформа кажется неподвижной над определенной точкой на поверхности Земли. В результате эта конкретная орбита является весьма желательной для сориентирования на Землю.

Передача солнечной энергии на Землю

Солнечная энергия со спутника передается на Землю с помощью микроволнового передатчика через космос и атмосферу и принимается на земле антенной, называемой ректенной. Ректенна –нелинейная антенна предназначенная для преобразования энергии поля падающей на неё волны.

Лазерная передача

Последние разработки предлагают использовать лазер с помощью недавно разработанных твердотельных лазеров, позволяющих эффективно передавать энергию. В течение нескольких лет может быть достигнут диапазон от 10% до 20% эффективности, но дальнейшие эксперименты все еще требуют учета возможных опасностей, которые это может вызвать для глаз.

перспективы солнечной энергетики

По сравнению с лазерной передачей СВЧ-передача более развита, имеет более высокую эффективность до 85%. СВЧ лучи значительно ниже летальных уровней концентрации даже при длительном воздействии. Так микроволновая печь СВЧ с частотой 2.45 ГГц микроволновой волны с определенной защитой совершенно безвредна. Электрический ток, генерируемый фотоэлектрическими элементами, пропускается через магнетрон, который преобразует электрический ток в электромагнитные волны. Эта электромагнитная волна проходит через волновод, который формирует характеристики электромагнитной волны. Эффективность беспроводной передачи энергии зависит от многих параметров.
Для приема этих передаваемых волн на Земле устанавливаются ректенны. Это антенна, содержащая сетку диполей и диодов для поглощения микроволновой энергии от передатчика и преобразования ее в электрическую энергию. Микроволны принимаются с эффективностью около 85%, и 95% луча будет падать на ректенну, но ректенна составляет около 5 км в поперечнике. В настоящее время рассматриваются два различных типа — отражатель из проволочной сетки и ковер-самолет.

Проблемы

Разработка и внедрение любого нового перспективного источника энергии сопряжены с серьезными проблемами. И признается, что использование космической солнечной энергии на Земле может быть особенно сложным ввиду принципиального отличия.
Основные проблемы воспринимаются как:

  1. Несоответствие с традиционными энергетическими ресурсами.
  2. Тот факт, что космическая мощь по своей сути глобальна и требует корпоративных моделей, которые дают каждому игроку подходящую долю и адекватные гарантии.
  3. Возможность возникновения опасений по поводу надежности, безопасности и экологических последствий.
  4. Необходимость получения больших ресурсов, выделяемых государством.
  5. Преобладающий менталитет, который склонен рассматривать будущую энергетическую инфраструктуру как экстраполяцию нынешней.

Как бы ни были велики проблемы, важно развивать перспективы солнечной энергетики, чтобы они работали на благо всех народов Земли. Утверждается, что благоразумным было бы уделить серьезное внимание всем возможным вариантам и подготовиться к осуществлению нескольких из них. Хорошо известно, что нечто столь обширное, как глобальная солнечная энергетическая система, может изменяться медленно.

На самом деле, требуется от 50 до 75 лет, чтобы один источник утратил доминирующее положение и был заменен другим. Даже если будет признано и согласовано, что необходим переход к другим источникам, переход к другим электрическим сетям будет медленным.

Временной горизонт для реализации перспективной космической солнечной энергетики составит не менее пары десятилетий. Текущая работа указывает на то, что демонстрация передачи энергии из космоса на Землю может произойти в начале следующего десятилетии, а первоначальная коммерческая поставка энергии-примерно через 20 лет. Очевидно, что для внесения значительного вклада в мировую энергетику потребуется значительно больше времени.

Проблему, связанную с этим несоответствием, можно решить двумя способами:

  1. Во-первых, правительствам необходимо будет в значительной степени финансировать опытные работы (НИОКР), необходимые для доведения до зрелости соответствующих технологий. Правительства традиционно поддерживают усилия в области НИОКР в качестве стимула для перспективы солнечной энергетики. Примеры можно найти в развитии систем железнодорожного и воздушного транспорта, компьютеров, интернета.
  2. Во-вторых, следует поощрять краткосрочное участие потребителей (электроэнергетических компаний и их поставщиков). Это очень важно для этих потенциальных пользователей, чтобы быть в курсе прогресса, как технология созревает.

Глобальный охват перспективной солнечной энергетики будет представлять собой еще одну серьезную проблему с точки зрения соответствующих моделей предприятий, которые дают каждому игроку соответствующую долю и адекватные гарантии. Международное сотрудничество в области энергетики является обычным явлением, и действительно, энергетическая инфраструктура во всем мире очень взаимозависима. Приобретение, распределение и использование энергии, как правило, связаны с несколькими странами и разветвленными сетями, по которым протекают различные формы энергии. Аналогичным образом международное сотрудничество играет важную роль в крупных космических проектах, примером которых, безусловно, могут служить перспективы солнечной энергетики.

Короче говоря, есть несколько причин для международного сотрудничества. Наиболее убедительными являются:

  1. Потребность в увеличении поставок энергоносителей является глобальной потребностью.
  2. Воздействие на окружающую среду нынешней энергетической практики вызывает озабоченность во всем мире.
  3. Международная координация в области энергоснабжения является общей сегодня, и взаимозависимость будет только расти в будущем.
  4. Необходимая технология широко распространена, и ни одна страна не обладает всеми возможностями.
  5. Большие масштабы космической солнечной энергетики потребуют международного финансирования.

Достоинства перспективной космической солнечной энергетики:

  1. Энергия доставляется в любую точку мира.
  2. Нулевая стоимость топлива.
  3. Нулевые выбросы CO2.
  4. Минимальное долгосрочное воздействие на окружающую среду.
  5. Солнечное излучение может быть более эффективно собрано в космосе.
  1. Затраты на запуск.
  2. Капитальные затраты даже с учетом дешевых пусковых установок.
  3. Потребуется сеть из сотен спутников.
  4. Возможные опасности для здоровья.
  5. Размер антенн и ректенн.
  6. Геосинхронные спутники будут занимать большие участки пространства.
  7. Помехи для спутников связи.

Выводы

Нет никаких сомнений в том, что в ближайшие десятилетия энергоснабжение должно быть резко увеличено. Кроме того, представляется почти несомненным, что произойдет переход к возобновляемым источникам энергии и что перспективы солнечной энергетики огромны.

Утверждается, что для того, чтобы энергетическая система мира работала на благо всех своих народов и была достаточно устойчивой, необходимо иметь несколько вариантов развития в стремлении к расширению поставок.

Хотя вариант использования космической солнечной энергии в настоящее время может показаться футуристическим, он технологически осуществим и при соответствующих условиях может стать экономически жизнеспособным.

Утверждается, что он должен быть одним из тех вариантов, которые будут активно использоваться в предстоящие десятилетия. Задачи по внедрению космической солнечной энергетики значительны, но тогда никакое крупное расширение энергоснабжения не будет легким. Космические, энергетические и другие сообщества должны энергично решать эти проблемы.

Наконец, следует подчеркнуть, что если мы не сумеем разработать устойчивые и чистые источники энергии и попытаемся прихрамывать, экстраполируя существующую практику, то результатом этого, скорее всего, будет срыв развития экономических возможностей для многих людей Земли и, почти наверняка, неблагоприятные изменения в окружающей среде планеты.

Мы живём в мире будущего, хотя не во всех регионах это заметно. В любом случае возможность развития новых источников энергии сегодня всерьёз обсуждается в прогрессивных кругах. Одним из самых перспективных направлений выступает солнечная энергетика.

Солнечная энергетика: преимущества и перспективы

Как солнечная энергия преобразуется в электричество

Начнём с самого важного – каким образом солнечные лучи перерабатываются в электроэнергию.

  • фотовольтарика;
  • гелиотермальная энергетика;
  • солнечные аэростатные электростанции.

Рассмотрим каждый из них.

Фотовольтарика

В этом случае электрический ток появляется вследствие фотовольтарического эффекта. Принцип такой: солнечный свет попадает на фотоэлемент, электроны поглощают энергию фотонов (частиц света) и приходят в движение. В итоге мы получаем электрическое напряжение.

Подробнее можете почитать на Википедии: Фотовольтарический эффект

Именно такой процесс происходит в солнечных панелях, основу которых составляют элементы, преобразующие солнечное излучение в электричество.

Устройство солнечной панели

Сама конструкция фотовольтарических панелей достаточно гибкая и может иметь разные размеры. Поэтому в использовании они очень практичны. К тому же панели имеют высокие эксплуатационные свойства: устойчивы к воздействию осадков и перепадам температур.

А вот как устроен отдельный модуль солнечной панели:

Устройство солнечного модуля

О применении солнечных батарей в качестве зарядных устройств, источников питания частных домах, для облагораживания городов и в медицинских целях можно почитать в отдельной статье.

Современные солнечные панели и электростанции

Солнечные панели SistineSolar

Другое решение предложили разработчики Tesla. Они выпустили в продажу не просто панели, а полноценный кровельный материл, перерабатывающий солнечную энергию. Черепица Solar Roof содержит встроенные солнечные модули и также может иметь самое разнообразное исполнение. При этом сам материал гораздо прочнее обычной кровельной черепицы, у Solar Roof даже гарантия бесконечная.

Черепица Solar Roof

В качестве примера полноценной СЭС можно привести недавно построенную в Европе станцию с двусторонними панелям. Последние собирают как прямое солнечное излучение, так и отражающее. Это позволяет повысить эффективность солнечной генерации на 30%. Эта станция должна вырабатывать в год около 400 МВт*ч.

Крупнейшая в Европе СЭС

Интерес вызывает и крупнейшая плавучая СЭС в Китае. Её мощность составляет 40 МВт. Подобные решения имеют 3 важных преимущества:

  • нет необходимости занимать большие наземные территории, что актуально для Китая;
  • в водоёмах уменьшается испаряемость воды;
  • сами фотоэлементы меньше нагреваются и работают эффективнее.

Плавучая солнечная электростанция

Кстати, эта плавучая СЭС была построена на месте заброшенного угледобывающего предприятия.

Технология, основанная на фотовольтарическом эффекте, является наиболее перспективной на сегодня, и по оценкам экспертов солнечные панели уже в ближайшие 30-40 лет смогут производить около 20% мировой потребности электроэнергии.

Гелиотермальная энергетика

Тут подход немного другой, т.к. солнечное излучение используется для нагревания сосуда с жидкостью. Благодаря этому она превращается в пар, который вращает турбину, что приводит в выработке электричества.

По такому же принципу работают тепловые электростанции, только жидкость нагревается посредством сжигания угля.

Самый наглядный пример использования данной технологии – это станция Иванпа Солар в пустыне Мохаве. Она является крупнейшей в мире солнечной гелиотермальной электростанцией.

Станция Иванпа Солар

Работает она с 2014 года и не использует никакого топлива для производства электричества – только экологически чистая солнечная энергия.

Котёл с водой располагается в башнях, которые Вы можете видеть в центре конструкции. Вокруг расположено поле из зеркал, направляющих солнечные лучи на вершину башни. При этом компьютер постоянно поворачивает эти зеркала в зависимости от расположения солнца.

Гелиотремальная электростанция

Под воздействием концентрированной солнечной энергии вода в башне нагревается и становится паром. Так возникает давление, и пар начинает вращать турбину, вследствие чего выделяется электричество. Мощность этой станции – 392 мегаватт, что вполне можно сопоставить со средней ТЭЦ в Москве.

Интересно, что подобные станции могут работать и ночью. Это возможно благодаря помещению части разогретого пара в хранилище и постепенном его использовании для вращения турбины.

Солнечные аэростатные электростанции

Это оригинальное решение хоть и не получило широкого применения, но всё же имеет место быть.

Сама установка состоит из 4 основных частей:

  • Аэростат – располагается в небе, собирая солнечное излучение. Внутрь шара поступает вода, которая быстро нагревается, становясь паром.
  • Паропровод – по нему пар под давлением спускается к турбине, заставляя её вращаться.
  • Турбина – под воздействием потока пара она вращается, вырабатывая электрическую энергию.
  • Конденсатор и насос – пар, прошедший через турбину, конденсируется в воду и поднимается в аэростат с помощью насоса, где снова разогревается до парообразного состояния.

Солнечная аэростатная электростанция

В чём преимущества солнечной энергетики

  • Солнце будет давать нам свою энергию ещё несколько миллиардов лет. При этом людям не нужно тратить средства и ресурсы для её добычи.
  • Генерация солнечной энергии – полностью экологичный процесс, не имеющий рисков для природы.
  • Автономность процесса. Сбор солнечного света и выработка электроэнергии проходит с минимальным участием человека. Единственное, что нужно делать, это следить за чистотой рабочих поверхностей или зеркал.
  • Выработавшие свой ресурс солнечные панели могут быть переработаны и снова использованы в производстве.

Проблемы развития солнечной энергетики

Несмотря на реализацию идей по поддержанию работы солнечных электростанций в ночное время, никто не застрахован от капризов природы. Затянутое облаками небо в течение нескольких дней значительно понижает выработку электричества, а ведь населению и предприятиям необходима его бесперебойная подача.

Строительство солнечной электростанции – удовольствие не из дешёвых. Это обусловлено необходимостью применять редкие элементы в их конструкции. Не все страны готовы растрачивать бюджеты на менее мощные электростанции, когда есть рабочие ТЭС и АЭС.

Для размещения таких установок необходимы большие площади, причём в местах, где солнечное излучение имеет достаточный уровень.

Как развита солнечная энергетика в России

К сожалению, в нашей стране пока во всю жгут уголь, газ и нефть, и наверняка Россия будет в числе последних, кто полностью перейдёт на альтернативную энергетику.

На сегодняшний день солнечная генерация составляет всего 0,03% энергобаланса РФ. Для сравнения в той же Германии этот показатель составляет более 20%. Частные предприниматели не заинтересованы во вложении средств в солнечную энергетику из-за долгой окупаемости и не такой уж высокой рентабельности, ведь газ у нас обходится гораздо дешевле.

В экономически развитых Московской и Ленинградской областях солнечная активность на низком уровне. Там строительство солнечных электростанций просто нецелесообразно. А вот южные регионы довольно перспективны.

Так одной из крупнейших в нашей стране является Орская СЭС. Она состоит из 100 тыс. модулей, выдающих суммарную мощность 25 МВт. Выработанное электричество подаётся в Единую энергетическую систему России (ЕЭС).

Орская СЭС

Самой мощной сегодня является СЭС Перово, расположенная в Республике Крым. Она выдаёт более 105 МВт, что на момент открытия станции было мировым рекордом. СЭС Перово состоит из 440 000 фотоэлектрических модулей и занимает площадь 259 футбольных полей.

СЭС Перово в Крыму

Вообще в Крыму солнечная энергетика неплохо развита – там более десятка солнечных электростанций мощностью от 20 МВт. Правда, вся полученная электроэнергия уходит сугубо на нужды полуострова.

К 2020 году в России планируется построить 4 крупных СЭС, мощность которых позволит увеличить долю солнечной энергии до 1% от всего энергобаланса страны.

Таким образом, уже сегодня можно с уверенностью сказать, что солнечная энергетика способна в недалёкой перспективе выступить полноценной альтернативой традиционным способам получения электроэнергии. И даже в России эта отрасль хоть и медленно, но развивается.

Солнечная энергетика.

Мир не стоит на месте: постоянно разрабатываются и внедряются новые технологии, хотя отдельные страны и регионы значительно отстают. Одно из актуальных направлений развития — переход на альтернативные источники энергии. К таким относится солнечная энергия. Возможность её широкого внедрения обсуждается уже давно. Сейчас солнечная энергетика обеспечивает около 1% от всей потребности в энергоресурсах.

Даже скептики убедились в том, что солнечное излучение может быть преобразовано в электричество. Но человечество не спешит полностью переходить на этот источник, хотя он доступен во всех уголках планеты. Стоит разобраться в том, почему так происходит.

Как из солнечного излучения получается электричество?

Процесс преобразования излучения, вырабатываемого Солнцем, в электрический ток, называется солнечной генерацией. Он включает в себя несколько этапов. Есть несколько технологий, и самыми эффективными признаны следующие:

  • Аэростатные солнечные станции (СЭС), которые бывают мобильными, тарельчатыми, башенными, на фотобатареях и комбинированными;
  • Гелиотермальная энергетика;
  • Фотовольтарика.

Солнечная энергетика в России и мире

Как из солнечного излучения получается электричество

Методы вырабатывания электричества их солнца

Фотовольтарика

Фотовольтарический эффект обеспечивает преобразование солнечной энергии в электроток. В процессе участвует фотоэлемент. Когда на него попадают лучи солнца, энергия частиц света поглощается электронами. Они приходят в движение, и создаётся напряжение. По такому принципу действуют солнечные панели. Они устроены таким образом, что фотоэлементы повёрнуты в сторону солнца и в дневное время поглощают его свет.

Развитие солнечной энергетики в России и мире

Фотоэлектрический эффект.

Панели удобны в использовании, они изготавливаются разных размеров. Их не нужно защищать от перепадов температур и атмосферного воздействия. Устройства для преобразования солнечной энергии в электрический ток выпускают несколько компаний, одна из них — SistineSolar. Её продукция отличается тем, что имеет разные расцветки и текстуру. В этом панели превосходят традиционные, окрашенные в синий цвет. Они не только выполняют основную функцию, но и служат элементом оформления кровли.

Солнечная энергетика

Плавающая солнечная электростанция.

Фотовольтарика — перспективная технология, и эксперты считают. что через несколько десятков лет она будет обеспечивать около 20% от общемировой потребности в электричестве.

Гелиотермальная энергетика

Эффективность этой технологии немного ниже по сравнению с фотовольтарикой. Выработка энергии происходит так:

  • сосуд с водой нагревается пол солнцем;
  • жидкость превращается в пар;
  • пар под высоким давлением подаётся на турбину;
  • в процессе вращения вырабатывается электричество.

Развитие солнечной энергетики в России и мире

Гелиотермальная энергетика.

Таким образом, технология включает в себя несколько этапов. Тепловые электростанции действуют по подобному принципу: жидкость нагревается и превращается в пар, который приводит в действие турбину. Разница в том, что в тепловых электростанциях для нагрева жидкости сжигается уголь.
Крупнейшая в мире гелиотермальная станция, вырабатывающая электрический ток из солнечных лучей, находится в пустыне Мохаве и называется Иванпа Солар. Это показательный пример эффективного применения технологии. Станция была запущена в 2014 году, и все эти годы работает только на солнечной энергии, исправно производя электричество. В конструкцию входят несколько башен. В них помещён большой котёл, наполненный водой. По окружности установлены зеркала. Солнечные лучи попадают на них, затем отражаются и поглощаются поверхностью котла. Вода внутри нагревается и превращается в пар. Зеркала установлены так, что они подвижны. Вращением управляет компьютер, поэтому поверхность всегда повёрнута в ту сторону, где находится солнце.

Мощность солнечной электростанции Иванпа Солар составляет 392 МВт. Примерно столько же электроэнергии вырабатывает средняя московская ТЭЦ.

Гелиотермальная энергетика.

Электростанция Ivanpah Solar Electric Generating System которая отныне будет носить статус крупнейшей в мире. Ее общая номинальная мощность составляет 392 МВт.

Ночью солнце не светит, однако работа гелиотермальной станции не прекращается, потому что днём используется не весь пар. Часть его отводится в специальные резервуары, а ночью расходуется. Таким образом, электрический ток вырабатывается равномерно.

Аэростатные электростанции

Станции этого типа нельзя назвать распространёнными, но кое-где они применяются. Конструктивно в аэростатную установку входят 4 элемента:

Аэростатные электростанции.

Аэростатные электростанции

Специальный шар — аэростат. Он висит в небе и поглощает лучи солнца. Внутри находится вода.
Паропровод. Нагреваясь, вода превращается в пар, который по паропроводу поступает в турбину, приводя её в движение.

Турбина — основной элемент, вырабатывающий электроэнергию. Насос и конденсатор — когда пар выполняет свою задачу, он остывает и конденсируется. Насос поднимает воду обратно в аэростат. Так цикл повторяется бесконечно.

Развитие солнечной энергетики

Аэростатные электростанции.

Солнечная энергетика: положительные аспекты

Солнце — неиссякаемый источник энергии, который будет в распоряжении людей ещё очень долго — пока существует планета Земля. Солнечную энергиэю не надо добывать, как уголь. Процесс переработки тепла в электрический ток не наносит ущерба окружающей среде. Участие человека в процессе не требуется: достаточно оснастить станцию всем необходимым и запустить. Установка работает в автономном режиме.

Обслуживать станцию всё-таки нужно, потому что зеркала и другие поверхности, находящиеся на открытом воздухе, время от времени нужно мыть. Ресурс солнечных батарей при их интенсивном использовании не бесконечен, однако после их переработки получается сырьё, которое можно использовать повторно.

Препятствия к развитию солнечной энергетики

Солнечная энергетика имеет свою специфику. Основная сложность заключается в том, что в отдельные периоды эффективность работы станции сильно снижается. Есть способы, обеспечивающие работу станций ночью, но они бессильны, когда солнца нет в течение нескольких дней. Если долго стоит пасмурная погода, выработка электричества прекращается. В условиях, когда от солнечной электростанции зависит целый город, это привело бы к катастрофе. Но эту проблему можно обойти, применяя основной и резервный источники энергии.

Вторая сложность — высокие расходы на строительство станций. В их конструкцию входят редкие и дорогие элементы. Не каждая страна может позволить себе потратить средства на строительство СЭС, когда есть более мощные АЭС и ТЭС. Кроме ТОО, чтобы разместить станцию, нужно много свободного пространства, причём в таком регионе, где уровень солнечного излучения достаточно высок.

Солнечная энергетика: развитие за рубежом

Компания Tesla предлагает ещё более прогрессивное решение. Её продукция представляет собой материал для покрытия кровли, способный преобразовывать лучи солнца в электроток. Продукт представляет собой черепицу с функционалом солнечных панелей. В каждое изделие встроены специальные модули. По внешнему виду и цвету черепица разная, так что можно выбрать ту, что будет сочетаться с другими элементами дома. Кровельный материал выпускается под названием Solar Roof, и производитель даёт на него бесконечную гарантию.

Солнечная энергетика повышает эффективность. Теперь для солнечной генерации применяют и двусторонние панели. Они поглощают прямые и отражённые лучи солнца, за счёт чего КПД повышается на 30%. На таких панелях работает станция, недавно построенная в Европе. Предполагается, что она будет производить 400 МВт*ч в год.

Ещё одна необычная установка построена в Китае. При мощности 40 МВт она не занимает места на суше, а для Китая это весомое преимущество. Плавучая станция располагается в водоёме. Она закрывает собой некоторую площадь воды, в результате снижается испаряемость. Высокая эффективность работы фотоэлементов достигается за счёт того, что они меньше нагреваются.

Развитие отрасли в России

Пока другие страны переходят на альтернативную энергетику, в России продолжают использовать старинные методы. Электричество вырабатывают, сжигая нефть, уголь и газ. Чтобы понять масштаб отставания, достаточно сравнить 2 страны — Германию и Россию. В первой на солнечную генерацию приходится 20% всего энергобаланса, во второй — менее 0,03%. Отчасти это обусловлено тем, что Российские предприниматели вынуждены думать в первую очередь о рентабельности, а только потом — о пользе для населения. Ведь использование газа в краткосрочной перспективе обходится дешевле. Долгосрочные инвестиции в современные технологии представляются рискованными, поэтому не находится желающих вкладывать средства в строительство солнечных электростанций.

В Крыму находится СЭС Перово — самая мощная станция. Она состоит из 440 тыс. фотоэлектрических модулей, суммарно выдающих 105 МВт. На площади, которую занимает станция, могли бы разместиться 259 футбольных полей. В Крыму работают ещё около 10 станций различной мощности. Вся энергия, вырабатываемая ими, уходит на собственные нужды республики.

Узнайте больше о самовозобновляемой и бесплатной энергии будущего. Солнечные батареи в действии.

Развитие солнечной энергетики

СЭС Перово

В России планируется построить несколько СЭС, за счёт которых доля солнечной энергии должна увеличиться до 1%. Предполагается, что строительство 4 крупных станций завершится в 2020 году. Следовательно, развитие солнечной энергетики в стране всё же началось, хотя идёт оно пока медленными темпами. Есть основания полагать, что в будущем этот способ выработки электричества займёт достойное место наряду с остальными.

Читайте также: