P n переход в полупроводниках кратко

Обновлено: 08.07.2024

Глобально p-n переход – это основа всей современной электроники. И в этой статье мы подробно разберёмся что это за переход, для чего он нужен и как работает.

Атомы и ковалентная связь

Для начала давайте разберемся на уровне атомов что и как работает. Это будет небольшое предисловие.


Вся материя состоит из молекул, а молекулы в свою очередь из атомов. И у каждого атома есть протоны, нейтроны и электроны.

Протоны образуют с нейтронами ядро, в котором их равное количество.

Исключение — это водород у которого есть только один протон в ядре, без нейтрона.



Вокруг ядра находятся орбиты электронов (кстати, сейчас принято считать, что это облако электронов). Между ними действуют сильные и слабые силы, которые являются основой атомов. Далее на изображениях не будем указывать протоны и нейтроны для простоты восприятия.


Достаточно просто принять тот факт, что есть атомы, у которых присутствуют ядра с положительным зарядом, а вокруг этого ядра находятся орбиты с электронами.

Электроны и протоны имеют противоположные знаки.

Положительный ион (атом, у которого не хватает электронов) будет со знаком +, так как у него дефицит электронов, и он будет притягивать или притягиваться к свободному электрону (зависит от среды).


Все атомы в молекулах соединены друг с другом на валентном уровне, то есть при помощи ковалентной связи.

На валентном уровне связь ядра с электронами намного меньше, чем на других, поэтому атомы могут образовывать материю, соединяясь с другими атомами. Так и получаются химические реакции и соединения атомов друг с другом.

Полупроводники и кристаллическая решетка


Теперь плавно переходим к полупроводникам. У полупроводников, таких как кремний (Si) и германий (Ge) на ковалентном уровне есть по 4 электрона.

Не путайте кремень и кремний. Кремень – это минерал, а кремний – это химический элемент, который был открыт в 1810 году.

Особенность полупроводников заключается в том, что их атомы друг с другом образуют парные связи.

Допустим, есть атом кремния. У него 4 электрона на валентном уровне. Если к нему присоединить еще 4 атома кремния, то получится кристаллическая решетка. 4 атома связаны друг с другом 4 своими электронами.


На картинке показана связь атомов в плоскости. В реальности она естественно, находится не в одной плоскости, а в пространстве.

То есть, каждый атом может образовывать устойчивую связь друг с другом, по 4 штуки с каждой стороны и плоскости.

Особенность полупроводников заключается в том, что эта кристаллическая решётка очень устойчива.

Кстати, проводимость полупроводников сильно зависит от внешних условий (давление, температура, радиация, свет). Намного сильнее, чем у других материалов. Это все связано с особенностью кристаллической решетки, которая позволят делать солнечные батареи, датчики, камеры и много чего еще.

Итак, атомы полупроводников без примесей электрически нейтральны.

И что самое главное, они все равно будут связаны друг с другом. Общая ковалентная связь позволят им обмениваться друг с другом электронами.

Проводимость полупроводников в нормальных условиях практически такая же, как у диэлектриков, то есть очень низкая.

Проводимость кристаллической решетки с примесями

Свободных электронов в чистом полупроводнике мало, и это объясняет низкую проводимость материала.

Однако, при повышении температуры электроны на валентном уровне получают большую энергию, и могут быстрее покидать свои орбиты. Поэтому материал становится более проводимым при повышении температуры.

И из-за этого полупроводники получили свое название. Это и проводник, и диэлектрик в одном флаконе, который меняет свою проводимость из-за внешних условий.

Донорская примесь и n-тип

Если добавить в кристаллическую решетку кремния атом, у которого 5 валентных электронов, то из-за него в кристалле появятся свободные электроны.


Например, есть атом мышьяка (As) и атомы кремния (Si).

4 валентных электрона мышьяка образуют валентную связь с другими атомами кремния. А вот один электрон будет находится в зоне проводимости. То есть, он станет свободным электроном.

А вот атом мышьяка, который непреднамеренно отдал свой электрон, станет положительным ионом. И несмотря на это, кристаллическая решетка остается стабильной.

Полупроводник с примесью, в котором находятся свободные электроны, называется полупроводником n-типа. Основные носители заряда – свободные электроны. Неосновные – дырки.

Примеси добавляют при помощи легирования. Оно может быть, как металлургическим (повышением температуры, изготовление сплавов), так химическим (ионное и диффузное).

Акцепторная примесь и p-тип


А что будет, если в полупроводник добавить атом с тремя валентными электронам, например бор (B)?

Тогда три валентных электрона атома бора создадут связь с другими атомами кремния. Однако теперь в кристалле с такой примесью будет не хватать одного электрона.

Это отсутствие электрона называется дыркой. По сути, это положительный потенциал, но для простоты понимания его принято называть дыркой.

Это не ион и не элементарная частица. Это дефицит электрона у атомов. И тот атом, у которого будет не хватать электрона на своей орбите, будет притягивать к себе и свободные электроны, которые оказались в кристалле, и электроны от соседних атомов.

Такая примесь в кристалле также повышает его проводимость. И эта примесь называется акцепторной. То есть, примесные атомы создают дефицит электронов в кристаллической решетке.

Поэтому, такой полупроводник с акцепторной примесью называются p-типом. Его основные носители заряда – дырки. А неосновные – электроны.

Если пустить ток по такому материалу, то к отрицательному потенциалу будет притягиваться дырка к новому поступающему электрону из источника тока. А вот к положительному потенциалу будут уходить электроны, которые находились в кристалле.

Кстати, примесный атом бора получается отрицательно заряженным ионом, поскольку при прохождении тока на его орбите будет не 3 электрона, а 4, что является для него избытком.

Ток неосновных зарядов

Как уже было сказано выше, у p-типа основные носители заряда — это дырки, а у n-типа — это электроны. Неосновные носители соответственно, наоборот. И неосновные носители зарядов тоже участвуют при прохождении тока.

Конечно, неосновных носителей зарядов намного меньше, чем основных, но не стоит их полностью игнорировать, особенно когда речь идет о p-n переходе.

Создание p-n перехода


Что будет, если соединить два кусочка кремния c примесями p-типа и n-типа вместе? Получится p-n переход. Или как его еще называют — электронно-дырочный переход.

Этот переход является разграничительной зоной между p-областью и n-областью.

И особенностью этого перехода является то, что этот переход состоит из ионизированных примесных атомов, которые не позволяют свободным зарядам из двух разных областей соединяться друг с другом. Он образовался от такого явления, как диффузионный ток.

Этот ток возникает при нагреве (изготовлении перехода). Носители зарядов рекомбинируют друг с другом и уравновешивают баланс. Диффузионный ток под воздействием тепла хаотичный, и не имеет упорядоченного направления, если на него не действует вешнее напряжение.

Например, электроны из n-области начинают накапливаться возле положительных ионов примеси, но так как с другой стороны находятся отрицательные ионы n-области, они не могут перейти этот барьер. С дырками ситуация аналогична.


Свободные электроны из n-области не могут перейти в p-область из-за барьера, который создан ионизированными донорскими примесями. Здесь создается электрическое поле, которое действует как барьер для дырок и электронов. И из-за этого в p-n переходе отсутствуют свободные носителя зарядов. Переход их попросту отталкивает от себя с двух сторон.

Кстати, еще одно название барьера – обедненная область.

А в целом, кристалл остается электрически нейтральным. Если бы не было этого барьера, свободные носители заряды уравновесили бы друг друга.

Преодоление потенциального барьера

Чтобы свободные электроны и дырки могли пройти через этот барьер, нужно приложить внешнее напряжение, которое будет превышать напряжение, требуемое для перехода барьера.

Подключим к n-области минус источника тока, а к p-области плюс источника тока. Такое включение называется прямым. Еще n-область в приборах называют катодом, а p-область — анодом.

Напряжение источника должно быть выше, чем то, которое требуется для открытия p-n перехода.

Допустим, потенциальный барьер равен 0,125 Вольт. Чтобы преодолеть его, подключим источник с напряжением 5 В.


Чтобы не перегружать восприятие, на схеме не показаны неосновные носители зарядов.

И благодаря воздействию электрического поля внешнего источника, свободным носителям хватает энергии для того, чтобы перейти этот потенциальный барьер и преодолеть его электрическое поле. Переход подключен с прямым смещением.

Свежий электрон идет с источника, переходит в n-область, далее преодолевает барьер и переходит дырке, где происходит рекомбинация. И далее этот электрон идет на встречу к дырке, которая идет с положительного потенциала, подключенного к p-области. То есть, по p-n переходу проходит электрический ток. Этот ток называют еще диффузионным током или током прямого включения – когда основные носители зарядов упорядочено движутся к внешнему источнику тока.

Аналогична ситуация с дырками. Положительный потенциал внешнего источника, который подключён к p-области, будет забирать электрон, а на его месте появится дырка. Дырка в свою очередь будет двигаться к барьеру и далее к отрицательному потенциалу источника.

Ток, который создается дырками называется дырочным. Соответственно, ток, который создается электронами – электронным.


А на этой схеме переход показан без барьера, но с обратным током.

Неосновные носители зарядов в свою очередь действуют наоборот, от чего и возникает дополнительное сопротивление в p-n переходе.

Обратный ток может быть равен всего нескольким микроамперам.

Обратное включение

Поменяем полярность внешнего источника на противоположную. Минус к p-области, а плюс к n-области. Что же будет происходить с барьером и током зарядов?

Барьер увеличится за счет того, что основные носители зарядов будут притягиваться к внешнему источнику. Увеличится сопротивление потенциального барьера и напряжение его открытия.

Однако, не смотря на все это, через p-n переход будет протекать обратный ток.

Этот обратный ток очень мал, поскольку создается неосновными носителями заряда. Он еще называется дрейфовым током.

Применение p-n перехода

Вот так и работает простой диод, который состоит из p-n перехода. По-простому, p-n переход – это и есть классический диод. И он может работать как при прямом включении, так и при обратном. А вообще, вся современная цифровая техника состоит из p-n переходов.



Транзисторы, тиристоры, микросхемы, логические элементы, процессоры и многое другое основано именно на этом.

Контролируемый лавинообразный пробой

А что будет, если превысить напряжение потенциального барьера? Например, оно равно 7 В. А на схеме источник 5 В. Если подключим источник на 8 В, то наступит лавинообразный ток.

Неосновные носители зарядов будут забирать с собой основные. От части этот процесс контролируем, если не превышать напряжение источника выше, чем может выдержать p-n переход.

Электрический пробой

Если еще больше повысим напряжение, то будет электрический пробой. Эти явления широко используются на практике, например, в качестве стабилизаторов.

Ток не пойдет по цепи пока не будет то напряжение, которое требуется для открытие обратного смещенного p-n перехода.



И электрический пробой контролируется. Стабилитроны (так называются диоды, которые работают в таком режиме) делаются специально с широкими p-n переходами, которые долго работают под постоянными нагрузками.

Тепловой пробой

Но если радиодеталь изначально не рассчитана электрический пробой, то она быстро нагреется и произойдет тепловой пробой. Дырки и электроны получат тепловую энергию, из-за которой барьер полностью разрушится. Переход нагревается и трескается под действием температуры. Это необратимый процесс.



И во время пайки тоже может случиться тепловой пробой. Достаточно немного перегреть деталь и p-n переход будет разрушен.

Соответственно, если пустить по диоду ток, который превышает его пропускную способность, то тоже случится тепловой пробой. Тоже самое касается и рассеиваемой мощности.

Как избавиться от обратного тока

А можно ли избавиться от обратного тока? Для этого в переход добавляют металлические примеси, которые убирают неосновные носители зарядов при обратном включении.

Но и обратный ток можно использовать на практике.

Например, с его помощью реализуются обратная связь, некоторые функции и измерения.

Как еще применяется обратное включение

Конечно, это не основное применение p-n перехода. Переход используется во всей цифровой технике по-разному.



Выпрямители, усилители, генераторы, процессоры, солнечные батареи и много другое. И то, что было описано выше про принцип работы p-n перехода – это принцип работы обычного диода.

Это наиболее простое описание принципа работы p-n перехода. Он бывает разных типов, и в полупроводниках есть физические явления, которые возникают при различных условиях.


Да и изготовление полупроводниковых радиодеталей бывает разным. Полупроводники разделяются на целые классы со своими особенностями. А микропроцессорное производство – это отдельный вид искусства.


Возвращаемся к рубрике "Основы электроники" и в этой статье мы разберем очень важное, основополагающее понятие, а именно p-n переход. И, конечно, же разберем работу устройства, сердцем которого является уже упомянутый p-n переход, то есть полупроводникового диода.

И первым делом мы подробно рассмотрим устройство p-n перехода и химические процессы, протекающие в нем, которые, собственно, и определяют то, как он работает. Основными понятиями, которыми мы будем сегодня оперировать являются "электроны" и "дырки". И если с электроном все понятно, то на физическом смысле дырок стоит остановиться поподробнее.

Полупроводниковые материалы, которые являются основой p-n перехода, характеризуются тем, что они объединяют в себе как свойства проводников, так и свойства диэлектриков. В кристаллической структуре проводников есть много свободных носителей заряда, которые под воздействием электрического поля начинают перемещаться, что и обуславливает способность проводника проводить ток.

В диэлектриках связь частиц с атомами очень сильная, поэтому свободные носители заряда отсутствуют (все частицы жестко закреплены на своем месте в кристаллической решетке). Поэтому диэлектрики не пропускают электрический ток.

В полупроводниках же все не так однозначно. В целом, для того, чтобы электрон покинул свое место, то есть высвободился от атома ему необходим определенный уровень внутренней энергии. Эта энергия может появиться, например, в результате повышения температуры. И величина этой внутренней энергии для полупроводников намного меньше, чем для диэлектриков. В этом и состоит ключевой момент!

При низкой температуре большинство электронов полупроводника "сидят" на своих местах, и поэтому проводимость тока очень низкая. А, соответственно, с ростом температуры способность полупроводника проводить ток улучшается.

С этим процессом разобрались: итак, с ростом температуры в полупроводнике число свободных электронов увеличивается.

Во время разрыва связи электрона с ядром атома в электронной оболочке атома появляется свободное место. Атом при этом получает положительный заряд, ведь изначально заряд был нейтральным, а электрон, имеющий отрицательный заряд, атом покинул. Но свободное место не долго остается пустым, так как на него переходит электрон из соседнего атома. И этот процесс повторяется снова и снова. Таким образом, происходит перемещение положительного заряда. И вот именно этот условный(!) положительный заряд и называют дыркой:

Электроны и дырки.

Такой механизм проводимости называется собственной проводимостью полупроводника. Но на практике, в частности в транзисторах и диодах, применяются полупроводники с примесями, поскольку примесная проводимость значительно превышает собственную.

Примеси разделяют на:

  • донорные, то есть отдающие
  • акцепторные, принимающие

Разберем классический пример - кремний и мышьяк. У кремния на внешней оболочке атома 4 электрона (валентные электроны). У мышьяка таких электронов 5. Атом мышьяка отдает 4 из своих электронов на образование связей с 4-мя электронами атома кремния. При этом один из 5-ти валентных электронов не участвует в образовании связей.

У мышьяка энергия отрыва этого 5-го электрона от атома достаточно невелика. Настолько, что уже при небольшой температуре атомы мышьяка теряют свои незанятые в связях с кремнием электроны. Но при этом, поскольку в соседних атомах нет свободных мест, то дырок не возникает, и "дырочная" проводимость практически отсутствует. Так мы получили полупроводник с электронной проводимостью, то есть полупроводник n-типа.

Если же мы возьмем в качестве примеси 3-х валентный элемент (3 электрона на внешней оболочке атома), то в случае с добавлением примеси к кремнию (4 электрона), одно место останется свободным. На это место "придет" электрон соседнего атома и так далее, то есть возникнет процесс перемещения дырки. Так мы получим полупроводник p-типа.

Вот мы разобрались и с этим, двигаемся непосредственно к рассмотрению p-n перехода.

Итак, p-n переход (электронно-дырочный переход) - это область, в которой соприкасаются два полупроводника, имеющие разный тип проводимости (p-тип и n-тип):

Полупроводники p-типа и n-типа.

Причем обе области электрически нейтральны. Только одна из них содержит свободно перемещающиеся дырки, а вторая - электроны.

При соприкосновении полупроводников разного типа возникает диффузионный ток. Это связано с тем, что свободные носители (электроны и дырки) стремятся перейти из той области, где их много, в ту область, где их мало. При прохождении через переход частицы рекомбинируют друг с другом. В результате этого вблизи границы перехода образуются избыточные заряды:

p-n переход.

На рисунке изображены только свободные носители заряда в каждой из областей.

Давайте чуть подробнее разберем этот процесс. Один из электронов переходит из области n-типа и "занимает" свободное место, то есть дырку в области p-типа. На первоначальном месте этого электрона в области n-типа появляется дырка (ведь электрона там больше нет). И в итоге получается, что в p-области вблизи перехода скапливаются электроны, а в n-области наоборот дырки. Не забываем, что дырка - это не реально существующая частица, а условный(!) положительный заряд.

Но этот процесс не продолжается бесконечно по одной простой причине. Из-за того, что на границе формируются два новых слоя, возникает дополнительное электрическое поле, которое они порождают. Под действием этого поля возникает так называемый дрейфовый ток, направленный противоположно диффузионному току. И при определенной концентрации частиц около границы перехода между этими токами возникает равновесие и процесс останавливается:

Дрейфовый ток p-n перехода.

Строго говоря, p-n переход - это именно область, в которой практически отсутствуют свободные носители заряда (обедненная область). Для того, чтобы выйти из этого положения равновесия, мы можем приложить к переходу внешнее напряжения. Различают прямое и обратное смещение.

При прямом смещении положительный потенциал подается на область p-типа, а отрицательный, соответственно, на область n-типа:

Прямое смещение.

В этом случае внешнее электрическое поле (от источника напряжения) направлено противоположно тому полю, которое существует внутри перехода. В результате диффузионный ток начинает преобладать над дрейфовым, поскольку такое внешнее поле приводит к движению дырок из p-области в n-область и электронов в обратном направлении.

Вот так и возникает прямой ток, направление которого противоположно движению электронов. Обратное же смещение выглядит так:

Обратное смещение p-n перехода.

Такое подключение приводит лишь к увеличению областей, в которых отсутствуют свободные носители заряда. Действительно, под действием электрического поля при обратном смещении свободные электроны и дырки будут удаляться от границы слоев.

В результате диффузионный ток будет максимально уменьшен и преобладать будет ток дрейфовый. В таком случае протекающий ток называют обратным (его величина очень мала по сравнению с прямым током).

Полупроводниковое устройство, внутри которого сформирован один такой p-n переход, и называют диодом. А его выводы (электроды) получили названия анод и катод. На принципиальных электрических схемах полупроводниковый диод обозначается следующим образом:

Полупроводниковый диод.

Ключевой характеристикой диода является вольт-амперная характеристика (ВАХ). Она представляет из себя зависимость протекающего через диод тока от приложенного к нему напряжения:

ВАХ диода.

Как видите, здесь все в точности соответствует тому, что мы обсудили при разборе p-n перехода. Правая ветвь графика относится к прямому смещению перехода. При увеличении напряжения увеличивается и протекающий прямой ток. Обратите внимание, что при прямом включении напряжение должно достигнуть определенного значения для того, чтобы диод стал хорошо пропускать ток. Если напряжение меньше этого значения (пусть и создает прямое смещение), то способность диода пропускать ток будет низкой.

При обратном смещении (левая ветвь характеристики) ток достигает некоторого значения и перестает увеличиваться. Это процесс протекания незначительного обратного тока. Если продолжать увеличивать напряжение, то произойдет пробой p-n перехода (про ситуацию пробоя мы еще обязательно поговорим в статье, посвященной стабилитронам).

Таким образом, можно сказать, что диод пропускает ток в одном направлении и препятствует протеканию тока в обратном направлении.

И на этом, пожалуй, закончим, сегодня мы по итогу рассмотрели все основные процессы, протекающие в p-n переходе и полупроводниковом диоде. Совсем скоро, буквально в одной из следующих статей, разберем основные примеры использования диодов. Будем рады видеть вас на нашем сайте снова!

ads

p-n (пэ-эн) переход — область пространства на стыке двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому, такой переход ещё называют электронно — дырочным переходом.

Всего есть два типа полупроводников это p и n типа. В n — типе основными носителями заряда являются электроны, а в p — типе основными — положительно заряженные дырки. Положительная дырка возникает после отрыва электрона от атома и на месте него образуется положительная дырка.

Что бы разобраться как работает p-n переход надо изучить его составляющие то есть полупроводник p — типа и n — типа.

Полупроводники p и n типа изго­тавливаются на основе монокристаллического кремния, имеющего очень высокую степень чистоты, поэтому малейшие примеси (менее 0,001%) су­щественным образом изменяют его электрофизические свойства.

В полупроводнике n типа основными носителями заряда являются электроны. Для получения их используют донорные примеси, которые вводятся в кремний, — фосфор, сурьма, мышьяк.

В полупроводнике p типа основными носителями заряда являются положительно заряженные дырки. Для получения их используют акцепторные примеси — алюминий, бор.

Полупроводник n — типа (электронной проводимости)

Примесный атом фосфора обычно замещает основной атом в узлах кри­сталлической решетки. При этом четыре валентных электрона атома фосфора вступают в связь с четырьмя валентными электронами соседних четырех атомов кремния, образуя устойчивую оболочку из восьми электронов. Пятый валентный электрон атома фосфора оказывается слабо связанным со своим атомом и под действием внешних сил (тепловые колебания решетки, внешнее электрическое поле) легко становится свободным, создавая повышенную концентрацию свободных электронов . Кристалл приобретает электронную проводимость или проводимость n-типа . При этом атом фосфора, лишенный электрона, жестко связан с кристаллической решеткой кремния положи­тельным зарядом, а электрон является подвижным отрицательным зарядом. При отсутствии действия внешних сил они компенсируют друг друга, т. е. в кремнии n-типа количество свободных электронов проводимости опреде­ляется количеством введенных донорных атомов примеси.

Полупроводник p — типа (дырочной проводимости)

Атом алюминия, имеющий только три валентных электрона, не может самостоятельно создать устойчивую восьмиэлектронную оболочку с соседними атомами кремния, так как для этого ему необходим еще один электрон, который он отбирает у одного из атомов кремния, находящегося поблизости. Атом кремния, лишенный электрона, имеет положительный заряд и, так как он может захватить электрон соседнего атома кремния, его можно считать подвижным положительным зарядом, не связанным с кристаллической решеткой, называемым дыркой. Атом алюминия, захвативший электрон, становится отрицательно заряженным центром, жестко связанным с кристал­лической решеткой. Электропроводность такого полупроводника обусловлена движением дырок , поэтому он называется дырочным полупроводни­ком р-типа . Концентрация дырок соответствует количеству введенных атомов акцепторной примеси.


В этой статье мы узнаем об одной из самых важных концепций полупроводниковой электроники, а именно о PN-переходе. Когда говорят о полупроводниковых устройствах, таких как диоды, транзисторы и другие, в основе этого лежит PN переход. Немногие полупроводниковые устройства, такие как, например, фотопроводники, обычно формируются путем легирования примесей одного типа. Но это ограниченный сценарий, и для большинства полупроводниковых устройств требуются оба типа легирования.

PN-переход в основном формируется путем введения (так называемого легирования) акцепторных примесей на одной стороне полупроводникового кристалла, в то время как другая сторона легирована донорными примесями. Интерфейс между этими двумя областями называется PN-переходом.

Полезные статьи:

Основы полупроводниковой электроники

Электропроводность полупроводника, например кремния или германия, зависит от концентрации электрических носителей в зоне проводимости. Свойства проводимости зависят от количества примесей, присутствующих в процессе легирования.

Проводимость кремния увеличивается в 10 3 при комнатной температуре за счет добавления 1 атома бора на 10 5 атомов кремния.

Полупроводник N-типа создается путем легирования кристалла кремния пятивалентной примесью, такой как сурьма, а полупроводник P-типа формируется путем легирования кристалла кремния трехвалентной примесью, такой как бор, в крошечной концентрации.

Как образуется PN-переход?

PN-переход создается в отдельном кристалле полупроводника путем легирования одной стороны кристалла атомами акцепторной примеси, создавая его как P-тип, а также легирования противоположной стороны атомами донорной примеси, создавая его как N-тип. Область, где сходятся P-тип и N-тип, называется PN-переходом.

В этой области электроны в материале N-типа рассеивают переход и объединяются с дырками в материале P-типа. Область материала P-типа, которая находится рядом с переходом в полупроводнике, принимает отрицательный заряд по той причине, что электроны притягиваются дырками.

Когда электроны уходят из области N-типа, он принимает положительный заряд. Следовательно, на стыке существует склонность свободных электронов диффундировать в область P-типа, а дырок - в область N-типа, и этот процесс называется диффузией.

Тонкий слой, зажатый между этими двумя областями, обедненный основными носителями, называется областью истощения. Состояние равновесия PN-перехода определяется как состояние, в котором PN-переход остается без приложенного к нему внешнего электрического потенциала.

Это также может быть дополнительно определено как состояние смещения нулевого напряжения. Ширина обедненной области невероятно мала, обычно несколько тысяч миллиметров, ток через диод может не течь.

PN-переход при приложении потенциала

Отмечаются разные свойства в зависимости от ширины области истощения. Если на таком расстоянии приложен положительный потенциал, область типа P становится положительной, и, следовательно, тип N становится отрицательным, дырки перемещаются в сторону отрицательного напряжения.

В равной степени электроны движутся к положительному напряжению и перепрыгивают через слой обеднения. Плотность заряда P-типа в обедненной области укомплектована отрицательно заряженными акцепторными ионами, в результате чего плотность заряда N-типа становится положительной.

Потенциальный барьер представляет собой перегородку носителей заряда в середине PN-перехода. Этот потенциальный барьер должен преодолеваться за счет внешнего источника электрического потенциала, чтобы PN-переход проводил электрический ток.

Формирование перехода и потенциального барьера в полупроводниковом диоде происходит на протяжении всего производственного процесса полупроводникового диода с PN переходом. Степень потенциального барьера может зависеть от материалов, используемых при производстве диодов с PN переходом.

Полупроводниковый диод с кремниевым PN переходом имеет превосходную величину потенциального барьера, чем германиевые диоды.


PN переход

PN-переход создается путем вставки как P-типа, так и N-типа в один и тот же полупроводниковый кристалл. Большинство носителей заряда в P-типе - это положительно заряженные дырки, а в N-типе - отрицательно заряженные электроны.

Общий заряд с обеих сторон PN-перехода должен быть одинаковым и противоположным, чтобы поддерживать состояние нейтрального заряда вокруг перехода из-за пары электрон-дырка. Слой между P-типом и N-типом, где носители заряда дублируются несколько раз, отмечен как область истощения.

В состоянии равновесия на PN-переходе отсутствует проводимость. Проводимость PN-перехода включает диффузию основных носителей заряда и дрейф неосновных носителей заряда. Проведение электрического тока в PN-переходе физически связано как с зоной проводимости, так и с валентной зоной.

После подключения внешней батареи поток электронов происходит в зоне проводимости, а поток дырок в валентной.

В состоянии равновесия смещения при нулевом напряжении меньшая концентрация дырок и электронов будет дрейфовать просто под влиянием электрического поля E. Диффузия основных носителей заряда должна пересечь потенциальный барьер VB PN-перехода, образованного в результате истощения.

Это должно означать, что основные носители заряда N-типа и P-типа должны по крайней мере достичь энергии qVB электрон-вольт (эВ), прежде чем преодолеют барьер и диффундируют в область P-типа или N-типа.

Сдвиг электронов от N-стороны PN-перехода к дыркам, аннигилированным на P-стороне PN-перехода, создает напряжение потенциального барьера. Значение барьерного напряжения близко к 0,6–0,7 В в кремнии, 0,3 В в германии и варьируется в зависимости от уровней легирования в различных полупроводниках.

Блоки полупроводников P-типа и N-типа в контакте друг с другом не имеют эксплуатационных свойств. Внешний источник напряжения должен пересечь потенциальный барьер, чтобы PN-переход проводил электричество. Если источник потенциала подключен таким образом, что положительный вывод подключен к стороне P, а отрицательный вывод подключен к стороне N.

Отрицательный вывод обеспечивает электронам N-типа диффузию в направлении обедненного слоя. В равной степени положительный вывод удаляет электроны в P-типе, создавая дыры, которые диффундируют к области истощения.

Если аккумуляторная батарея имеют достаточную мощность, чтобы преодолеть барьерное напряжение, тогда большинство носителей заряда от N-типа и P-типа объединяются и истощают переход. В результате большее количество носителей заряда воспроизводится и течет в сторону обедненной области, пока приложенный потенциал превышает потенциальный барьер.

Таким образом, основной ток заряда проходит по направлению к переходу. Во время этого подхода, когда ток проходит благодаря основным носителям заряда, PN-переход считается смещенным в прямом направлении.

Если клеммы батареи перевернуты, то большинство носителей заряда N-типа притягиваются к положительной клемме от PN-перехода, а отверстия притягиваются к отрицательной клемме вдали от PN-перехода.

Ширина обедненного слоя увеличивается с приложенным потенциалом, в результате рекомбинация носителей заряда в обедненном слое не происходит. Следовательно, не происходит проведения электрического тока. При таком подходе считается, что PN-переход имеет обратное смещение.

Встроенный потенциал соединения PN

Основные носители заряда в области N-типа (электроны) могут пересекать переход, чтобы рекомбинировать с основными носителями заряда в области P-типа (дырками). В результате отрицательный статический объемный заряд накапливается в области P-типа, т.к атомы трехвалентной примеси бора имеют статический отрицательный заряд. Они высвобождают положительно заряженную дырку в валентной зоне.

А в области N-типа по схожим причинам образуется положительный объемный заряд, который называется зоной объемного заряда или зоной истощения. Поскольку в этом небольшом объеме имеется мощное электрическое поле, плотность свободных носителей заряда незначительна в состоянии теплового равновесия.

Если полупроводники P-типа и N-типа приближаются, возможный потенциальный барьер возникает в обедненном слое. Фактически, статические объемные заряды накапливаются на границах PN-перехода, положительные заряды в области N-типа и отрицательные заряды в области P-типа. Они создают электрическое поле в диапазоне от N-типа до P-типа, что предотвращает диффузия и добавленная рекомбинация электронов и дырок.

Диффузия останавливается образованием внутреннего электрического поля. В результате существования этого двойного слоя зарядов по обе стороны от PN-перехода, потенциальный барьер резко меняется в пределах зоны истощения, и разность потенциалов Vd, называемая диффузионным потенциалом или встроенным потенциалом, достигает значимых значений.

Электростатический потенциал постоянен по всему кристаллу вместе с зоной пространственного заряда, поскольку учитывает не только электрическое поле, но и концентрацию носителей заряда. Встроенный потенциал из-за концентрации носителей заряда точно компенсирует электростатический потенциал.

Встроенный потенциал (диффузионный) пропорционален разнице энергий Ферми двух неограниченных полупроводников:

  • E - напряжение перехода нулевого смещения
  • (kT / q) тепловое напряжение 26 мВ при комнатной температуре.
  • N A и N B - примесные концентрации акцепторных и донорных атомов.
  • n - собственная концентрация.

Встроенный потенциал или потенциал перехода полупроводника равен потенциалу в обедненной области в состоянии теплового равновесия. Поскольку тепловое равновесие подразумевает, что энергия Ферми постоянна во всем устройстве PN-диода.

Таким образом, энергии Ферми зоны проводимости и валентной зоны смещены вверх или вниз и демонстрируют плавное отклонение в области обедненного слоя. В результате существует разность электростатической потенциальной энергии, показывающая между областями P-типа и N-типа, равная qV d.

Внешний потенциал, необходимый для преодоления потенциала перехода, зависит от рабочей температуры, а также от типа полупроводника. Даже если к полупроводнику не приложен внешний потенциал, существует некоторый барьерный потенциал из-за электронно-дырочной пары.

PN-переход сформирован на отдельном полупроводнике, а электрические контакты проложены вокруг поверхности полупроводника, чтобы обеспечить электрическое соединение для внешнего источника питания. В результате конечное устройство называется диодом с PN переходом или сигнальным диодом.

Читайте также: