Опыт штерна и герлаха кратко

Обновлено: 02.05.2024

Наличие у атомов магнитных моментов и их квантование было доказано прямыми опытами Штерна и Герлаха (1889— 1979) в 1921 г. В сосуде с высоким вакуумом создавался с помощью диафрагм
Рассчитаем поведение атомного пучка сначала с классической точки зрения, предполагая, что никакого квантования магнитных моментов нет. Если m—магнитный момент атома, то на атом в неоднородном магнитном поле действует сила В самом деле, по классическим представлениям атом в магнитном поле совершает прецессию вокруг оси Z, вращаясь с ларморовской частотой совершают колебания с той же частотой, становясь попеременно то положительными, то отрицательными. Если угловая скорость прецессии достаточно велика, то силу fz можно усреднить по времени. При этом первые два члена в выражении для fz обратятся в нуль, и можно написать

Чтобы составить представление о степени допустимости та кого усреднения, произведем численную оценку. Период ларморовской прецессии равен где поле Н измеряется в гауссах. Например, при Н = 1000 Гс получаем с. Если скорость атомов в пучке равна = 100 м/с = см/с, то за это время атом пролетает расстояние может быть оправдана и с квантовой точки зрения. В самом деле, включение сильного магнитного поля вдоль оси Z приводит к состоянию атома только с одной определенной составляющей магнитного момента, а именно . Остальные две составляющие в этом состоянии не могут иметь определенных значений. При измерениях в этом состоянии получили бы различные значения и притом их средние были бы равны нулю. Поэтому и при квантовом рассмотрении усреднение оправдано.

Тем не менее следует ожидать различных результатов опыта с классической и с квантовой точек зрения. В опытах Штерна и Герлаха сначала получался след атомного пучка при выключенном магнитном поле, а затем при включенном. Если бы проекция могла принимать всевозможные непрерывные значения, как требует классическая теория, то сила fz также принимала бы всевозможные непрерывные значения. Включение магнитного поля приводило бы только к уширению пучка. Не то следует ожидать по квантовой теории. В этом случае проекция mz, а с ней и средняя сила fz квантованы, т. е. могут принимать только ряд дискретных избранных значений. Если орбитальное квантовое число атома равно I, то по теории при расщеплении получится пучков (т. е. оно равно числу возможных значений, которые может принимать квантовое число m). Таким образом, в зависимости от значения числа I следовало бы ожидать, что пучок расщепится на 1, 3, 5, . составляющих. Ожидаемое число составляющих должно было бы быть всегда нечетным.

Опыты Штерна и Герлаха доказали квантование проекции . Однако их результаты не всегда соответствовали теории, изложенной выше. В первоначальных опытах применялись пучки атомов серебра. В магнитном поле пучок расщеплялся на две составляющие. То же получалось для атомов водорода. Для атомов других химических элементов получалась и более сложная картина расщепления, однако число расщепленных пучков получалось не только нечетным, что требовалось теорией, но и четным, что противоречило ей. В теорию необходимо было внести коррективы.

К этому следует добавить результаты опытов Эйнштейна и де Гааза (1878—1966), а также опытов Барнета (1873—1956) по определению гиромагнитного отношения. Для железа, например, оказалось, что гиромагнитное отношение равно в отличие от орбитальных моментов Из них следует, что определенные значения в одном и том же состоянии могут иметь квадрат полного спина по методу Штерна и Герлаха показали, что для атомов водорода и серебра величина равна магнетону Бора . Таким образом, гиромагнитное отношение для электрона


Штерна—Герлаха опыт, опыт, экспериментально подтвердивший, что атомы обладают магнитным моментом, проекция которого на направление внешнего магнитного поля принимает лишь определённые значения (пространственно квантована). Осуществлен в 1922 О. Штерном и немецким физиком В. Герлахом (W. Gerlach), которые исследовали прохождение пучка атомов Ag (а затем и др. элементов) в сильно неоднородном магнитном поле (см. рис.) с целью проверки теоретически полученной формулы пространств. квантования проекции mz на направление Z магнитного момента атома mo: mz=mom (т = 0±1. ).

На атом, обладающий магнитным моментом и движущийся в неоднородном вдоль Z магнитном поле Н, действует сила F= mz дН/дZ, которая отклоняет его от первоначального направления движения. Если проекция магнитного момента атома могла бы изменяться непрерывно, то на пластинке П наблюдалась бы размытая широкая полоса. Однако в Ш.— Г. о. было обнаружено расщепление пучка атомов на 2 компоненты, симметрично смещенные относительно первичного направления распространения на величину D — на пластинке появлялись две узкие полосы. Это указывало на то, что проекция магнитного момента атома mz на направление поля Н принимает только два отличающиеся знаком значения ±mo, т. е. mo ориентируется вдоль Н и в противоположном направлении. Величина магнитного момента атома mо, измеренная в опыте по смещению D, оказалась равной Бора магнетону.

Ш.—Г. о. сыграл большую роль в дальнейшем развитии представлений об электроне. Согласно квантовой теории Бора — Зоммерфельда, орбитальный и, следовательно, магнитный моменты используемых в опыте атомов с одним электроном во внешней оболочке равны нулю, поэтому такие атомы не должны были бы вообще отклоняться магнитным полем. Ш.—Г. о., показавший, что эти атомы вопреки теории обладают магнитным моментом, а также другие более ранние эксперименты привели в 1925 Дж. Ю. Уленбека и С. Гаудсмита к гипотезе существования собственного механического момента электрона — спина.

37. Спин - специфический квантовый момент движения элементарной частицы (электрона, протона, нейтрона) или ядра атома.


где sспиновое квантовое число.

Аналогично, проекция спина на ось z (Lsz) (ось z совпадает с направлением внешнего магнитного поля) должна быть квантована и вектор может иметь (2s + 1) различных ориентаций в магнитном поле.

Из опытов Штерна и Герлаха следует, что таких ориентаций всего две: 2s+1=2, а значит s = 1/2, т.е. спиновое квантовое число имеет только одно значение.

Для атомов первой группы, валентный электрон которых находится в s-состоянии (l = 0), момент импульса атома равен спину валентного электрона. Поэтому обнаруженное для таких атомов пространственное квантование момента импульса в магнитном поле является доказательством наличия у спина лишь двух ориентаций во внешнем поле. (Опыты с электронами в p-состоянии подтвердили этот вывод, хотя картина получилась более сложной) (желтая линия натрия – дуплет из-за наличия спина).


Численное значение спина электрона: .

По аналогии с пространственным квантованием орбитального момента проекция спина квантуется (аналогично, как , то и ). Проекция спина на направление внешнего магнитного поля, являясь квантовой величиной, определяется выражением:


,

где – магнитное спиновое квантовое число, , т.е. может принимать только два значения, что и наблюдается в опыте Штерна и Герлаха.

Итак, проекция спинового механического момента импульса на направление внешнего

магнитного поля может принимать два значения:


Так как мы всегда имеем дело с проекциями, то говоря, что спин имеет две

ориентации, имеем в виду две проекции.

Проекция спинового магнитного момента электрона на направление внешнего магнитного поля:


.


Отношение – спиновое гиромагнитное отношение.


Штерна—Герлаха опыт, опыт, экспериментально подтвердивший, что атомы обладают магнитным моментом, проекция которого на направление внешнего магнитного поля принимает лишь определённые значения (пространственно квантована). Осуществлен в 1922 О. Штерном и немецким физиком В. Герлахом (W. Gerlach), которые исследовали прохождение пучка атомов Ag (а затем и др. элементов) в сильно неоднородном магнитном поле (см. рис.) с целью проверки теоретически полученной формулы пространств. квантования проекции mz на направление Z магнитного момента атома mo: mz=mom (т = 0±1. ).




На атом, обладающий магнитным моментом и движущийся в неоднородном вдоль Z магнитном поле Н, действует сила F= mz дН/дZ, которая отклоняет его от первоначального направления движения. Если проекция магнитного момента атома могла бы изменяться непрерывно, то на пластинке П наблюдалась бы размытая широкая полоса. Однако в Ш.— Г. о. было обнаружено расщепление пучка атомов на 2 компоненты, симметрично смещенные относительно первичного направления распространения на величину D — на пластинке появлялись две узкие полосы. Это указывало на то, что проекция магнитного момента атома mz на направление поля Н принимает только два отличающиеся знаком значения ±mo, т. е. mo ориентируется вдоль Н и в противоположном направлении. Величина магнитного момента атома mо, измеренная в опыте по смещению D, оказалась равной Бора магнетону.

Ш.—Г. о. сыграл большую роль в дальнейшем развитии представлений об электроне. Согласно квантовой теории Бора — Зоммерфельда, орбитальный и, следовательно, магнитный моменты используемых в опыте атомов с одним электроном во внешней оболочке равны нулю, поэтому такие атомы не должны были бы вообще отклоняться магнитным полем. Ш.—Г. о., показавший, что эти атомы вопреки теории обладают магнитным моментом, а также другие более ранние эксперименты привели в 1925 Дж. Ю. Уленбека и С. Гаудсмита к гипотезе существования собственного механического момента электрона — спина.

37. Спин - специфический квантовый момент движения элементарной частицы (электрона, протона, нейтрона) или ядра атома.


где sспиновое квантовое число.

Аналогично, проекция спина на ось z (Lsz) (ось z совпадает с направлением внешнего магнитного поля) должна быть квантована и вектор может иметь (2s + 1) различных ориентаций в магнитном поле.

Из опытов Штерна и Герлаха следует, что таких ориентаций всего две: 2s+1=2, а значит s = 1/2, т.е. спиновое квантовое число имеет только одно значение.

Для атомов первой группы, валентный электрон которых находится в s-состоянии (l = 0), момент импульса атома равен спину валентного электрона. Поэтому обнаруженное для таких атомов пространственное квантование момента импульса в магнитном поле является доказательством наличия у спина лишь двух ориентаций во внешнем поле. (Опыты с электронами в p-состоянии подтвердили этот вывод, хотя картина получилась более сложной) (желтая линия натрия – дуплет из-за наличия спина).


Численное значение спина электрона: .

По аналогии с пространственным квантованием орбитального момента проекция спина квантуется (аналогично, как , то и ). Проекция спина на направление внешнего магнитного поля, являясь квантовой величиной, определяется выражением:


,

где – магнитное спиновое квантовое число, , т.е. может принимать только два значения, что и наблюдается в опыте Штерна и Герлаха.

Итак, проекция спинового механического момента импульса на направление внешнего

магнитного поля может принимать два значения:


Так как мы всегда имеем дело с проекциями, то говоря, что спин имеет две

ориентации, имеем в виду две проекции.

Проекция спинового магнитного момента электрона на направление внешнего магнитного поля:


.


Отношение – спиновое гиромагнитное отношение.

В 1922 году немецкие физики О. Штерн и В. Герлах поставили опыты, целью которых было измерение магнитных моментов Pm атомов различных химических элементов. Для химических элементов, образующих первую группу таблицы Менделеева и имеющих один валентный электрон, магнитный момент атома равен магнитному моменту валентного электрона, т.е. одного электрона.

Идея опыта заключалась в измерении силы, действующей на атом в сильно неоднородном магнитном поле. Неоднородность магнитного поля должна быть такова, чтобы она сказывалась на расстояниях порядка размера атома. Только при этом можно было получить силу, действующую на каждый атом в отдельности.

Схема опыта изображена на рис. 7.9. В колбе с вакуумом, 10 –5 мм рт. ст., нагревался серебряный шарик К, до температуры испарения.



Атомы серебра летели с тепловой скоростью около 100 м/с через щелевые диафрагмы В и, проходя резко неоднородное магнитное поле, попадали на фотопластинку А.

Если бы момент импульса атома (и его магнитный момент ) мог принимать произвольные ориентации в пространстве (т.е. в магнитном поле), то можно было ожидать непрерывного распределения попаданий атомов серебра на фотопластинку с большой плотностью попаданий в середине. Но на опыте были получены совершенно неожиданные результаты: на фотопластинке получились две резкие полосы – все атомы отклонялись в магнитном поле двояким образом, соответствующим лишь двум возможным ориентациям магнитного момента (рис. 7.10).

Этим доказывался квантовый характер магнитных моментов электронов. Количественный анализ показал, что проекция магнитного момента электрона равна магнетону Бора:


.

Таким образом, для атомов серебра Штерн и Герлах получили, что проекция магнитного момента атома (электрона) на направление магнитного поля численно равна магнетону Бора.


.


Кроме того, в этих опытах было обнаружено новое явление. Валентный электрон в основном состоянии атома серебра имеет орбитальное квантовое число l = 0 (s-состояние). Но при l = 0 (проекция момента импульса на направление внешнего поля равна нулю). Возник вопрос, пространственное квантование какого момента импульса обнаружилось в этих опытах и проекция какого магнитного момента равна магнетону Бора.


В 1925 г. студенты Геттингенского университета Гаудсмит и Уленбек предположили существование собственного механического момента импульса у электрона (спина) и, соответственно, собственного магнитного момента электрона Pms.

Введение понятия спина сразу объяснило ряд затруднений, имевшихся к тому времени в квантовой механике. И в первую очередь – результатов опытов Штерна и Герлаха.

В современном представлении – спин, как заряд и масса, есть свойство электрона.

П. Дирак впоследствии показал, что существование спина вытекает из решения релятивистского волнового уравнения Шредингера.


Из общих выводов квантовой механики следует, что спин должен быть квантован: , где sспиновое квантовое число.


Аналогично, проекция спина на ось z (Lsz) (ось z совпадает с направлением внешнего магнитного поля) должна быть квантована и вектор может иметь (2s + 1) различных ориентаций в магнитном поле.


Из опытов Штерна и Герлаха следует, что таких ориентаций всего две: , а значит s = 1/2, т.е. спиновое квантовое число имеет только одно значение.

Для атомов первой группы, валентный электрон которых находится в s-состоянии (l = 0), момент импульса атома равен спину валентного электрона. Поэтому обнаруженное для таких атомов пространственное квантование момента импульса в магнитном поле является доказательством наличия у спина лишь двух ориентаций во внешнем поле. (Опыты с электронами в p-состоянии подтвердили этот вывод, хотя картина получилась более сложной) (желтая линия натрия – дуплет из-за наличия спина).

Численное значение спина электрона:


.

По аналогии с пространственным квантованием орбитального момента проекция спина квантуется (аналогично, как , то и ). Проекция спина на направление внешнего магнитного поля, являясь квантовой величиной, определяется выражением:


,

где – магнитное спиновое квантовое число, , т.е. может принимать только два значения, что и наблюдается в опыте Штерна и Герлаха.

Итак, проекция спинового механического момента импульса на направление внешнего магнитного поля может принимать два значения:

Так как мы всегда имеем дело с проекциями, то говоря, что спин имеет две ориентации, имеем в виду две проекции.

Проекция спинового магнитного момента электрона на направление внешнего магнитного поля:


.


Отношение – спиновое гиромагнитное отношение.

\Delta x\cdot\Delta p \geqslant \frac<\hbar></p>
<p>


Опыт Штерна — Герлаха — опыт немецких физиков Отто Штерна и Вальтера Герлаха, осуществлённый в 1921 году. Опыт подтвердил наличие у атомов спина (изначально в эксперименте участвовали атомы серебра, а потом и других металлов) и факт пространственного квантования направления их магнитных моментов.

Опыт состоял в следующем: пучок атомов серебра пропускали через сильно неоднородное магнитное поле, создаваемое мощным постоянным магнитом. При прохождении атомов через это поле, в силу обладания ими магнитных моментов, на них действовала зависящая от проекции спина на направление магнитного поля сила, отклонявшая летящие между магнитами атомы от их первоначального направления движения. Причём, если предположить, что магнитные моменты атомов ориентированы хаотично (непрерывно), то тогда на расположенной далее по направлению движения атомов пластинке должна была проявиться размытая полоса. Однако вместо этого на пластинке образовались две достаточно чёткие узкие полосы, что свидетельствовало в пользу того, что магнитные моменты атомов пучка принимали лишь два определённых значения, что подтверждало предположение квантово-механической теории о квантовании магнитного момента атомов.

Позднее с аналогичными результатами были проделаны опыты для пучков атомов других металлов, а также пучков протонов и электронов. Эти опыты доказали существование магнитного момента у рассмотренных частиц и показали их квантовую природу, явив собой доказательство постулатов квантовой теории.

Ссылки

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Опыт Штерна-Герлаха" в других словарях:

Опыт Штерна — Герлаха — У этого термина существуют и другие значения, см. опыт Штерна. Квантовая механика Принцип неопределённости … Википедия

опыт Штерна-Герлаха — Šterno ir Gerlacho eksperimentas statusas T sritis Standartizacija ir metrologija apibrėžtis Eksperimentas, įrodantis, kad atomo magnetinio momento projekcija į magnetinio lauko stiprio kryptį įgyja tik tam tikras kvantuotas vertes. atitikmenys:… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

опыт Штерна-Герлаха — Šterno ir Gerlacho eksperimentas statusas T sritis fizika atitikmenys: angl. Stern Gerlach experiment vok. Stern Gerlach Versuch, m rus. опыт Штерна Герлаха, m pranc. expérience de Stern Gerlach, f … Fizikos terminų žodynas

Опыт Штерна — У этого термина существуют и другие значения, см. опыт Штерна Герлаха. 1 платиновая проволока с нанесённым на неё слоем серебра; 2 щель, формирующая пучок атомов серебра; 3 пластинка, на которой осаждаются атомы серебра; П и П1 положения полосок… … Википедия

ШТЕРНА — ГЕРЛАХА ОПЫТ — показал, что проекция магнитного момента атома на направление магн. поля принимает дискр. значения (пространственно квантована). Поставлен в 1922 нем. физиками О. Штерном (О. Stern) и В. Герлахом (W. Gerlach) с целью проверки теор. ф лы… … Физическая энциклопедия

Штерна-Герлаха опыт — опыт, экспериментально подтвердивший, что атомы обладают магнитным моментом, проекция которого на направление внешнего магнитного поля принимает лишь определённые значения (пространственно квантована). Осуществлен в 1922 О. Штерном и… … Большая советская энциклопедия

ШТЕРНА -ГЕРЛАХА ОПЫТ — экспериментальное доказательство квантования проекции магн. момента атома на направление магн. поля. Ш. Г. о. подтвердил справедливость квантовой теории. Поставлен О. Штерном (О. Stern) и В. Гёрлахом (W. Gerlach) в 1922. Схема Ш. Г. о. приведена… … Физическая энциклопедия

ШТЕРНА — ГЕРЛАХА ОПЫТ — ШТЕРНА ГЕРЛАХА ОПЫТ, доказал наличие у атома магнитного момента, определенным образом ориентированного во внешнем магнитном поле. Узкий пучок атомов Ag, проходя через область неоднородного магнитного поля, разделялся на 2 пучка, что и подтвердило … Энциклопедический словарь

Штерна-Герлаха опыт — Штерна Герлаха опыт, доказал наличие у атома магнитного момента, определённым образом ориентированного во внешнем магнитном поле. Узкий пучок атомов Ag, проходя через область неоднородного магнитного поля, разделялся на 2 пучка, что и подтвердило … Энциклопедический словарь

Опыт Дэвиссона — Джермера — Квантовая механика Принцип неопределённости Введение . Математическая формулировка … Википедия

Можно экспериментально доказать, что атомы и элементарные частицы обладают магнитными спинами, которые квантуются.

Многие субатомные частицы обладают собственным угловым моментом (см. Закон сохранения момента импульса), который назвали спин. Обладающая электрическим зарядом и спином элементарная частица (например, электрон или протон) может, в таком случае, быть представлена в виде микроскопического циркулярного тока, который, в свою очередь, производит магнитный момент, связанный со спином, и заряженная частица ведет себя еще и как микроскопический магнит. Итак, и атомы, и элементарные частицы должны производить магнитные поля: первые — в силу циркуляции электронов на орбитах; вторые — в силу присущего им спина.

Разумно предположить, что северный и южный полюса этих атомных и субатомных магнитов могут быть ориентированы произвольным образом. Постулаты квантовой механики, однако, такого произвола не допускают. Подобно всем иным свойствам частиц в мире квантовой физики, направление магнитного спина квантуется: во внешнем электромагнитном поле он может принимать только направления, относящиеся к фиксированному набору. Отто Штерн и Вальтер Герлах в 1921 году как раз и провели опыт, позволивший экспериментально подтвердить как наличие у атомов спина, так и факт его пространственного квантования.

В основе их экспериментальной установки лежал мощный постоянный магнит, между близко расположенными полюсами которого образовывалось сильно неоднородное магнитное поле. Под воздействием такого поля частица, обладающая собственным магнитным моментом, обязана отклоняться в направлении, зависящем от ориентации ее магнитного спина.

Отто ШТЕРН

Немецкий, затем американский физик. Родился в Зохрау (современный г. Жоры, Польша). Окончил Университет в Бреслау (современный Вроцлав). В 1921 году переехал во Франкфурт, где познакомился в уроженцем этого города и сотрудником местного университета Вальтером Герлахом (Walter Gerlach, 1889–1979), вместе с которым они в том же году и провели прославивший их опыт. В качестве профессора физической химии Гамбургского университета Штерн изучал магнитные свойства элементарных частиц, за что был удостоен Нобелевской премии по физике в 1943 году. К тому времени Штерн уже 10 лет жил и работал в Технологическом институте Карнеги в Питтсбурге (США), ведущим сотрудником которого оставался до конца своих дней.

kyaw 07.06.2005 15:56 Ответить

Александр Кушелев 13.08.2005 16:20 Ответить

Мне хотелось бы провести модифицированный опыт Штерна-Герлаха, в котором атомный пучок отодвинут от плоскости симметрии магнитного поля на первом и втором магнитах.

Я ожидаю, что в этом случае дочерний пучок перестанет расщепляться, что продемонстрирует работоспособность классической физики в масштабах микромира.

Кто подскажет, в каком ВУЗе есть установка для повторени опыта Штрена-Герлаха?

Александр Кушелев Александр Кушелев 10.02.2006 21:22 Ответить

Кушелев: -В процессе обсуждения были созданы макроскопические магнитные модели разных изомеров атома серебра. Модельный эксперимент показал, что достаточно снизить скорость атомов в оригинальном опыте Штерна-Герлаха, и пучок перестанет расщепляться.

fatyalink Александр Кушелев 06.01.2010 03:26 Ответить

Ширина пучка не является строго единичной (один атом). Атом является магнитом или намагничивается при пролете и в пучке ориентация при пролете любого по степени однородности поля распределена хаотически и в среднем может быть даже равномерна. Следовательно, притяжение к разным полюсам тоже должно происходить равномерно. Отсюда и симметричное расположение компонент. В поле магнита большинство атомов будет выправлять ориентацию к ближайшему полюсу, то есть ориентироваться соответствующим полюсом к ближайшему полюсному наконечнику и будет к нему притягиваться. Современная феноменология постоянных (да и вообще) магнитов совершенно не учитывает краевого эффекта у полюсных наконечников. На острых кромках (периферия полюсного наконечника) силы притяжения или отталкивания более значительны, чем в центральной плоской поверхности полюсного наконечника. Кстати, такой же эффект имеется и в электростатике.
Есть две схемы проведения опыта.
В первой пучок пролетает между заостренным и плоским наконечниками магнита.
Острых кромок две: при входе и при выходе. В результате имеем две компоненты.
Если увеличить ширину пролета, автоматически увеличим и время пролета и уменьшим скорость. Тогда не получим ни одной пары.
Если вместо второго плоского полюса использовать острый наконечник, тоже не получим ни одной лишней компоненты. По этому-то так и стремились получить запрограммированную неоднородность поля. При одинаковой форме наконечников краевой эффект сказываться не будет. Опять же играть можно и силой магнита.

Под углом ко входящему потоку расположил такие наконечники (разинув пасть) и три компоненты с превеликим удовольствием. Поближе сдвинул, вообще ни одной.

резкая критика опыта Рудневым.

автор правильно подметил время взаимодействия атома с полем, и дело еще и в этой квадратной выемке с двумя горбами. Отсюда именно растут ноги.

Выводы: опыт решительно ничего не доказывает. Наоборот, является явной выдачей желаемого за действительное. Существование спина электрона таким образом под сомнением. И это еще мягко сказано.

a_b fatyalink 05.09.2012 11:21 Ответить

fatyalink a_b 14.08.2013 20:50 Ответить

это не беда руднева, это беда науки в целом, у электрона есть магнитный момент, а он во всех опытах к полюсам магнита не летит. беда и с позитроном. тоже не летит. а опыт - гамма квант--и пара, где оба к полюсам не летят, а просто в сторону уходят. и как оно с моментом быть? выходит, и его нет.

Читайте также: