Опыт иоффе и милликена кратко

Обновлено: 04.07.2024


Электрический заряд — это физическая величина, характеризующая возможности тел быть источниками электромагнитного поля и участвовать в электромагнитных взаимодействиях (притяжениях и отталкиваниях). Закономерности взаимодействия атомов и молекул удалось понять и объяснить на основе представления о том, что в природе действительно существуют электрические заряды. Экспериментально было доказано, что минимальным отрицательным электрическим зарядом обладает электрон и заряд электрона не делится на меньшие части.

Как развивалось знание о существовании электрического заряда

К понятию электрического заряда исследователи пришли не сразу. Понадобилось несколько столетий, чтобы дать четкое определение этой краеугольной физической величины:

  • Слово электрон (от греческого слова “янтарь”) появилось еще в Древней Греции, когда была замечена таинственная способность янтаря притягивать легкие предметы после того, как натирали куском шерсти;
  • Англичанин Уильям Гилберт в конце XVI века назвал предметы, получившие способность притягивать небольшие предметы, наэлектризованными;
  • Французский физик Шарль Дюфе в 1729 г. открыл существование двух типов зарядов. Один образовывался от трения стекла о шелк, а другой — смолы о шерсть. Поэтому он назвал их “смоляным” и “стеклянным”;
  • Американский ученый Бенджамин Франклин первым в 1747 г. ввел понятие об отрицательном “—” и положительном зарядах “+”;
  • Французский физик Шарль Кулон в 1785 г. открыл закон, согласно которому сила взаимодействия F двух точечных неподвижных заряженных тел прямо пропорциональна произведению абсолютных значений зарядов q1 и q2 и обратно пропорциональна квадрату расстояния r между телами:

Понимание делимости электрического заряда пришло значительно позже.

Вместо коэффициента k в законе Кулона чаще используется так называемая электрическая постоянная ε0 :

Минимальный заряд

Принципиальную возможность деления электрического заряда ученые поняли и даже научились это делать до некоторого предела. Эта задача была решена после изобретения электроскопа англичанином Уильямом Гилбертом в 1600 г. Заряд от стеклянного или смоляного предмета переносился на первый электроскоп. Затем брался второй, точно такой же электроскоп, и на него с помощью проводящего стержня переносилась половина изначального заряда. После этого один из электроскопов полностью разряжался, например, с помощью руки. Далее процедура с зарядкой от электроскопа с остатками заряда повторялась снова и снова.

Эксперимент с двумя электроскопами по делению электрического заряда:

Рис. 1. Эксперимент с двумя электроскопами по делению электрического заряда

После очередного деления точности электроскопа переставало хватать для ответа на вопрос: до какого значения дальше можно уменьшать заряд, какой заряд считать минимальным? Есть ли предел деления заряда? Появилось предположение, что если существуют частицы, имеющие электрический заряд, то должен быть и предел деления электрического заряда.

Оказалось, что действительно существует такой минимальный заряд, неподдающийся дальнейшему делению. Практически одновременно в 1910-1911 г.г. это экспериментально доказали американский ученый Роберт Милликен и российский физик Абрам Иоффе.

Опыт Милликена-Иоффе

Исследователи электризовали очень мелкие металлические крупинки цинка (Иоффе) или капельки масла (Милликикен). Эти мелкие частицы помещались в электрическое поле между двух заряженных пластин. Под действием силы тяжести частицы стремились упасть на нижнюю пластину. Но изменяя величину электрического поля, ученые могли регулировать скорость их падения или вообще удерживать в равновесии, компенсируя силу тяжести электрическим воздействием.

Заряд пылинок и капель варьировали (изменяли) с помощью подсветки ультрафиолетовым светом. Результаты наблюдений и измерений физических величин показали, что заряды капель и пылинок всегда изменялись скачкообразно, но всегда в целое число раз (в 2, 3, 4, 5 и т.д. раз) больше некоторого минимального заряда.

Результаты удалось объяснить только следующим образом: пылинке (капле) каждый раз сообщается или отбирается только наименьший заряд или целое число таких зарядов.

Этот заряд далее становится неделимым. Частица с наименьшим электрическим зарядом была названа электроном. Минимальный (элементарный) электрический заряд qe равен:

Схема опыта Милликена-Иоффе:

Рис. 2. Схема опыта Милликена-Иоффе

Электрический заряд — это одно из краеугольных свойств электрона. Заряд неотделим от электрона.

В 1928 г. французский физик Поль Дирак теоретически предсказал возможность существования античастицы, которую он назвал позитроном. Эта частица должна обладать точно такими же параметрами, которые имеет электрон, кроме одного — у нее положительный электрический заряд. В 1932 г. эту частицу экспериментально обнаружил американский физик Андерсон при изучении космического излучения. В исследовательских целях позитроны получают, сталкивая высокоэнергетичные частицы в ускорителях (синхрофазотронах, коллайдерах).

Ускоритель частиц, коллайдер:

Рис. 3. Ускоритель частиц, коллайдер

Что мы узнали?

Итак, из этой статьи мы узнали кратко о делимости электрического заряда. Минимальным пределом делимости заряда является заряд электрона. Все остальные заряды, существующие в природе, кратны заряду электрона.

Одну из элементарных частиц, способную переносить энергию, называют электроном. Делимость его электрического заряда достигает определённой величины, значение которой соответствует носителю. Это число, равное 6,02 ∗ 10 −19 Кл, было получено эмпирическим путём после многочисленных экспериментов учёных. Значение меньше неизвестно, а все остальные заряды, открытые во время экспериментов, оказались кратны ему.

Делимость электрического заряда электрон

Общие сведения

Учёный Фалес Милетский

С его помощью физические тела могут действовать друг на друга, при этом сила этого взаимодействия будет в 10 42 раз сильнее притяжения Земли. Во время опытов физики и философы могли наблюдать, что влияние было двух видов:

Это позволило предположить, что заряд обладает знаком. Причём тела с одинаковым зарядом отталкиваются, а с разным притягиваются. Например, эбонитовая палочка (минус) со стеклянной (плюс) будут стремиться соединиться друг с другом.

Таким образом, было установлено, что электрический заряд — фундаментальное свойство природы, присутствие которого у предмета вызывает электрическое взаимодействие с другими электризованными телами.

В XIX веке, когда наиболее интенсивно изучалось электричество, единого мнения о механизме влияния зарядов не существовало. Было 2 теории: дальнодействия и близкодействия. Первая оказалась ошибочная. Экспериментально было подтверждено, что любой заряд распространяет силу — электрическое поле. Её значение хоть и большое, но всегда конечное. Основная же идея была предложена Фарадеем. Согласно ему, любой из зарядов является источником материи. Электрическая сила определяется характеристиками поля там, где находится заряд.

Модель Резерфорда

Строение твёрдого тела было открыто Резерфордом. Кратко оно заключается в следующем: ключевым элементом тела является атом. Вокруг него находятся заряды. Притяжение их к центру отсутствует, так как частицы вращаются на орбиталях. Они могут быть положительными, отрицательными, нейтральными. Эти микрочастицы и являются носителями зарядов, то есть сама по себе энергия существовать не может.

Так, электрон имеет заряд отрицательного знака, а протоны — положительного. Чтобы можно было охарактеризовать количественно величину энергии, вели обозначение q. В качестве единиц измерения выбрали Кулон, в честь имени французского физика.

Опыт Милликена и Иоффе

Теоретические предположения о существовании элементарного заряда долго не могли подтвердить экспериментально. Этой темой занимались одновременно и независимо друг от друга 2 учёных. Определение, какой заряд имеет электрон, происходило в период 1909 — 1911 гг. Именно в это время обобщались теоретические догадки, связанные с электричеством.

Российский физик Абрам Фёдорович Иоффе

Российский физик Абрам Фёдорович Иоффе взял 2 металлические пластины. В верхней им было сделано отверстие. Через него в пространство, ограниченное металлом, физик запускал пылинки цинка. С помощью источников напряжения пластины (плоский конденсатор) получали заряд. Верхняя содержала положительные носители, а нижняя отрицательные. Иоффе рассуждал, что в том случае, когда пылинка не несёт заряд, она просто падает под действие силы тяжести, но при этом её движению препятствует сила сопротивления воздуха. Если же пылинку зарядить, она вступит во взаимодействие с пластинами.

Физик начал создавать электрическое поле, причём для зарядки пылинок использовал ультрафиолетовое излучение (УФ). В то время для её генерации применяли электрическую дугу. Оказалось, что под действием УФ из цинка вылетали электроны. Так как выбивался отрицательный заряд, пылинка становилась положительной, а скорость её падения увеличивалась или уменьшалась. Иоффе смог наблюдать это явление, меняя полярность и определённые величины электрического поля.

Учёный, используя микроскоп, смог определить, что заряд изменялся на строго определённое значение — абсолютное. При этом он смог выявить кратность изменения элементарного заряда, но его величину рассчитать физику не удалось. Связано это было с тем, что частицы цинка имели неправильную форму, а значит, силу сопротивления воздуха найти было невозможно.

В 1910 году исследователь из Америки Роберт Милликен опубликовал итоги своего опыта. Он поставил очень похожий эксперимент.

Главным отличием было, что вместо цинка американец использовал мельчайшие капли масла. Из-за того, что для круглого тела, падающего в воздухе, достаточно просто можно вычислить сопротивление, ему удалось подсчитать минимально возможный заряд.

Измеряя скорость капли и зная её диаметр, Милликен определил сопротивление воздуха, а по плотности масла смог вычислить силу тяжести. Взяв во внимание характеристики электрического поля, Роберт нашёл величину заряда. Она оказалась равной 1,6 * 10 -19 Кл. Называться эта константа стала элементарной.

Делимость заряда

Если атом в целом электрически нейтрален, это означает, что положительная частица внутри обязательно будет равна целому числу элементарных носителей. Другими словами, электрический заряд можно делить на число кратное 1,6 * 10 -19 кулон.

Электрический заряд

Установленный закон очень важен, так как с его помощью стало возможным определить удельное значение минимальной частицы. Её изучают при исследовании движения носителей в электромагнитном поле. По сути, это понятие пропорционально заряду электрона и обратно пропорционально его массе. Для элементарного электрона удельная величина составляет: e / m = 1,76 * 10 11 Кл / кг.

Это очень маленькое число, поэтому в повседневной жизни заметить, что энергия электричества дискретна и меняется скачкообразно, невозможно. Кажется, что заряд изменяется плавно, как можно увидеть на опыте, часто показываемом в 8 классе средней школы. Для его проведения понадобится:

  • электроскоп;
  • стеклянная палочка;
  • проводник.

Поставить 2 электроскопа и соединить их проводником

На ровную поверхность, например, пол, нужно поставить 2 электроскопа и соединить их проводником. Стрелки приборов будут показывать 0. Это значит, что никакой заряженности нет. Теперь наэлектризованную стеклянную палочку следует просто поднести к одному из приборов. Обе стрелки отклонятся. Если проводник резко забрать, можно увидеть, что указатели практически не изменят положение.

Такое поведение говорит, что если палочку зарядить, через проводник с одного прибора электроны перейдут на другое устройство, к которому поднесено заряженное тело. Причём суммарное значение энергии не изменится и будет равняться 0. Значит, один электрометр будет заряжен положительно, а другой отрицательно. Это предположение легко подтвердить, если снова замкнуть приборы. Их стрелки укажут на 0, так как произойдёт снова деление зарядов.

Открытие дискретности повлияло на создание полупроводниковой теории. Учёные смогли понять закономерности p-n переходов, определить уровни барьеров, изучить увеличение энергии основного состояния системы.

Понятие об электрон-вольте

Пусть имеется электрическое поле, силовые линии которого направлены вправо. В неё можно поместить частицу, на которую начнёт действовать сила. В зависимости от знака заряда, линии действия поля будут совпадать с ней или иметь противоположное направление. Когда частица не имеет связей, то есть свободная, она начнёт ускоряться. Иными словами, получит кинетическую энергию, которая со временем будет возрастать.

Теорема о кинетической энергии

Теорема о кинетической энергии гласит, что её изменение равняется суммарной работе всех сил, действующих на тело: ΔWk = A. Поскольку действует только электрополе, воздействие будет электрическим. Значит: Δ Wk = (f1 — f2) q. Так как в начальный момент частица была неподвижна, энергия была равна 0, значит, изменение которое приобрёл носитель, является ускоренным. Её называют ускоряющей разностью потенциалов и определяют как f1 — f2.

Например, если q = 1 Кл, кинетическая энергия составит 1 джоуль. Пусть заряд будет равен значению электрона. Тогда энергия, которую приобретёт частица, будет составлять один электрон-вольт: W = 1 эВ. Таким образом, один электрон-вольт — это энергия, которую приобретает частица с элементарным зарядом, проходя ускоряющую разность потенциалов в один вольт.

Количественно это значение можно записать так: 1эВ = 1,6 * 10 -19 Кл * 1 В = 1,6 * 10 -19 Дж. Существуют и производные единицы, которыми можно характеризовать заряд:

  • 1 кэВ = 10 3 эВ = 1,6 * 10 -16 Дж;
  • 1 МэВ = 10 6 эВ = 1,6 * 10 -13 Дж;
  • 1 ГэВ = 10 7 эВ = 1,6 * 10 -10 Дж;
  • 1 ТэВ = 10 12 эВ = 1,6 * 10 -7 Дж.

Допустим, W = 7 ЕэВ, а скорость движения частицы будет 1 м/с. Это реальные цифры, которыми может обладать элементарная, разогнанная в коллайдере частица, имеющая минимальный заряд. Тогда её массу можно определить из формулы для расчёта энергии движения: W = mV 2 / 2. Отсюда, выразив искомое, можно определить её значение, подставив известные данные: m = 2 * W / V 2 = 2 * 7 * 10 12 * 1,6 * 10 -19 Дж * с 2 / 1м 2 = 22,4 * 10 -7 кг.

Получается, что электрон обладает такой же энергией, как и макроскопическое тело массой 2 мг, двигаясь со скоростью один метр в секунду. Полученные данные соответствуют весу комара. А вывод можно сделать следующий: микроскопическая частица, являющаяся составной частью ядра, может быть разогнана до такой скорости, когда энергия электрона будет соответствовать макроскопическому телу.

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Описание презентации по отдельным слайдам:

Опыт иоффе и милликена К началу XX в. существование электронов было установле.

Опыт иоффе и милликена К началу XX в. существование электронов было установлено в целом ряде независимых экспериментов. Но, несмотря на огромный экспериментальный материал, накопленный различными научными школами, электрон оставался, строго говоря, гипотетической частицей. Причина в том, что не было ни одного опыта, в котором участвовали бы одиночные электроны.

Опыт иоффе и милликена Для ответа на этот вопрос в 1910-1911 годах американск.

Опыт иоффе и милликена Для ответа на этот вопрос в 1910-1911 годах американский учёный Роберт Эндрюс Милликен и советский физик Абрам Фёдорович Иоффе независимо друг от друга проделали точные эксперименты, в которых было возможно вести наблюдние за одиночными электронами.



Опыт иоффе и милликена В их опытах в закрытом сосуде 1, воздух из которого от.

Опыт иоффе и милликена В их опытах в закрытом сосуде 1, воздух из которого откачан насосом до высокого вакуума, находились две горизонтально расположенные металлические пластины 2. Между ними через трубку 3 помещали облако заряженных металлических пылинок или капелек масла. За ними наблюдали в микроскоп 4 со специальной шкалой, позволявший наблюдать за их оседанием (падением) вниз. Предположим, что пылинки или капельки до помещения между пластинами были заряжены отрицательно. Поэтому их оседание (падение) можно остановить, если нижнюю пластину зарядить отрицательно, а верхнюю – положительно. Так и поступали, добиваясь равновесия пылинки (капельки), за которой наблюдали в микроскоп Затем заряд пылинок (капелек) уменьшали, действуя на них ультрафиолетовым или рентгеновским излучением. Пылинки (капельки) начинали падать, так как уменьшалась поддерживающая электрическая сила.

опыт иоффе и милликена Сообщая металлическим пластинам дополнительный заряд и.

Краткое описание документа:

Презентация по физике 8 класс. Можно использовать при объяснении нового материала . Тема урока " Делимость электрического заряда. Электрон". В презентации дается описание опыта проведенного Иоффе и Милликеном, выводы полученные при проведении эксперимента. Есть краткая информация из биографии ученых.

На рисунке 1 изображена схема установки, использованной в опыте А. Ф. Иоффе. В закрытом сосуде, воздух из которого откачан до высокого вакуума, находились две металлические пластины П, расположенные горизонтально. Из камеры А через отверстие О в пространство между пластинами попала ли мелкие заряженные пылинки цинка. Эти пылинки наблюдали в микроскоп.


Предположим, что пылинка заряжена отрицательно. Под действием силы тяжести она начинает падать вниз. Но ее падение можно задержать, если нижнюю пластину зарядить отрицательным зарядом, а верхнюю — положительным. В электростатическом поле между пластинами на пылинку станет действовать сила \(~\vec F_\), которая пропорциональна заряду пылинки. Если mg = Fel, то пылинка будет находиться в равновесии сколь угодно долго. Затем отрицательный заряд пылинки уменьшали, действуя на нее ультрафиолетовым светом. Пылинка начинала падать, так как сила \(~\vec F_\), действовавшая на нее, уменьшалась. Сообщая пластинам дополнительный заряд и этим усиливая электрическое поле между пластинами, пылинку снова останавливали. Так поступали несколько раз.

Опыты показали, что заряд пылинки изменялся всегда скачкообразно, кратно заряду электрона. Из этого опыта А. Ф. Иоффе сделал следующий вывод: заряд пылинки всегда выражается целыми кратными значениями элементарного заряда е. Меньших "порций" электрического заряда, способных переходить от одного тела к другому, в природе нет. Но заряд пылинки уходит вместе с частицей вещества. Следовательно, в природе существует такая частица вещества, которая имеет самый маленький заряд, далее уже неделимый. Эту частицу назвали электроном.

Значение заряда электрона впервые определил американский физик Р. Милликен. В своих опытах он пользовался мелкими капельками масла, наблюдая за их движением в электростатическом поле (рис. 2). В этих опытах измерялась скорость движения капель масла в однородном электростатическом поле между двумя металлическими пластинками. Капля масла, не имеющая электрического заряда из-за сопротивления воздуха и выталкивающей силы, падает с некоторой постоянной скоростью, так как \(~m \vec g + \vec F_A + \vec F_c = 0\).


Если на своем пути капля встречается с ионом и приобретает электрический заряд q, то на нее, кроме силы тяжести \(~m \vec g\), \(~\vec F_c\) и \(~\vec F_A\), действует со стороны электростатического поля сила \(~\vec F_\). Тогда при установившемся движении \(~m \vec g + \vec F_A + \vec F_c + \vec F_ = 0\). Измеряя скорость капли, Милликен смог определить ее заряд.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 210-211.

Читайте также: