Опыт мандельштама и папалекси кратко

Обновлено: 05.07.2024

Электрический ток в металлах — это упорядоченное (направленное) движение электронов под действием электрического поля.

Особенность металлических проводников состоит в том, что заряд электричества переносят свободные электроны. Они перемещаются в одном направлении под влиянием внешнего электрического поля, создавая электрический ток.

Природа электрической проводимости у металлов обусловлена наличием кристаллической решётки, в узлах которой расположены положительные ионы, а в пространстве между ними движутся свободные электроны. Свободные электроны не связаны с ядрами своих атомов. Отрицательный заряд всех свободных электронов по модулю равен положительному заряду всех ионов решетки, таким образом проводник считается электрически нейтральным.

Кто открыл, опыт Мандельштама и Папалекси

Первые опыты по изучению электрической проводимости металлов провел немецкий ученый Карл Виктор Эдуард Рикке в 1901 году. Суть эксперимента сводилась к следующему. Три отполированных цилиндра плотно прижали друг к другу, расположив в таком порядке: медь–алюминий–медь. В течение года через них пропускали ток в одном и том же направлении.

Суммарный заряд, прошедший через этот проводник за все время составил более 3,5 МКл. После завершения опыта цилиндры взвесили и выяснилось, что их массы не изменились. Это исследование стало доказательством того, что прохождение тока в металлах не связано с химическими процессами и переносом вещества, а заряд создается частицами, которые имеются у всех металлов, т.е. электронами.

Опыты по изучению электропроводимости в 1916 году продолжили русские ученые Л. И. Мандельштам и Н. Д. Папалекси. Они задались целью узнать, имеется ли масса у электрона. Если электрон обладает массой, то должен подчиняться законам механики, в том числе, закону инерции. К примеру, если движущийся проводник резко остановить, то электроны еще какое-то время будут двигаться в том же направлении по инерции.

Была собрана следующая установка: катушка на стержне со скользящими контактами, которые присоединены к гальванометру. Катушка вращалась с большой скоростью, затем резко останавливалась, при этом фиксировали отклонение стрелки гальванометра. В ходе эксперимента ученые установили, что электрон обладает массой. Но измерить эту массу они не смогли, опыт был только качественным.

Спустя три года физики Р. Толмен и Б. Стюарт предложили свой вариант подобного эксперимента, что позволило произвести количественные измерения. Им удалось вычислить массу электрона. Для этого они измерили заряд на выходах катушки, образующийся при торможении. После внезапной остановки катушки в цепи возникал импульс тока. Направление тока указывало на то, что он вызван движением отрицательных зарядов.

С помощью баллистического гальванометра ученые измерили суммарный заряд, проходящий по цепи, и вычислили отношение заряда одной частицы к ее массе — q / m . Оно оказалось близким по значению к отношению e / m для электрона = 1 , 8 × 1011 К л / к г , которое на тот момент уже было известно.

Какие частицы его создают, скорость распространения тока

Хорошая электропроводность металлов обусловлена высокой концентрацией свободных электронов. Каждый атом металла, находящийся в узле кристаллической решетки, имеет один или несколько валентных (свободных) электронов. Валентные электроны находятся на внешней электронной оболочке и слабо связаны с ядром, поэтому атом легко с ними расстается.

Они совершают тепловое движение в различных направлениях по всему кристаллу. Положительные ионы остаются в узлах кристаллической решетки, а пространство между ними заполняется свободными электронами или так называемым электронным газом.

Если металлический проводник присоединить к источнику тока и замкнуть цепь, валентные электроны продолжают совершать хаотическое движение, но под действием возникшего внешнего электрического поля они также начинают перемещаться в одном направлении. Это упорядоченное течение электронного газа, совмещенное с тепловым движением электронов, и есть электрический ток в металле.

Скорость упорядоченного движения (дрейфовая скорость) любого электрона в проводнике не превышает 1 мм/с.

Скорость распространения электрического тока близка к скорости света в вакууме (300 000 км/с).

Одновременно с распространением электрического поля все электроны начинают двигаться в одном направлении по всей длине проводника.

Закон Ома и Джоуля-Ленца, формулы

Классическая электронная теория металлов берет за основу, что движение электронов подчиняется законам механики Ньютона. При этом не учитывают взаимодействие электронов между собой. Предполагается также, что при каждом столкновении с положительными ионами электрон передает решетке всю полученную в электрическом поле энергию, а затем начинает движение с нулевой дрейфовой скоростью.

Несмотря на эти особенности, законы электрического тока в металлических проводниках — Ома и Джоуля–Ленца — находятся в рамках классической электронной теорией.

Закон Ома

В 1827 году немецкий физик Георг Ом установил, что связь таких физических характеристик, как сила тока, напряжение и сопротивление определяется следующей зависимостью: для определенного участка цепи сила тока I прямо пропорциональна напряжению U и обратно пропорциональна электрическому сопротивлению R.

Закон Джоуля–Ленца

Так как проводник нагревается при протекании по нему электрического тока, то выделяется теплота. В 1841–1842 годах сразу два ученых независимо друг от друга Дж. Джоуль (Англия) и Э. Х. Ленц (Россия) экспериментально доказали, что количество выделяющейся теплоты Q прямо пропорционально квадрату тока I2, сопротивлению проводника R и времени t, в течение которого ток протекал по проводнику.

Q=I2Rt.

Проводник нагревается за счет работы сил электрического поля над носителями заряда. Эта работа A также равна Q: A=Q=I2Rt.

Применив закон Ома для участка однородной цепи и определение силы тока, можно получить следующие варианты формулы:


Электрическим током в физике называется согласованное (упорядоченное, однонаправленное) перемещение электрически заряженных элементарных частиц (электронов, протонов, ионов) или заряженных макроскопических частиц (например, капель дождя во время грозы). В веществах, находящихся в различных агрегатных состояниях (твердое тело, жидкость, газ) ток может формироваться из разного набора заряженных частиц. Рассмотрим механизм образования электрического тока в металлах.

Свободные электроны в металлах

Вещества, относящиеся к металлам, могут находиться как в твердом, так и в жидком состоянии (ртуть, галлий, цезий и др.). При этом все они являются проводниками электрического тока. Твердые вещества имеют структуру жесткой кристаллической решетки, в узлах которых “сидят” положительно заряженные ионы, совершающие небольшие колебания относительно точки равновесия. В объеме кристалла всегда присутствует большое количество свободных электронов, которые вырвались с орбит атомов в результате механических соударений или воздействия излучений.

Механизм электрического тока в металлах

Рис. 1. Механизм электрического тока в металлах.

Это электронное “облако” движется беспорядочно, хаотично до тех пор, пока к металлу не будет приложено электрическое поле. Электрическое поле E, созданное внешним источником (батареей, аккумулятором), действует на заряд q с силой F:

Под действием этой силы электроны приобретают ускорение в одном направлении и, таким образом, появляется электрический ток в цепи.

Многочисленные наблюдения показали, что при прохождении электрического тока масса проводников и их химический состав не изменяются. Отсюда следует вывод, что ионы металлов, которые составляют основную массу вещества, не принимают участия в переносе электрического заряда.

Опыт Мандельштама и Папалекси

Электронную природу тока в металле первыми экспериментально доказали российские физики Мандельштам и Папалекси в 1913 г. Для того, чтобы выяснить, какие частицы создают электрический ток в металлах, они — без подключения внешнего источника — регистрировали ток в катушке из металлического провода, которую сначала сильно раскручивали вокруг собственной оси, а затем резко останавливали. Поскольку у электрона есть масса, то он должен подчиняться закону инерции. Поэтому в момент остановки атомы решетки останутся на месте, а свободные электроны по инерции, какое-то время, продолжат движение в прежнем направлении. То есть в цепи должен появиться электрический ток. Эксперименты подтвердил это предположение — после остановки катушки исследователи регистрировали бросок тока в цепи.

Опыт Мандельштама и Папалекси

Рис. 2. Опыт Мандельштама и Папалекси.

Этот эксперимент в 1916 г. повторили американцы Стюарт и Толмен. Им удалось повысить точность измерений и получить отношение заряда электрона eэ к значению массы электрона mэ:

Этот фундаментальный результат совпал с полученными данными из других экспериментов, поставленных на основе измерения других параметров. Впервые эту величину в 1897 г. измерил англичанин Джозеф Томсон по отклонению пучка электронов в зависимости от напряженности электрического поля.

Скорость распространения электрического тока

Скорость распространения электрического поля в металле близка к скорости света в вакууме, которая равна 300000 км/с. Но это не значит, что электроны внутри вещества двигаются с такой же скоростью. Для проводника с площадью поперечного сечения S = 1 мм 2 при силе тока I = 1 A скорость упорядоченного движения электронов равна v = 6*10 -5 м/с. То есть за одну секунду электроны в проводнике за счет упорядоченного движения проходят всего 0,06 мм.

Такие малые значения скоростей движения электронов в проводниках не приводят к запаздыванию включения электрических ламп, включения бытовых приборов и т.д., так как при подаче напряжения вдоль проводов со скоростью света распространяется электрическое поле. Эта скорость настолько велика, что позволяет приводить в движение свободные электроны практически мгновенно во всех проводниках электрической цепи.

Применение свойств электрического тока в металлах

Физические свойства электрического тока используются в различных областях жизнедеятельности:

  • Способность электрического тока нагревать проводники используется для изготовления нагревательных бытовых и промышленных приборов;
  • Вокруг провода с электрическим током возникает магнитное поле, что позволило создать электродвигатели, без которых сегодня невозможно обойтись;
  • Передача электроэнергии на различные расстояния осуществляется по проводам линий электропередачи (ЛЭП), по которым течет электрический ток.

Что мы узнали?

Итак, мы узнали, что электрический ток в металлах создается упорядоченным движением свободных электронов. Экспериментальное доказательство того, что электрический ток в металлах создают электроны, впервые получили российские физики Мандельштам и Папалекси. Физические свойства электрического тока в металлах позволили создать большое количество бытовых и промышленных устройств.

Инерция электрона: эксперименты Толмена–Стюарта и Мандельштама–Папалекси

Эксперименты с целью поиска ответа на вопрос, обладают ли электроны инертной массой, проводились учеными в самом в начале 20 века. Данные опыты помогли научному сообществу того времени утвердиться в принятии факта, что электрический ток в металлах формируется именно отрицательно заряженными частицами - электронами, а не положительно заряженными ионами, как можно было бы предполагать.

Первый качественный эксперимент, проиллюстрировавший, что, формирующие электрический ток в металлах, заряженные частицы массой точно обладают, провели ученые (тогда еще Российской империи) Леонид Исаакович Мандельштам и Николай Дмитриевич Папалекси, это состоялось в 1913 году.

Три года спустя, в 1916 году, более точный эксперимент провели американские физики Ричард Толмен и Томас Стюарт, которые в своей работе не только показали, что масса у электрона в металле есть, но и достаточно точно измерили ее косвенным методом при помощи гальванометра.

Чтобы понять принцип этих ранних экспериментов, представьте себе трамвай, на котором с утра пораньше на работу едут пассажиры. Вот разогнался трамвай как следует, а перед ним прямо на пути выбегает рассеянный пешеход.

Водитель трамвая, желая спасти бедолаге жизнь, резко жмет на тормоза — пассажиров в салоне мгновенно всей толпой сносит вперед. А сносит их силой инерции, потому что каждый пассажир обладает массой. И тех пассажиров, кто стоял ближе всех к кабине трамвая, больно ударит о стенку.

Приблизительно аналогичным образом мыслили и Мандельштам с Папалекси. Они взяли катушку из проволоки, оснастили скользящими контактами ее изолированные от корпуса выводы, а к скользящим контактам подключили динамик (наушник). Раскрутили катушку вправо — резко остановили — в динамике раздался щелчок.

Раскрутили влево — резко затормозили — в динамике снова щелчок. Вывод: в момент остановки катушки - по ее проводу проходит импульс тока, появляющийся из-за того, что электроны в момент торможения катушки оказываются отброшены к краю провода, как пассажиры в трамвае.

А сила инерции здесь играет роль сторонней силы, которая и создает то, что может быть измерено как ЭДС. Это заключение, конечно, не дало исследователям возможности узнать знак носителей заряда и как-то однозначно идентифицировать их, однако эксперимент Мандельштама и Папалекси отчетливо показал, что ток в металлах держит свой путь через кристаллическую решетку, а значит он связан с реально существующими внутри него свободными носителями заряда.

Толмен и Стюарт решили пойти немного дальше. Они тоже намотали катушку, только длину провода отмерили точно равной 500 метров, и стали ее раскручивать. Раскручивали до достижения линейной скорости точно 500 м/с, чтобы знать соотношение между полученной ЭДС и ускорением.

К скользящим выводам катушки был присоединен уже не динамик, а более информативный прибор - гальванометр. По завершении эксперимента исследователи проинтегрировали стороннюю силу по всей длине проводника катушки, и получили выражение для ЭДС, создаваемой сторонней силой инерции при изменении скорости до нуля.

Величину полного заряда, который пробежал по проводнику, можно было вычислить по закону Ома, приняв в расчет сопротивление провода катушки. Итак, зная скорость движения провода до торможения, длину провода, его сопротивление, направление вращения, время торможения, величину и знак ЭДС, можно найти знак и величину удельного заряда, что и сделали Стюарт и Толмен.

Сегодня уже никому не покажется странным, что измеренное Стюартом и Толменом отношение заряда электрона к его массе совпало с полученным почти 20 лет назад, в 1897 году Дж.Дж. Томсоном, удельным зарядом частиц, из которых состояли катодные лучи. Мы то теперь наверняка знаем, что и катодные лучи, и ток в металлах, образованы из одних и тех же отрицательно заряженных элементарных частиц — электронов.

Если электрон обладает массой, то его масса, или способность двигаться по инерции, должна проявляться повсюду, а не только в электрическом поле. Русские ученые Л. И. Мандельштам (1879—1949; основатель школы радиофизиков) и Н. Д. Папалекси (1880 — 1947; крупнейший советский физик, академик, председатель Всесоюзного научного совета по радиофизике и радиотехнике при АН СССР) в 1913 году поставили оригинальный опыт. Взяли катушку с проводом и стали крутить ее в разные стороны.

Раскрутят, к примеру, по часовой стрелке, потом резко остановят и — назад.

Рассуждали они примерно так: если электроны и вправду обладают массой, то, когда катушка внезапно останавливается, электроны еще некоторое время должны двигаться по инерции. Движение электронов по проводу — электрический ток. Как задумали, так и получилось. Подсоединили к концам провода телефон и услышали звук. Раз в телефоне слышен звук, следовательно, через него ток протекает.

Опыт Мандельштама и Папалекси в 1916 году повторили американские ученые Толмен и Стюарт. Они тоже крутили катушку, но вместо телефона к ее концам подсоединили прибор для измерения заряда. Им удалось не только доказать существование у электрона массы, но и измерить ее. Данные Толмена и Стюарта потом много раз проверялись и уточнялись другими учеными, и теперь вы знаете, что масса электрона равна 9,109 Ю-31 килограмма.

Таким образом, краткое время после остановки проводника свободные заряды в нем должны двигаться в одну сторону. Но движение зарядов в определенную сторону есть электрический ток. Следовательно, если наши рассуждения справедливы, то после внезапной остановки проводника надо ожидать появления в нем кратковременного тока. Направление этого тока позволит судить о знаке. Заряда. Если же в этом направлении будут двигаться отрицательные заряды, то должен наблюдаться ток, имеющий направление справа налево и наоборот. Возникающий ток зависит от зарядов и способности их носителей более или менее долго сохранять по инерции свое движение, несмотря на помехи, т. е. от их массы. Таким образом, этот опыт не только позволяет проверить предположение о существовании в металле свободных зарядов, но и определить сами заряды, их знак и массу их носителей (точнее, отношение заряда к массе elm).

В практическом осуществлении опыта оказалось более удобным использовать не поступательное, а вращательное движение проводника. Схема такого опыта приведена на рис.2.


Рисунок 2

Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы.

Основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований. Прохождение электрического тока через электролит сопровождается выделением веществ на электродах. Это явление получило название электролиза(рис.9.10).


Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду). Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией.

Закон электролиза был экспериментально установлен английским физиком М. Фарадеем в 1833 году.

Первый закон Фарадея определяет количества первичных продуктов, выделяющихся на электродах при электролизе: масса m вещества, выделившегося на электроде, прямо пропорциональна заряду q, прошедшему через электролит:

m = kq = kIt,

где kэлектрохимический эквивалент вещества:


F = eNA = 96485 Кл / моль. – постоянная Фарадея.


Второй закон Фарадея электрохимические эквиваленты различных веществ относятся их химические эквиваленты :


.

Объединенный закон Фарадея для электролиза:


.

Электролитические процессы классифицируются следующим образом:

получение неорганических веществ (водорода, кислорода, хлора, щелочей и т.д.);

получение металлов (литий, натрий, калий, бериллий, магний, цинк, алюминий, медь и т.д.);

очистка металлов (медь, серебро,…);

получение металлических сплавов;

получение гальванических покрытий;

обработка поверхностей металлов (азотирование, борирование, электрополировка, очистка);

получение органических веществ;

электродиализ и обессоливание воды;

нанесение пленок при помощи электрофореза.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Читайте также: