Открытие электромагнитного поля кратко

Обновлено: 05.07.2024

Исследование материальности магнитного поля. Рассмотрение истории открытия электромагнитных волн. Роль Майкла Фарадея в изучении электромагнетизма. Практический расчет скорости распространения электромагнитного поля в уравнение Джеймса Клерка Максвелла.

Рубрика Физика и энергетика
Вид доклад
Язык русский
Дата добавления 17.03.2015
Размер файла 26,3 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Муниципальное бюджетное общеобразовательное учреждение Борисоглебского городского округа Борисоглебская основная общеобразовательная школа № 9

Поляков Ярослав Сергеевич,

Одинцова Ольга Игоревна

Борисоглебск Воронежская область 2015

Использование электромагнетизма играет ведущую роль во многих отраслях науки и техники.

С электромагнетизмом связывают развитие энергетики, транспорта, вычислительной техники, физики плазмы, термоядерного синтеза и т.д.

Магнитные разведка, дефектоскопия, магнитные линзы и магнитная запись информации, магнитная обработка воды, поезда на магнитной подушке - вот далеко не полный перечень перспективных областей промышленного применения магнитного поля.

Неотъемлемой частью компьютерного томографа, без которого невозможна современная медицинская диагностика, является также источник магнитного поля.

В течение многих лет не ослабевает интерес к магнитным полям биологических объектов, повышено внимание к среде обитания их и к космосу, а также вопросам влияния магнитного поля Земли на человека.

Глава 1. Из истории открытия электромагнитных волн

1.1 Опыты Ганса Христиана Эрстеда

Оказывается в 1806 году адъютант кафедры фармацевтики Копенгагенского университета Ганс Христиан Эрстед, 29 лет от роду, осуществил свою заветную мечту - получить звание профессора. Но не на своей кафедре, входившей в состав медицинского факультета, а на другой - на кафедре физики. Объяснялось это тем, что, знакомясь с научными лабораториями Европы во время своей двухгодичной командировки, Эрстед почувствовал большую склонность к наукам физическим и химическим и по возвращению в Копенгаген, стал с усердием читать лекции именно по этим двум дисциплинам.

Второе научное путешествие, тоже двухгодичное, ещё более сблизило его с физикой и химией, он смог лично ознакомиться со многими выдающимися достижениями того времени, в частности с работами Вольты. Вернувшись в 1813 году в Данию, Эрстед продолжил преподавание физики. До мая 1820 года Эрстед занимался тем, что изучал возникновение тепла под действием электрических разрядов, то есть соединял полюсы вольтовой батареи проволокой и раздумывал, что при этом происходит с электричеством. Его новаторская идея была такова: при соединение полюсов противоположные заряды смешиваются, каким то образом, так как исчезнуть они совсем не могут и не окажет ли этот скрытый вид энергии действие на магнит.

Сейчас такие рассуждения покажутся наивными, но в то время сама мысль уже была революцией. Если бы Эрстед выдвинул новую гипотезу, причём не просто новую, а гениальную, означающую новую эру в физике, он должен был, как всякий разумный человек, я уж не говорю - тщеславный, эту мысль тут же попытаться каким-то образом доказать. А этого-то он как раз и не сделал. Возможно, он тогда ещё не понял, чего заслуживает эта идея. Он же пишет, что высказал её перед студентами, а потом забыл до тех пор, пока студенты не напомнили. Странная забывчивость, если подумать, о чём идёт речь.

Мне кажется, тут возможна и третья версия: Эрстед и впрямь предчувствовал новое открытие, устанавливающее связь между электричеством и магнетизмом, и, возможно, действительно говорил об этом студентам, но не знал, как это доказать. Ведь умение построить эксперимент требует не меньшей проницательности, чем создание умозрительной гипотезы. А, не зная, как доказать, не приступал к экспериментам, ограничиваясь только размышлениями на эту тему. Только счастливый случай на лекции указал этот скрытый путь. Вечером он решил продемонстрировать этот опыт студентам.

Только в начале июля опыт был повторен, на этот раз вполне удачно. И тогда меньше чем за 3 недели он выполнил всё своё знаменитое ныне исследование, выполнил тщательно, досконально, и так же обстоятельно и досконально описал открытое явление, и не по-датски, а по - латыни, и не в одном экземпляре, а в десятках, и к 21 июля всё было закончено.

Вероятно, это заблуждение и вызвало некоторую паузу после получения физиками мемуарам Эрстеда, потому что раскалить провод можно только с помощью достаточно мощной батареи, а не у всех учёных таковые имелись.

Но как только было обнаружено, что открытое явление происходит даже от двух пластин батареи, работы по электромагнетизму хлынули потоком. И вот тут среди общих возгласов восторга вдруг прозвучал первый ехидный вопрос: позвольте, а кто сказал, что открытие господина Эрстеда действительно открытие? Влияние электричества на магниты давно открыто итальянцами Можоном и Романьози, ещё в 1802 году.

А как же все-таки создавалась картина электромагнитного поля?

Несколькими месяцами позже Ампер проделав аналогичный опыт, установил, что два параллельных проводника, по которым идёт ток в одном направлении, притягиваются друг к другу и отталкиваются, если токи имеют противоположные направления.

Им же были исследованы свойства соленоида и создан прибор, названный гальванометром.

Только что нашумевшее открытие Эрстеда возбудило в учёном мире исключительный интерес к электромагнетизму.

Араго показал, что железные опилки притягиваются к медному проводу, когда по нему идёт электрический ток. Повторяя опыты Араго, Дэви обнаружил, что опилки, рассыпанные на листе бумаге, сквозь которую проходит перпендикулярно к листу проводник с током, располагаются вокруг провода концентрическими окружностями.

1.2 Роль Майкла Фарадея в изучении электромагнетизма

В дневнике Майкла Фарадея, да - да, того самого Майкла Фарадея, помещён рисунок, показывающий расположение этих опилок, - рисунок, который сейчас можно видеть в любом учебнике физики. Фарадей был ассистентом Ганса Христиана Эрстеда, но он и самостоятельно проделал много опытов. Поведение же магнитной стрелки натолкнуло его на мысль: нельзя ли получить непрерывное вращение магнита вокруг провода или заставить проводник с током вращаться вокруг магнита?

Осуществлению такого вращения мешало то обстоятельство, что магнит обладает двумя полюсами. Фарадей нашёл способ устранить это затруднение.

Вводя понятие поля и отвергая теорию дальнодействия, Фарадей был убежден в материальности силовых линий, идущих от магнита или заряженного проводника.

Для него силовые линии были не просто графическим изображением действия сил, а реально существующими и заполняющими все пространство вокруг магнита или заряженного проводника.

1.3 Уравнения Джеймса Клерка Максвелла

Впоследствии Максвелл идеи Фарадея облек в математическую форму. Он высоко оценил идеи Фарадея за скрытый в них глубокий математический смысл, за точность и логичность его определений.

Максвелл составил четыре уравнения, два из которых имеют непосредственное отношение к физике средней школы. Для электромагнитного поля (в отсутствие проводников) они могут быть представлены так:

ФЕ dl = dФ / dt Уравнение электродвижущей силы

ФH dl = dN / dt Уравнение магнитодвижущей силы

Е - напряженность электрического поля на участке dl; Н - напряженность магнитного поля на участке dl; N - поток электрической индукции, Ф - поток магнитной индукции, t - время.

Бросается в глаза симметричный характер уравнений, устанавливающих: первое - связь электрических и магнитных явлений, второе - аналогичную связь магнитных явлений с электрическими. Популярно электрическую сущность этих уравнений можно выразить следующими двумя положениями: 1) изменение электрического поля всегда сопровождается магнитным полем;

2) изменяющееся магнитное поле всегда сопровождается электрическим полем.

В своих математических формулах Максвелл показал, что наличие вещественных носителей (металлических колец в модели Брэгга, металлических проводов) на практике не является существенным для распространения электромагнитного поля. Замкнутые на себя магнитные и электрические поля распространяются от источника (излучаются) по направлению радиусов во всех направлениях.

Восхищенный внутренней и внешней красотой математической формы уравнений Джеймса Максвелла, немецкий физик Людвиг Больцман выразил свой восторг стихами, начинавшимися фразой:

Глава 2. Материальность магнитного поля

электромагнитное поле фарадей максвелл

Электромагнитное поле материально. Физика знает две формы материи - вещество (твердое, жидкое, газообразное) и поле (электромагнитное, гравитационное, внутриядерное). Скорость распространения электромагнитного поля, как теоретически установил Джеймс Максвелл, равна скорости распространения света. Отсюда у Максвелла возникла идея, что и свет представляет собой электромагнитное поле. Электромагнитная теория света сменила предшествующую ей теорию Гюйгенса, которая рассматривала свет как колебания эфира.

Материальность электромагнитного поля подтверждается тем, что в нем наблюдается действие сил, что оно является носителем и передатчиком энергии.

Максвеллу не удалось дожить до того времени, когда его идеи получили практическое подтверждение, он умер в расцвете творческих сил в 1879 году в возрасте 48 лет.

Теория электромагнитного поля стала самым большим научным достижением Джеймса Максвелла.

История науки - тысячелетняя драма. Драма не только идей, но и их творцов. На памятниках, барельефах, мемориальных досках ученые всегда кажутся чуждыми суете и страданиям. Но до того, как их лики застыли в бронзе или граните, им были ведомы и печаль и отчаяние; все они были самыми обычными смертными; только одареннее и ранимее.

И тернии, всегда устилающие дорогу к пьедесталам, ранили их ничуть не меньше, чем всех остальных людей; только раны их были невидимы миру.

Ученый - это не специальность, ей нельзя обучить в институте. Каждое открытие делает человек, ставший ученым по призванию.

Открытия не бывают случайными. Для торжества нового в науке нужны талант, знания, непредвзятость мнений, умение удивиться новому, трудолюбие, смелость в отстаивании своих убеждений. И , что очень важно, необходимость в данном открытии.

Наука и общество должны по меньшей мере созреть, чтобы принять новое открытие, а еще лучше - они должны остро нуждаться в нем.

В таких условиях и находилось научное общество, когда новаторская мысль посетила скромного датского профессора Ганса Христиана Эрстеда и произошло рождение нового раздела физики - электромагнетизма.

Подобные документы

Основные параметры электромагнитного поля и механизмы его воздействия на человека. Методы измерения параметров электромагнитного поля. Индукция магнитного поля. Разработка технических требований к прибору. Датчик напряженности электромагнитного поля.

курсовая работа [780,2 K], добавлен 15.12.2011

Структура электромагнитного поля. Уравнения Максвелла. Условия реализации обычной магнитной поляризации среды. Возбуждение электродинамических полей в металле. Закон частотной дисперсии волнового числа магнитной волны. Характер частотных зависимостей.

доклад [93,2 K], добавлен 27.09.2008

Появление вихревого электрического поля - следствие переменного магнитного поля. Магнитное поле как следствие переменного электрического поля. Природа электромагнитного поля, способ его существования и конкретные проявления - радиоволны, свет, гамма-лучи.

презентация [779,8 K], добавлен 25.07.2015

История открытия электричества. Заряды как основа электрического поля, создание магнитного поля через их движение по проводнику. Характеристика величины электрического поля. Длина электромагнитной волны. Международная классификация электромагнитных волн.

реферат [173,9 K], добавлен 30.08.2012

Краткие сведения о жизненном пути и деятельности Максвелла Джеймса Клерка - британского физика и математика. Кинетическая теория газов и теоретические выводы Максвелла о существовании электромагнитного поля. Основные достижения и изобретения физика.

презентация [141,6 K], добавлен 01.02.2013

Макроскопическое электромагнитное поле в сплошных неподвижных средах. Уравнения Максвелла в дифференциальной форме. Энергия электромагнитного поля и теорема Пойнтинга. Применение метода комплексных амплитуд. Волновой характер электромагнитного поля.

реферат [272,7 K], добавлен 19.01.2011

Понятие волны и ее отличие от колебания. Значение открытия электромагнитных волн Дж. Максвеллом, подтверждающие опыты Г. Герца и эксперименты П. Лебедева. Процесс и скорость распространения электромагнитного поля. Свойства и шкала электромагнитных волн.

В \(1820\) году Х. Эрстед провёл опыт, доказывающий, что электрический ток порождает магнитное поле. Фарадей своими опытами доказал, что всякое изменение во времени магнитного поля порождает переменный индукционный ток в замкнутом проводнике. Но электрический ток возникает только при наличии электрического поля.

• имеют ли различия поля, которые созданы подвижным и покоящимся электрическими зарядами?
• Существует ли поле исключительно в проводнике или возникает и в пространстве вокруг него?
• Имеет ли значение замкнутый проводник, по которому течёт ток, для возникновения поля?

Теория Максвелла объясняла появление индукционного тока в контуре под воздействием изменяющегося магнитного потока, пронизывающего его. Переменное магнитное поле порождало вихревое электрическое поле, которое и заставляло упорядоченно двигаться в одном направлении свободные заряды, имеющиеся в проводнике. Наличие электрического тока фиксировалось гальванометром. Таким образом, проводник являлся индикатором, который позволил обнаружить наличие электрического поля.

Вокруг неподвижного заряда создаётся только электрическое поле. Но заряд, находящийся в покое относительно одной системы, может находиться в движении относительно других систем, и значит, порождать магнитное поле.

Если магнит лежит на столе, то вокруг него возникает только магнитное поле. Но наблюдатель, движущийся относительно стола, зафиксирует и электрическое поле.

Поэтому утверждение о существовании электрического или магнитного полей в заданной точке имеет смысл только при указании системы отсчёта, относительно которой они рассматриваются. Оба поля являются проявлением единого электромагнитного поля.

Электромагнитное поле — это совокупность неразрывно связанных между собой переменных электрического и магнитного полей.

Электромагни́тное по́ле — фундаментальное физическое поле, взаимодействующее с электрически заряженными телами, а также с телами, имеющими собственные дипольные и мультипольные электрические и магнитные моменты. Представляет собой совокупность электрического и магнитного полей, которые могут, при определённых условиях, порождать друг друга, а по сути являются одной сущностью, формализуемой через тензор электромагнитного поля.

Электромагнитное поле (и его изменение со временем) описывается в электродинамике в классическом приближении посредством системы уравнений Максвелла. При переходе от одной инерциальной системы отсчета к другой электрическое и магнитное поле в новой системе отсчета — каждое зависит от обоих — электрического и магнитного — в старой, и это ещё одна из причин, заставляющая рассматривать электрическое и магнитное поле как проявления единого электромагнитного поля.

В современной формулировке электромагнитное поле представлено тензором электромагнитного поля, компонентами которого являются три компонента напряжённости электрического поля и три компонента напряжённости магнитного поля (или — магнитной индукции) [~ 1] , а также четырёхмерным электромагнитным потенциалом — в определённом отношении ещё более важным.

Действие электромагнитного поля на заряженные тела описывается в классическом приближении посредством силы Лоренца.

Квантовые свойства электромагнитного поля и его взаимодействия с заряженными частицами (а также квантовые поправки к классическому приближению) — предмет квантовой электродинамики, хотя часть квантовых свойств электромагнитного поля более или менее удовлетворительно описывается упрощённой квантовой теорией, исторически возникшей заметно раньше.

Возмущение электромагнитного поля, распространяющееся в пространстве, называется электромагнитной волной (электромагнитными волнами) [~ 2] . Любая электромагнитная волна распространяется в пустом пространстве (вакууме) с одинаковой скоростью — скоростью света (свет также является электромагнитной волной). В зависимости от длины волны электромагнитное излучение подразделяется на радиоизлучение, свет (в том числе инфракрасный и ультрафиолет), рентгеновское излучение и гамма-излучение.

Содержание

История открытия

До начала XIX в. электричество и магнетизм считались явлениями, не связанными друг с другом, и рассматривались в разных разделах физики.

В 1819 г. датский физик Г. Х. Эрстед обнаружил, что проводник, по которому течёт электрический ток, вызывает отклонение стрелки магнитного компаса, расположенного вблизи этого проводника, из чего следовало, что электрические и магнитные явления взаимосвязаны.

Французский физик и математик А. Ампер в 1824 г. дал математическое описание взаимодействия проводника тока с магнитным полем (см. Закон Ампера).

В 1831 г. английский физик М. Фарадей экспериментально обнаружил и дал математическое описание явления электромагнитной индукции — возникновения электродвижущей силы в проводнике, находящемся под действием изменяющегося магнитного поля.

В 1864 г. Дж. Максвелл создаёт теорию электромагнитного поля, согласно которой электрическое и магнитное поля существуют как взаимосвязанные составляющие единого целого — электромагнитного поля. Эта теория с единой точки зрения объясняла результаты всех предшествующих исследований в области электродинамики, и, кроме того, из неё вытекало, что любые изменения электромагнитного поля должны порождать электромагнитные волны, распространяющиеся в диэлектрической среде (в том числе, в пустоте) с конечной скоростью, зависящей от диэлектрической и магнитной проницаемости этой среды. Для вакуума теоретическое значение этой скорости было близко к экспериментальным измерениям скорости света, полученным на тот момент, что позволило Максвеллу высказать предположение (впоследствии подтвердившееся), что свет является одним из проявлений электромагнитных волн.

Теория Максвелла уже при своем возникновении разрешила ряд принципиальных проблем электромагнитной теории, предсказав новые эффекты и дав надежную и эффективную математическую основу описанию электромагнитных явлений. Однако при жизни Максвелла наиболее яркое предсказание его теории — предсказание существования электромагнитных волн — не получило прямых экспериментальных подтверждений.

В 1887 г. немецкий физик Г. Герц поставил эксперимент, полностью подтвердивший теоретические выводы Максвелла. Его экспериментальная установка состояла из находящихся на некотором расстоянии друг от друга передатчика и приёмника электромагнитных волн, и фактически представляла собой исторически первую систему радиосвязи, хотя сам Герц не видел никакого практического применения своего открытия, и рассматривал его исключительно как экспериментальное подтверждение теории Максвелла.

В XX в. развитие представлений об электромагнитном поле и электромагнитном излучении продолжилось в рамках квантовой теории поля, основы которой были заложены великим немецким физиком Максом Планком. Эта теория, в целом завершенная рядом физиков около середины XX века, оказалась одной из наиболее точных физических теорий, существующих на сегодняшний день.

Во второй половине XX века (квантовая) теория электромагнитного поля и его взаимодействия была включена в единую теорию электрослабого взаимодействия и ныне входит в так называемую стандартную модель в рамках концепции калибровочных полей (электромагнитное поле является с этой точки зрения простейшим из калибровочных полей — абелевым калибровочным полем).

Классификация

Электромагнитное поле с современной точки зрения есть безмассовое [~ 3] абелево [~ 4] векторное [~ 5] калибровочное [~ 6] поле. Его калибровочная группа — группа U(1).

Среди известных (не гипотетических) фундаментальных полей электромагнитное поле — единственное, относящееся к указанному типу. Все другие поля такого же типа (которые можно рассматривать, по крайней мере, чисто теоретически) — (были бы) полностью эквивалентны электромагнитному полю, за исключением, быть может, констант.

Физические свойства

Физические свойства электромагнитного поля и электромагнитного взаимодействия - предмет изучения электродинамики, с классической точки зрения оно описывается классической электродинамикой, а с квантовой - квантовой электродинамикой. В принципе, первая является приближением второй, заметно более простым, но для многих задач - очень и очень хорошим.

В рамках квантовой электродинамики электромагнитное излучение можно рассматривать как поток фотонов. Частицей-переносчиком электромагнитного взаимодействия является фотон (частица, которую можно представить как элементарное квантовое возбуждение электромагнитного поля) — безмассовый векторный бозон. Фотон также называют квантом электромагнитного поля (подразумевая, что соседние по энергии стационарные состояния свободного электромагнитного поля с определенной частотой и волновым вектором различаются на один фотон).

Электромагнитное взаимодействие — это один из основных видов дальнодействующих фундаментальных взаимодействий, а электромагнитное поле — одно из фундаментальных полей.

Существует теория (входящая в Стандартную модель), объединяющая электромагнитное и слабое взаимодействие в одно — электрослабое. Также существуют теории, объединяющие электромагнитное и гравитационное взаимодействие (например, теория Калуцы-Клейна). Однако последняя, при её теоретических достоинствах и красоте, не является общепринятой (в смысле её предпочтительности), так как экспериментально не обнаружено ее отличий от простого сочетания обычных теорий электромагнетизма и гравитации, как и теоретических преимуществ в степени, заставившей бы признать её особенную ценность. Это же (в лучшем случае) можно сказать пока и о других подобных теориях: даже лучшие из них по меньшей мере недостаточно разработаны, чтобы считаться вполне успешными.

Безопасность электромагнитных полей

В связи со всё большим распространением источников ЭМП в быту (СВЧ-печи, мобильные телефоны, теле-радиовещание) и на производстве (оборудование ТВЧ, радиосвязь), большое значение приобретают нормирование уровней ЭМП и изучение возможного влияния ЭМП на человека [1] . Нормирование уровней ЭМП проводится раздельно для рабочих мест и санитарно-селитебной зоны.

Контроль за уровнями ЭМП возложен на органы санитарного надзора и инспекцию электросвязи, а на предприятиях — на службу охраны труда.

Предельно-допустимые уровни ЭМП в разных радиочастотных диапазонах различны [2] .

Человечество собирает знания о магнитных явлениях не меньше трех с половиной тысяч лет (первые наблюдения электрических сил имели место тысячелетием позже). Четыреста лет назад, на заре становления физики, магнитные свойства веществ были отделены от электрических, после чего долгое время те и другие изучались самостоятельно. Так была создана экспериментальная и теоретическая база, ставшая к середине XIX века основой единой теории электромагнитных явлений.

После Гильберта наука о магнетизме вплоть до начала XIX века продвинулась очень мало. Сделанное за это время можно буквально перечесть по пальцам. В 1640 году ученик Галилея Бенедетто Кастелли объяснил притяжение магнетита наличием в его составе множества мельчайших магнитных частиц — первая и очень несовершенная догадка, что природу магнетизма следует искать на атомном уровне. Голландец Себальд Бругманс в 1778 году заметил, что висмут и сурьма отталкиваются от полюсов магнитной стрелки — это был первый пример физического явления, которое 67 годами позже Фарадей назвал диамагнетизмом. В 1785 году Шарль-Огюстен Кулон посредством прецизионных измерений на крутильных весах показал, что сила взаимодействия магнитных полюсов обратно пропорциональна квадрату расстояния между ними — точно так же, как и сила взаимодействия между электрическими зарядами (в 1750 году к аналогичному выводу пришел англичанин Джон Мичелл, но кулоновское заключение много надежней).


А вот изучение электричества в те годы двигалось семимильными шагами. Объяснить это нетрудно. Единственными первичными источниками магнитной силы оставались природные магниты — других наука не знала. Их сила стабильна, ее нельзя ни изменить (разве что уничтожить нагревом), ни тем более генерировать по собственному желанию. Понятно, что это обстоятельство сильно ограничивало возможности экспериментаторов.

Электричество было в гораздо более выгодном положении — ведь его можно было получать и накапливать. Первый генератор статических зарядов построил в 1663 году бургомистр Магдебурга Отто фон Герике (знаменитые магдебургские полушария — тоже его детище). Век спустя такие генераторы стали столь широко распространены, что их демонстрировали даже на великосветских приемах. В 1744 году немец Эвальд Георг фон Клейст и немногим позже голландец Питер ван Мушенбрук изобрели лейденскую банку — первый электрический конденсатор; тогда же появились и первые электрометры. В результате к концу XVIII века наука знала об электричестве куда больше, чем в его начале. А вот о магнетизме этого сказать было нельзя.

А потом все изменилось. В 1800 году Алессандро Вольта изобрел первый химический источник электрического тока — гальваническую батарею, также известную как вольтов столб. После этого открытие связи между электричеством и магнетизмом стало вопросом времени. Оно могло состояться уже на следующий год, когда французский химик Николя Готеро заметил, что два параллельных провода с током притягиваются друг к другу. Однако ни он, ни великий Лаплас, ни замечательный физик-экспериментатор Жан-Батист Био, которые позже наблюдали это явление, не придали ему никакого значения. Поэтому приоритет справедливо достался ученому, давно предположившему существование такой связи и много лет посвятившему ее поискам.

Эрстед с 1813 года вполне сознательно пытался установить связь между электричеством и магнетизмом (он был приверженцем великого философа Иммануила Канта, полагавшего, что все природные силы обладают внутренним единством). В качестве индикаторов Эрстед использовал компасы, но долгое время безрезультатно. Эрстед ожидал, что магнитная сила тока параллельна ему самому, и для получения максимального крутящего момента располагал электрический провод перпендикулярно стрелке компаса. Естественно, что стрелка не реагировала на включение тока. И только весной 1820 года во время лекции Эрстед протянул провод параллельно стрелке (либо чтобы посмотреть, что из этого получится, либо у него появилась новая гипотеза — об этом историки физики спорят до сих пор). И вот тут-то стрелка и качнулась — не слишком сильно (у Эрстеда была маломощная батарея), но все-таки заметно.

Первыми ее приняли парижане. 4 сентября известный физик и математик Доминик Араго рассказал об открытии Эрстеда на заседании Академии наук. Его коллега Андре-Мари Ампер решил заняться магнитным действием токов и буквально на следующий день приступил к экспериментам. Первым делом он повторил и подтвердил опыты Эрстеда, а в начале октября обнаружил, что параллельные проводники притягиваются, если токи текут через них в одном и том же направлении, и отталкиваются — если в противоположных. Ампер изучил взаимодействие и между непараллельными проводниками и представил его формулой (закон Ампера). Он показал также, что свернутые в спираль проводники с током поворачиваются в магнитном поле, подобно стрелке компаса (и между делом изобрел соленоид — магнитную катушку). Наконец, он выдвинул смелую гипотезу: внутри намагниченных материалов текут незатухающие микроскопические параллельные круговые токи, которые и служат причиной их магнитного действия. Тогда же Био и Феликс Савар совместными усилиями выявили математическую зависимость, позволяющую определять интенсивность магнитного поля, создаваемого постоянным током (закон Био–Савара).

Для Майкла Фарадея 1821 год стал воистину судьбоносным. Он получил заветную должность суперинтенданта лондонского Королевского института и фактически случайно начал исследовательскую программу, благодаря которой занял уникальное место в истории мировой науки.

Поначалу он почитал силовые линии удобным методом описания наблюдений, но со временем уверился в их физической реальности (тем более что нашел способ наблюдать их с помощью рассыпанных между магнитами железных опилок). К концу 1830-х он четко осознал, что энергия, источником которой служат постоянные магниты и проводники под током, распределена в пространстве, заполненном силовыми линиями. Фактически Фарадей уже мыслил в теоретико-полевых терминах, в чем значительно опередил своих современников.

Но главное его открытие состояло в другом. В августе 1831 года Фарадей смог заставить магнетизм генерировать электрический ток. Его прибор состоял из железного кольца с двумя противоположными обмотками. Одну из спиралей можно было замкнуть на электрическую батарею, другая соединялась с проводником, расположенным над магнитным компасом. Стрелка не меняла положения, если по первой катушке шел постоянный ток, но качалась во время его включения и выключения. Фарадей понял, что в это время во второй обмотке возникали электрические импульсы, обусловленные возникновением или исчезновением магнитных силовых линий. Иначе говоря, он открыл, что причиной электродвижущей силы служат изменения магнитного поля. Этот эффект обнаружил также американский физик Джозеф Генри, но он опубликовал свои результаты позднее, чем Фарадей, и не сделал столь серьезных теоретических выводов.

Теория Максвелла представила магнетизм как особого рода взаимодействие между электрическими токами. Квантовая физика XX века добавила к этой картине всего два новых момента. Теперь мы знаем, что электромагнитные взаимодействия переносятся фотонами и что электроны и многие другие элементарные частицы обладают собственными магнитными моментами. На этом фундаменте построены все экспериментальные и теоретические работы в области магнетизма.

Читайте также: