Опыт герца фотоэффект кратко

Обновлено: 04.05.2024

Явление фотоэффекта было обнаружено еще в 1887 году Генрихом Герцем(он обнаружил , что при подаче напряжения на два шара, между ними проскакивала искра, при освещении этого участка ультрафиолетом, искра проскакивала легче ).

Но он не придал открытому эффекту большого значения, так как был увлечен исследованием электромагнитного излучения в тот момент. Спустя год независимо от Герца этот эффект открыл и исследовал наш соотечественник Александр Григорьевич Столетов. Основная идея состоит в том, что энергия света падающего на поверхность вещества, высвобождает связанные электроны, тем самым увеличивая количество свободных носителей - в данном случае электронов.

Фотоэффект разделяют на два типа: внешний и внутренний.

Внешним фотоэффектом называют явление - высвобождения электронов и выход их за пределы освещаемой поверхности, то есть тела.

Внутренним фотоэффект называют явление - высвобождения электронов на энергетическом уровне и переход электронов из валентной зоны в зону проводимости.

Выделяют три закона фотоэффекта:

Первый закон фотоэффекта. Число электронов, выбиваемых из катода за секунду, пропорционально интенсивности падающего на катод излучения (при его неизменной частоте) .

Второй закон фотоэффекта . Максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой света и не зависит от его интенсивности .

3-й закон фотоэффекта : для каждого вещества при определенном состоянии его поверхности существует граничная частота света, ниже которой фотоэффект не наблюдается. Эта частота и соответствующая длина волны называется красной границей фотоэффекта

В своих опытах Столетов, собрал специальную конструкцию для наблюдения фотоэффекта.

Через небольшое специальное окошечко из кварцевого стекла, катод освещался ультрафиолетом, если на катод подать отрицательное напряжение относительно анода, то под действием лучей электроны покидают катод и под действием электрического поля движутся в сторону анода. Миллиамперметр фиксирует при этом ток и зависимость тока от интенсивности освещения.

Наблюдая за опытом, мы можем менять три параметра:

1 - это напряжение на аноде, относительно катода, даже с учетом полярности.

2 - интенсивность освещения

3 - частота света, или по простому - цвет.

Поэтому наблюдая за этим явлением, Александр Григорьевич и сформулировал три закона фотоэффекта, перечисленные выше.

Нам же сегодня интересно, где это явление можно использовать.

На самом деле, это явления широко используется в полупроводниковой технике, в таких элементах как, фотодиод, фототранзистор, фотосимистор.

Большое количество датчиков освещенности, оптических датчиков используют этот эффект. Но наиболее распространенное использование получили оптопары, которые решили вопрос гальванической развязки по минимальной цене. С помощью них работают твердотельные реле.

Есть еще и другие устройства, но это уже отдельная история.

Если Вам понравилась публикация, подписывайтесь на канал, за Ваши лайки чаще показывают Наши публикации.

Фотоэффект — это выбивание электронов из вещества падающим светом. Явление фотоэффекта было открыто Генрихом Герцем в 1887 году в ходе его знаменитых экспериментов по излучению электромагнитных волн.
Напомним, что Герц использовал специальный разрядник (вибратор Герца) — разрезанный пополам стержень с парой металлических шариков на концах разреза. На стержень подавалось высокое напряжение, и в промежутке между шариками проскакивала искра. Так вот, Герц обнаружил, что при облучении отрицательно заряженного шарика ультрафиолетовым светом проскакивание искры облегчалось.

Герц, однако, был поглощён исследованием электромагнитных волн и не принял данный факт во внимание. Год спустя фотоэффект был независимо открыт русским физиком Александром Григорьевичем Столетовым. Тщательные экспериментальные исследования, проведённые Столетовым в течение двух лет, позволили сформулировать основные законы фотоэффекта.

Опыты Столетова

В своих знаменитых экспериментах Столетов использовал фотоэлемент собственной конструкции (Фотоэлементом называется любое устройство, позволяющее наблюдать фотоэффект). Его схема изображена на рис. 1 .


Рис. 1. Фотоэлемент Столетова

В стеклянную колбу, из которой выкачан воздух (чтобы не мешать лететь электронам), введены два электрода: цинковый катод и анод . На катод и анод подаётся напряжение, величину которого можно менять с помощью потенциометра и измерять вольтметром .

Катод освещается ультрафиолетовыми лучами УФ через специальное кварцевое окошко, сделанное в колбе (стекло поглощает ультрафиолет, а кварц пропускает). Ультрафиолетовое излучение выбивает с катода электроны , которые разгоняются напряжением и летят на анод. Включённый в цепь миллиамперметр регистрирует электрический ток. Этот ток называется фототоком, а выбитые электроны, его создающие, называются фотоэлектронами.

В опытах Столетова можно независимо варьировать три величины: анодное напряжение, интенсивность света и его частоту.

Зависимость фототока от напряжения

Меняя величину и знак анодного напряжения, можно проследить, как меняется фототок. График этой зависимости, называемый характеристикой фотоэлемента, представлен на рис. 2 .


Рис. 2. Характеристика фотоэлемента

Давайте обсудим ход полученной кривой. Прежде всего заметим, что электроны вылетают из катода с различными скоростями и в разных направлениях; максимальную скорость, которую имеют фотоэлектроны в условиях опыта, обозначим .

Здесь кг — масса электрона, Кл — его заряд.

Будем постепенно увеличивать напряжение, т.е. двигаться слева направо вдоль оси из далёких отрицательных значений.

Поначалу тока по-прежнему нет, но точка разворота электронов становится всё ближе к аноду. Наконец, при достижении напряжения , которое называется задерживающим напряжением, электроны разворачиваются назад в момент достижения анода (иначе говоря, электроны прибывают на анод с нулевой скоростью). Имеем:

Таким образом, величина задерживающего напряжения позволяет определить максимальную кинетическую энергию фотоэлектронов.

При небольшом превышении задерживающего напряжения появляется слабый фототок. Его формируют электроны, вылетевшие с максимальной кинетической энергией почти точно вдоль оси колбы (т.е. почти перпендикулярно катоду): теперь электронам хватает этой энергии, чтобы добраться до анода с ненулевой скоростью и замкнуть цепь. Остальные электроны, которые имеют меньшие скорости или полетели в сторону от анода, на анод не попадают.

При повышении напряжения фототок увеличивается. Анода достигает большее количество электронов, вылетающих из катода под всё большими углами к оси колбы. Обратите внимание, что фототок присутствует при нулевом напряжении!

Когда напряжение выходит в область положительных значений, фототок продолжает возрастать. Оно и понятно: электрическое поле теперь разгоняет электроны, поэтому всё большее их число получают шанс оказаться на аноде. Однако достигают анода пока ещё не все фотоэлектроны. Например, электрон, вылетевший с максимальной скоростью перпендикулярно оси колбы (т.е. вдоль катода), хоть и развернётся полем в нужном направлении, но не настолько сильно, чтобы попасть на анод.

Наконец, при достаточно больших положительных значениях напряжения ток достигает своей предельной величины , называемой током насыщения, и дальше возрастать перестаёт.

Почему? Дело в том, что напряжение, ускоряющее электроны, становится настолько велико, что анод захватывает вообще все электроны, выбитые из катода — в каком бы направлении и с какими бы скоростями они не начинали движение. Стало быть, дальнейших возможностей увеличиваться у фототока попросту нет — ресурс, так сказать, исчерпан.

Законы фотоэффекта

Величина тока насыщения — это, по существу, количество электронов, выбиваемых из катода за одну секунду. Будем менять интенсивность света, не трогая частоту. Опыт показывает, что ток насыщения меняется пропорционально интенсивности света.

Первый закон фотоэффекта. Число электронов, выбиваемых из катода за секунду, пропорционально интенсивности падающего на катод излучения (при его неизменной частоте).

Ничего неожиданного в этом нет: чем больше энергии несёт излучение, тем ощутимее наблюдаемый результат. Загадки начинаются дальше.

А именно, будем изучать зависимость максимальной кинетической энергии фотоэлектронов от частоты и интенсивности падающего света. Сделать это несложно: ведь в силу формулы (1) нахождение максимальной кинетической энергии выбитых электронов фактически сводится к измерению задерживающего напряжения.

Сначала меняем частоту излучения при фиксированной интенсивности. Получается такой график (рис. 3 ):


Рис. 3. Зависимость энергии фотоэлектронов от частоты света

Как видим, существует некоторая частота , называемая красной границей фотоэффекта, разделяющая две принципиально разные области графика. Если , то фотоэффекта нет.

Если же \nu_0' alt='\nu > \nu_0' /> , то максимальная кинетическая энергия фотоэлектронов линейно растёт с частотой.

Теперь, наоборот, фиксируем частоту и меняем интенсивность света. Если при этом , то фотоэффект не возникает, какова бы ни была интенсивность! Не менее удивительный факт обнаруживается и при \nu_0' alt='\nu > \nu_0' /> : максимальная кинетическая энергия фотоэлектронов от интенсивности света не зависит.

Все эти факты нашли отражение во втором и третьем законах фотоэффекта.

Второй закон фотоэффекта. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой света и не зависит от его интенсивности.

Третий закон фотоэффекта. Для каждого вещества существует красная граница фотоэффекта — наименьшая частота света , при которой фотоэффект ещё возможен. При фотоэффект не наблюдается ни при какой интенсивности света.

Трудности классического объяснения фотоэффекта

Как можно было бы объяснить фотоэффект с точки зрения классической электродинамики и волновых представлений о свете?

Известно, что для вырывания электрона из вещества требуется сообщить ему некоторую энергию , называемую работой выхода электрона. В случае свободного электрона в металле это работа по преодолению поля положительных ионов кристаллической решётки, удерживающего электрон на границе металла. В случае электрона, находящегося в атоме, работа выхода есть работа по разрыву связи электрона с ядром.

В переменном электрическом поле световой волны электрон начинает совершать колебания.

И если энергия колебаний превысит работу выхода, то электрон будет вырван из вещества.

Однако в рамках таких представлений невозможно понять второй и третий законы фотоэффекта. Действительно, почему кинетическая энергия выбитых электронов не зависит от интенсивности излучения? Ведь чем больше интенсивность, тем больше напряжённость электрического поля в электромагнитной волне, тем больше сила, действующая на электрон, тем больше энергия его колебаний и с тем большей кинетической энергией электрон вылетит из катода. Логично? Логично. Но эксперимент показывает иное.

Выглядит опять-таки логично, но опыт — единственный критерий истины в физике! — этим доводам противоречит.

Так на рубеже XIX и XX столетий в физике возникла тупиковая ситуация: электродинамика, предсказавшая существование электромагнитных волн и великолепно работающая в диапазоне радиоволн, отказалась объяснять явление фотоэффекта.

Выход из этого тупика был найден Альбертом Эйнштейном в 1905 году. Он нашёл простое уравнение, описывающее фотоэффект. Все три закона фотоэффекта оказались следствиями уравнения Эйнштейна.

Главная заслуга Эйнштейна состояла в отказе от попыток истолковать фотоэффект с позиций классической электродинамики. Эйнштейн привлёк к делу смелую гипотезу о квантах, высказанную Максом Планком пятью годами ранее.

Гипотеза Планка о квантах

Классическая электродинамика отказалась работать не только в области фотоэффекта. Она также дала серьёзный сбой, когда её попытались использовать для описания излучения нагретого тела (так называемого теплового излучения).

Суть проблемы состояла в том, что простая и естественная электродинамическая модель теплового излучения приводила к бессмысленному выводу: любое нагретое тело, непрерывно излучая, должно постепенно потерять всю свою энергию и остыть до абсолютного нуля. Как мы прекрасно знаем, ничего подобного не наблюдается.

В ходе решения этой проблемы Макс Планк высказал свою знаменитую гипотезу.

Гипотеза о квантах. Электромагнитная энергия излучается и поглощается не непрерывно, а отдельными неделимыми порциями — квантами. Энергия кванта пропорциональна частоте излучения:

Cоотношение (2) называется формулой Планка, а коэффициент пропорциональности — постоянной Планка.

Принятие этой гипотезы позволило Планку построить теорию теплового излучения, прекрасно согласующуюся с экспериментом. Располагая известными из опыта спектрами теплового излучения, Планк вычислил значение своей постоянной:

Успешность гипотезы Планка наводила на мысль, что законы классической физики неприменимы к малым частицам вроде атомов или электронов, а также к явлениям взаимодействия света и вещества. Подтверждением данной мысли как раз и послужило явление фотоэффекта.

Уравнение Эйнштейна для фотоэффекта

Гипотеза Планка говорила о дискретности излучения и поглощения электромагнитных волн, то есть о прерывистом характере взаимодействия света с веществом. При этом Планк считал, что распространение света — это непрерывный процесс, происходящий в полном соответствии с законами классической электродинамики.

Эйнштейн пошёл ещё дальше: он предположил, что свет в принципе обладает прерывистой структурой: не только излучение и поглощение, но также и распространение света происходит отдельными порциями — квантами, обладающими энергией .

Планк рассматривал свою гипотезу лишь как математический трюк и не решился опровергнуть электродинамику применительно к микромиру. Физической реальностью кванты стали благодаря Эйнштейну.

Кванты электромагнитного излучения (в частности, кванты света) стали впоследствии называться фотонами. Таким образом, свет состоит из особых частиц — фотонов, движущихся в вакууме со скоростью .

Каждый фотон монохроматического света, имеющего частоту , несёт энергию .

Фотоны могут обмениваться энергией и импульсом с частицами вещества (об импульсе фотона речь пойдёт в следующем листке); в таком случае мы говорим о столкновении фотона и частицы. В частности, происходит столкновение фотонов с электронами металла катода.

Поглощение света — это поглощение фотонов, то есть неупругое столкновение фотонов с частицами (атомами, электронами). Поглощаясь при столкновении с электроном, фотон передаёт ему свою энергию. В результате электрон получает кинетическую энергию мгновенно, а не постепенно, и именно этим объясняется безынерционность фотоэффекта.

Уравнение Эйнштейна для фотоэффекта есть не что иное, как закон сохранения энергии. На что идёт энергия фотона ? при его неупругом столкновении с электроном? Она расходуется на совершение работы выхода по извлечению электрона из вещества и на придание электрону кинетической энергии :

Слагаемое оказывается максимальной кинетической энергией фотоэлектронов. Почему максимальной? Этот вопрос требует небольшого пояснения.

Ясно, что максимальная кинетическая энергия фотоэлектрона получится в том случае, когда фотон попадёт на свободный электрон в поверхностном слое металла — тогда для выбивания электрона достаточно одной лишь работы выхода.

Эти лишние затраты приведут к тому, что кинетическая энергия вылетевшего электрона окажется меньше.

Замечательное по простоте и физической ясности уравнение (4) содержит в себе всю теорию фотоэффекта. Давайте посмотрим, какое объяснение получают законы фотоэффекта с точки зрения уравнения Эйнштейна.

1. Число выбиваемых электронов пропорционально числу поглощённых фотонов. С увеличением интенсивности света количество фотонов, падающих на катод за секунду, возрастает.

Стало быть, пропорционально возрастает число поглощённых фотонов и, соответственно, число выбитых за секунду электронов.

2. Выразим из формулы (4) кинетическую энергию:

Действительно, кинетическая энергия выбитых электронов линейно растёт с частотой и не зависит от интенсивности света.

Зависимость кинетической энергии от частоты имеет вид уравнения прямой, проходящей через точку . Этим полностью объясняется ход графика на рис. 3 .

3. Для того, чтобы начался фотоэффект, энергии фотона должно хватить как минимум на совершение работы выхода: . Наименьшая частота , определяемая равенством

как раз и будет красной границей фотоэффекта. Как видим, красная граница фотоэффекта определяется только работой выхода, т.е. зависит лишь от вещества облучаемой поверхности катода.

Если , то фотоэффекта не будет — сколько бы фотонов за секунду не падало на катод. Следовательно, интенсивность света роли не играет; главное — хватает ли отдельному фотону энергии, чтобы выбить электрон.

Уравнение Эйнштейна (4) даёт возможность экспериментального нахождения постоянной Планка. Для этого надо предварительно определить частоту излучения и работу выхода материала катода, а также измерить кинетическую энергию фотоэлектронов.

Фотоэффе́кт — это испускание электронов веществом под действием света (. В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

1-го закона фотоэффекта: количество электронов, вырываемых светом с поверхности металла за единицу времени на данной частоте, прямо пропорционально световому потоку, освещающему металл.

2-му закону фотоэффекта, максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности.

3-ий закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света (или максимальная длина волны λ0), при которой ещё возможен фотоэффект, и если , то фотоэффект уже не происходит.


электромагнитное излучение представляет собой поток отдельных квантов (фотонов) с энергией hν каждый, где h — постоянная Планка. При фотоэффекте часть падающего электромагнитного излучения от поверхности металла отражается, а часть проникает внутрь поверхностного слоя металла и там поглощается. Поглотив фотон, электрон получает от него энергию и, совершая работу выхода, покидает металл: , где — максимальная кинетическая энергия, которую может иметь электрон при вылете из металла.

Г.Герц экспериментально открыл электромагнитные волны и опубликовал результаты своих работ. Виборатор Герца. Открытый колебательный контур.

В результате экспериментов Герц создал источник электромагнитных волн, названный им "вибратором". Вибратор состоял из двух проводящих сфер (в ряде опытов цилиндров) диаметром 10-30 см, укрепленных на концах проволочного разрезанного посредине стержня. Концы половин стержня в месте разреза оканчивались небольшими полированными шариками, образуя искровой промежуток в несколько миллиметров.

Сферы подсоединялись ко вторичной обмотке катушки Румкорфа, являвшейся источником высокого напряжения.

После огромной серии трудоемких и чрезвычайно остроумно поставленных опытов с использованием простейших, так сказать, подручных средств экспериментатор достиг цели. Удалось измерить длины волн и рассчитать скорость их распространения. Были доказаны

наличие отражения, преломления, дифракции, интерференции и поляризации волн. измерена скорость электромагнитной волны

Для того чтобы получить о фотоэффекте более полное представление, нужно выяснить, от чего зависит число вырванных светом с поверхности вещества электронов (фотоэлектронов) и чем определяется их скорость или кинетическая энергия. С этой целью были проведены экспериментальные исследования. В стеклянный баллон, из которого выкачан воздух (для того, чтобы столкновения электронов с молекулами газа не вносили осложнения в наблюдаемые явления, а также для того, чтобы предохранить пластинки от окисления), помещаются два электрода (рис. 1).


Невозможность объяснения фотоэффекта на основе классической теории излучения; гипотеза Планка; уравнение Эйнштейна, объяснение законов фотоэффекта на его основе; многофотонный фотоэффект

На металл падает световая волна. Электроны,

находящиеся в его поверхностном слое, поглощают энергию этой волны, и их

энергия постепенно увеличивается. Когда она становится больше работы выхода,

электроны начинают вылетать из металла. Таким образом, волновая теория света

будто бы способна качественно объяснить явление фотоэффекта.

Однако расчеты показали, что при таком объяснении время между началом освещения

металла и началом вылета электронов должно быть порядка десяти секунд. Между


Фотоэффект - это одно из удивительных физических явлений, временные масштабы развития представлений о котором охватывают около трех веков. В данной статье рассмотрим историю этого явления, а также приведем и опишем главное уравнение фотоэффекта.

Предпосылки открытия явления

Предпосылки открытия явления фотоэффекта зародились еще в далеком XVII веке, когда Исаак Ньютон выдвинул корпускулярную теорию света. Согласно ей, пучок света состоял из разноцветных маленьких частиц - корпускул. Эта теория просуществовала полтора столетия и с успехом объясняла явления отражения и преломления света.

Но вот наступила первая половина XIX века, и английский ученый Томас Юнг в своем эксперименте с щелью и монохроматическим пучком света показал, что рассматриваемый физический объект имеет волновую природу.

В 60-е годы XIX века Джеймс Максвелл на основании теоретических расчетов построил достаточно стройную теорию электромагнетизма, в которой он смог объединить все на тот момент известные явления магнитного и электрического характера. Максвелл предсказал существование электромагнитных волн, подтвердив тем самым опыты Юнга.

Немецкий физик Генрих Герц поставил эксперименты, в которых доказал существование предсказанных Максвеллом волн и попутно открыл явление фотоэффекта.

Опыты Генриха Герца

Эксперимент с заряженными сферами

Идея постановки опытов Герца родилась непосредственно из теории Максвелла, которая говорила, что переменное электрическое либо магнитное поле способно порождать электромагнитные волны. Последние же способны индуцировать переменный ток в любом проводнике, который их принимает.

В 1887 году Герц, используя катушку Румкорфа, зарядил две металлические сферы, вызвав искровой разряд между ними. Этот разряд создал волну, которая, порождая переменный ток в приемнике, привела к еще одному искровому разряду в маленьком воздушном зазоре. Этот разряд был настолько слабым, что Герц располагал приемник в темном помещении, чтобы увидеть искру. И вот тут ученый заметил одну странную вещь: искра в темном помещении была слабее, чем в светлом.

Опубликовав свою работу, Герц не смог объяснить отмеченные изменения интенсивности искры. Удовлетворительное объяснение было дано лишь в 1905 году Альбертом Эйнштейном. Но до того, как это произошло, в истории открытия фотоэффекта появилась еще одна весомая фигура.

Александр Столетов и его эксперименты

ученый столетов

А. Г. Столетов - выдающийся русский ученый второй половины XIX века, который внес серьезный вклад в развития представлений об электромагнетизме. Но больше всего известны опыты Столетова по изучению фотоэффекта.

Эти эксперименты он поставил в 1888 году. Заключались они в следующем: подключив воздушный конденсатор к слабому источнику питания, ученый направил свет от ртутной лампы на катод (цинковую пластину конденсатора), при этом он наблюдал появление электрического тока в цепи.

Эти опыты Столетову позволили сформулировать первый закон фотоэффекта: индуцированный в цепи ток прямо пропорционален интенсивности падающего света на катод. Русский ученый объяснил это явление вырыванием отрицательно заряженных частиц электромагнитной волной из материала катода. Заметим, что на момент постановки этих опытов электрон еще не был открыт.

Памятник Александру Столетову

Альберт Эйнштейн и современная теория фотоэффекта

В 1905 году, используя результаты исследований различных ученых (Столетова, Томсона, Планка), Эйнштейн опубликовал статью "Об эвристической точке зрения, касающейся возникновения и преобразования света", в которой дал исчерпывающее объяснение рассмотренному явлению и привел уравнение фотоэффекта.

Альберт Эйнштейн

Современные законы фотоэффекта формулируются следующим образом:

  1. Между интенсивностью света и индуцированным фототоком существует прямая пропорциональность (закон Столетова).
  2. Существует некоторая частота света, называемая пороговой, ниже которой рассматриваемое явление не наблюдается.
  3. Кинетическая энергия вырванного фотоном электрона прямо пропорциональна частоте фотона и не зависит от интенсивности света, падающего на катод.
  4. Этот эффект возникает мгновенно, как только свет падает на материал.

Теория фотоэффекта. Уравнение Эйнштейна

Чтобы понять приведенные выше положения для фотоэффекта, следует рассмотреть, что происходит с электроном в атоме, когда его облучают светом. Главная заслуга Эйнштейна заключалась в том, что он смог догадаться, что с электроном взаимодействует не электромагнитная волна, а квант света определенной энергии - фотон. Фотон полностью поглощается электроном, передавая ему свою энергию. Далее судьба электрона может быть следующей:

  • Если переданной энергии от фотона недостаточно, чтобы вырваться из атома, то электрон сначала переходит в возбужденное состояние, а затем возвращается в основное состояние с излучением фотонов.
  • Если энергия фотона больше работы выхода электрона, тогда он вырывается из материала и переходит в свободное состояние.

Уравнение фотоэффекта имеет вид:

Здесь v - частота фотона, v0 - красная граница фотоэффекта или пороговая частота, ниже которой явление не наблюдается, Ek - кинетическая энергия свободного электрона, h - постоянная Планка.

Фотоэффект и солнечные батареи

Солнечные батареи

Явление фотоэффекта широко используется для производства электрической энергии из солнечного света. Эта энергия расходуется как для удовлетворения бытовых нужд, так и для питания электроники на космических спутниках.

Основным материалом для солнечных батарей в настоящее время является кремний. Индуцированная ЭДС в батарее возникает, когда свет падает на область p-n перехода полупроводника.

Читайте также: