Опишите закономерности действия экологических факторов на организм биология 9 класс кратко

Обновлено: 04.07.2024

Несмотря на разнообразие факторов, в их действии и ответных реакциях организма есть общие закономерности.

1. Закон оптимума: Каждый фактор имеет строго определенные пределы положительного воздействия на живой организм.

Благоприятная сила воздействия фактора называется зоной оптимума. Недостаточное или избыточное действие фактора отрицательно сказывается на жизнедеятельности организма. Чем сильнее отклоняется действие фактора, тем более выражено его угнетающее действие (зона пессимума). Максимально и минимально переносимые значения фактора – критические точки, за пределами которых существование организма становится невозможным. Пределы выносливости вида по отношению к какому-то фактору составляют его экологическую валентность.

Виды различаются между собой значениями экологической валентности и положением зоны оптимума. Примеры:

- У самки обыкновенного немалярийного комара температурный оптимум для откладки яиц составляет +20°. При +15° и +30° происходит подавление процесса откладки яиц, а при +10° и +35° полное прекращение.

- Для полярных рыб оптимум температуры 0°, а пределы выносливости от –2° до +2°.

- У сине-зеленых водорослей, обитающих в гейзерах, температурный оптимум +85°, а пределы выносливости от +84° до +86°.

Виды, имеющие широкую экологическую валентность, обозначают, добавляя приставку эври- к названию фактора, например, эвритермные – по отношению к температуре, эвригалинные – по отношению к солености воды, эврибатные – к давлению. Виды с узкой экологической валентностью называют с приставкой стено-, также добавляя название фактора: стенотермные, стеногалинные, стенобатные.

Виды, имеющие широкую экологическую валентность по отношению ко многим факторам, называются эврибионтными, а узкую – стенобионтными.

2. Правило ограничивающего фактора. В природе на организмы одновременно влияет целый комплекс факторов среды в разных комбинациях и с разной силой. Среди них бывает трудно отделить самые важные от второстепенных, это зависит от силы воздействия каждого.

Ограничивающим называют фактор, интенсивность которого в качественном или количественном отношении в данный момент приближается или выходит за пределы критических значений.

Правило ограничивающего фактора:Наиболее значим тот фактор, который больше всего отклоняется от оптимальных для организма значений.

Специфических ограничивающих факторов в природе не существует, поэтому любой из факторов может стать ограничивающим. Их природа различна: абиотические, биотические и антропогенные.

Рассмотрим в качестве ограничивающего фактора температуру. Лимитирующим фактором распространения деревьев бука в Европе является низкая температура января, поэтому северные границы его ареала соответствуют январской изотерме –2 о С. Лось в Скандинавии встречается значительно севернее, чем в Сибири, где более низкие зимние температуры. Рифообразующие кораллы обитают только в тропиках при температуре воды не ниже 20°С.

Климатические и почвенные факторы определяют ареал распространения растений и их урожайность.

Количество хищников и паразитов ограничивает численность жертв и хозяев. Ареал распространения африканской сонной болезни соответствует распространению ее переносчика – мухи це-це.

По отношению к человеку в роли ограничивающего фактора может быть содержание витаминов (С, D), микроэлементов (йод) в продуктах питания.

3. Взаимодействие факторов: Зона оптимума зависит от комбинации факторов, действующих на организм.

Примеры: при оптимальной температуре животные легче переносят недостаток корма. Достаточное количество пищи позволяет животным легче переносить низкие температуру и влажность.

Хорошо известно, что человеку жару легче переносить при низкой, а не при высокой влажности. Снижение влажности может привести к увеличению экологической валентности вида по отношению к температуре. Человек способен в течение 45 минут без последствий для здоровья переносить температуру +126°С, но при очень низкой влажности. Низкая температура хуже переносится людьми в ветреную погоду. Сочетание приема алкоголя и низкой температуры воздуха приводит к быстрому переохлаждению организма, отморожению частей тела. Эта закономерность учитывается в медицине при назначении лекарственных препаратов; например, средства, снижающие повышенное артериальное давление, действуют сильнее, если снижено потребление соли.




4. Неоднозначность действия факторов на различные функции организма: Каждый экологический фактор оказывает неодинаковое влияние на разные функции организма.

При повышении температуры до 40° градусов у холоднокровных животных ящериц усиливается обмен веществ, но в то же время резко угнетается двигательная активность.

Несмотря на разнообразие факторов, в их действии и ответных реакциях организма есть общие закономерности.

1. Закон оптимума: Каждый фактор имеет строго определенные пределы положительного воздействия на живой организм.

Благоприятная сила воздействия фактора называется зоной оптимума. Недостаточное или избыточное действие фактора отрицательно сказывается на жизнедеятельности организма. Чем сильнее отклоняется действие фактора, тем более выражено его угнетающее действие (зона пессимума). Максимально и минимально переносимые значения фактора – критические точки, за пределами которых существование организма становится невозможным. Пределы выносливости вида по отношению к какому-то фактору составляют его экологическую валентность.

Виды различаются между собой значениями экологической валентности и положением зоны оптимума. Примеры:

- У самки обыкновенного немалярийного комара температурный оптимум для откладки яиц составляет +20°. При +15° и +30° происходит подавление процесса откладки яиц, а при +10° и +35° полное прекращение.

- Для полярных рыб оптимум температуры 0°, а пределы выносливости от –2° до +2°.

- У сине-зеленых водорослей, обитающих в гейзерах, температурный оптимум +85°, а пределы выносливости от +84° до +86°.

Виды, имеющие широкую экологическую валентность, обозначают, добавляя приставку эври- к названию фактора, например, эвритермные – по отношению к температуре, эвригалинные – по отношению к солености воды, эврибатные – к давлению. Виды с узкой экологической валентностью называют с приставкой стено-, также добавляя название фактора: стенотермные, стеногалинные, стенобатные.

Виды, имеющие широкую экологическую валентность по отношению ко многим факторам, называются эврибионтными, а узкую – стенобионтными.

2. Правило ограничивающего фактора. В природе на организмы одновременно влияет целый комплекс факторов среды в разных комбинациях и с разной силой. Среди них бывает трудно отделить самые важные от второстепенных, это зависит от силы воздействия каждого.

Ограничивающим называют фактор, интенсивность которого в качественном или количественном отношении в данный момент приближается или выходит за пределы критических значений.

Правило ограничивающего фактора:Наиболее значим тот фактор, который больше всего отклоняется от оптимальных для организма значений.

Специфических ограничивающих факторов в природе не существует, поэтому любой из факторов может стать ограничивающим. Их природа различна: абиотические, биотические и антропогенные.

Рассмотрим в качестве ограничивающего фактора температуру. Лимитирующим фактором распространения деревьев бука в Европе является низкая температура января, поэтому северные границы его ареала соответствуют январской изотерме –2 о С. Лось в Скандинавии встречается значительно севернее, чем в Сибири, где более низкие зимние температуры. Рифообразующие кораллы обитают только в тропиках при температуре воды не ниже 20°С.

Климатические и почвенные факторы определяют ареал распространения растений и их урожайность.

Количество хищников и паразитов ограничивает численность жертв и хозяев. Ареал распространения африканской сонной болезни соответствует распространению ее переносчика – мухи це-це.

По отношению к человеку в роли ограничивающего фактора может быть содержание витаминов (С, D), микроэлементов (йод) в продуктах питания.

3. Взаимодействие факторов: Зона оптимума зависит от комбинации факторов, действующих на организм.

Примеры: при оптимальной температуре животные легче переносят недостаток корма. Достаточное количество пищи позволяет животным легче переносить низкие температуру и влажность.

Хорошо известно, что человеку жару легче переносить при низкой, а не при высокой влажности. Снижение влажности может привести к увеличению экологической валентности вида по отношению к температуре. Человек способен в течение 45 минут без последствий для здоровья переносить температуру +126°С, но при очень низкой влажности. Низкая температура хуже переносится людьми в ветреную погоду. Сочетание приема алкоголя и низкой температуры воздуха приводит к быстрому переохлаждению организма, отморожению частей тела. Эта закономерность учитывается в медицине при назначении лекарственных препаратов; например, средства, снижающие повышенное артериальное давление, действуют сильнее, если снижено потребление соли.

4. Неоднозначность действия факторов на различные функции организма: Каждый экологический фактор оказывает неодинаковое влияние на разные функции организма.

При повышении температуры до 40° градусов у холоднокровных животных ящериц усиливается обмен веществ, но в то же время резко угнетается двигательная активность.

Раздел ОГЭ: 5.1. Влияние экологических факторов на организмы. Приспособления организмов к различным экологическим факторам. Популяция. Взаимодействия разных видов (конкуренция, хищничество, симбиоз, паразитизм). Сезонные изменения в живой природе

Экология — наука о взаимоотношениях живых организмов с окружающей средой.

Любой компонент среды, способный оказывать влияние на живые организмы, называют экологическим фактором.

Каждый вид приспособлен к определённым значениям факторов среды. Так, существуют теплолюбивые и холодостойкие, влаголюбивые и засухоустойчивые виды.

Пределы колебаний фактора, при которых возможно существование данного вида организмов (например, температура от О °С до 45 °С), называют диапазоном устойчивости или пределами выносливости вида. При этом оптимальным, наиболее благоприятным для данного вида является более узкий диапазон (например, температура от 18 °С до 28 °С). Биологический оптимум — это наилучшее сочетание условий для вида (например, температура от 18 °С до 28 °С, влажность от 60% до 85% и т. д.).

Влияние экологических факторов на организмы

Если в определённой местности какой-то из факторов приближается к пределу максимума или минимума диапазона устойчивости вида, то недостаток или избыток именно этого фактора ограничивает возможности нормальной жизнедеятельности, и такой фактор называют лимитирующим или ограничивающим. Например, в пустыне ограничивающим фактором для растений является количество влаги.

Экологические факторы действуют на организм в комплексе, поэтому ему легче перенести отклонение какого-то фактора от нормы, если остальные факторы близки к оптимуму. Сочетание жаркой и засушливой погоды неблагоприятно для растений средней полосы, поскольку чрезмерное повышение температуры организма может быть предотвращено с помощью испарения воды. Однако, если и воды в окружающей среде недостаточно, перенести такое сочетание факторов трудно. Теплокровные животные в морозы могут замерзать при нехватке корма и нормально себя чувствовать, если корма достаточно.

Приспособления живых организмов к различным экологическим факторам выражаются в особенностях:

  • строения (морфологические приспособления, например большая или меньшая длина корней растений или ушей животных);
  • процессов жизнедеятельности (физиологические приспособления, например, аэробность или анаэробность организмов, возможности повышения или снижения плодовитости);
  • поведения (этологические приспособления, например у животных есть возможность перейти в тень или мигрировать) (табл. 2, разд. 3.6).

Конкретные приспособления или адаптации зависят прежде всего от среды обитания.

среды жизни

В пределах среды жизни организмы разных видов предпочитают местообитания с конкретными условиями, к которым имеются приспособления. Организмы с приспособлениями к определённым взаимоотношениям со средой образуют экологические группы.

У разных водных обитателей есть приспособления к степени солёности воды (см. с. 54, 55), концентрации в ней растворённого кислорода.

Для растений важен режим освещённости (светолюбивые растения имеют более толстые листовые пластинки, теневыносливые — тонкие). Для растений, обитающих на суше, особенно важен режим влажности.

эко группы растений

У наземных животных стратегии выживания в неблагоприятных температурных условиях зависят от того, теплокровны они или холоднокровны. Холоднокровные обычно прекращают активность при температуре свыше 45 °С и ниже О °С. Теплокровные сохраняют тепло с помощью перьев или меха, жировой прослойки. Они могут впадать в спячку (с понижением температуры тела до 5 °С — ежи, летучие мыши) или зимний покой (в состоянии уменьшенной активности и обмена веществ — белки, хомяки) или мигрировать, что обычно связано с недоступностью кормовой базы. В жару животные снижают физическую активность, ищут укрытия, некоторые выделяют пот. Усилению теплоотдачи способствует относительно большая поверхность тела, поэтому среди близких видов обычно более крупные с маленькими ушами обитают в более холодном климате. Среди животных также выделяют экологические группы.

эко группы птиц

Для питания различными видами пищи у птиц формируются особые приспособления, выражающиеся в форме клюва и лап, скорости полёта, особенностях зрения.

Сезонные изменения в природе

К периодичности действия факторов (смене дня и ночи и времён года, фаз Луны, приливов и отливов) организмы приспосабливаются с помощью наследственно закреплённых биоритмов.

Фотопериодизм — реакция организмов на изменение длины светового дня (фотопериода). Например, существуют растения, которые цветут при большой продолжительности светового дня. Такие растения называют длиннодневными (лён, овёс). Растения, цветущие при меньшей продолжительности фотопериода, называют короткодневными (магнолии), обычно это растения южного происхождения. Если такие растения выращивают в северных районах, то они зацветают ближе к осени, когда день становится короче.

Фотопериодические реакции обеспечивают не только приспособление к сезонным изменениям абиотических факторов, но и приспособление к совместному обитанию в биоценозе. Так, в лесу многие растения цветут до распускания основной массы листьев.

При смене сезонов — наступлении зимы — листопадные деревья и кустарники уменьшают испарение, сбрасывая листья, а также концентрируют соки, прекращая всасывание воды и запасая питательные вещества (концентрированные коллоидные растворы не замерзают).

У многолетних и двулетних трав отмирает надземная часть, и растение зимует в виде корневищ, клубней или луковиц. Однолетние растения отмирают целиком, оставляя на зиму семена.

Большинство наземных холоднокровных животных впадают в оцепенение, многие насекомые зимуют на покоящихся стадиях развития (яйца, куколки), теплокровные линяют, применяют другие стратегии (см. выше).

Для рассмотрения вопросов о взаимоотношениях организмов с биотическими факторами среды важно учесть, что в экосистемах обитают не одиночные особи, а популяции различных видов.

Популяции

Популяциями называют совместно обитающие группы особей одного вида, не имеющих преград для скрещивания.

Особи популяции так или иначе связаны между собой (имеются внутривидовые отношения) и с особями других видов (межвидовые отношения). Внутривидовые отношения часто характеризуются конкуренцией (за пищу, самок, у растений — за свет и т. д.). Иногда наблюдаются формы группового поведения.

межвидовые отношения

Внутри- и межвидовые отношения и действие условий среды определяют численность популяции — общее число её особей.

Изменение численности зависит от таких характеристик, как возрастная и половая структура, рождаемость, смертность и ёмкость среды, т. е. предельная допустимая плотность популяции в данных условиях.

Плотность популяции — число особей (или биомасса), приходящееся на единицу площади или объёма биогеоценоза.


Численность популяций подвержена колебаниям: наблюдаются согласованные колебания хищников и жертв, для некоторых видов (например, насекомых) характерны сильные сезонные колебания. Однако численность популяции не должна быть ниже определённого предела, иначе любое случайное событие (пожар, наводнение) с большой вероятностью уничтожит её полностью.

Вопрос 1. Что такое толерантность организмов?
Толерантностью (от лат. tolerantia — терпимость) называют способность организма переносить неблагоприятное влияние того или иного фактора. Экологические факторы демонстрируют общий характер воздействия на живые организмы: при недостаточном действии фактора или при его максимальном воздействии жизнедеятельность организмов угнетается. Наиболее эффективно проявляется действие фактора при оптимальном его значении (рис. 6.).

Рис. 6. Действие экологического фактора

Диапазон действия экологического фактора представляет собой область толерантности вида. Область толерантности ограничена точками минимума и максимума, которые соответствуют крайним значениям фактора, при которых может существовать данный организм. Интенсивность фактора, соответствующая наилучшей жизнедеятельности организма, называется точкой оптимума, или оптимальной.
Точки оптимума, минимума и максимума определяют норму реакции организма на данный фактор. Крайние точки кривой (минимум и максимум), которые выражают состояние угнетения организмов при недостатке или избытке фактора среды, называются областями пессимума. За пределами этих точек, то есть за пределами зоны толерантности, значения фактора среды являются летальными (смертельными) для живых организмов.

Вопрос 2. Какие факторы называют лимитирующими?
Факторы среды, имеющие в конкретных условиях значения, наиболее удаляющиеся от оптимальных, затрудняют существование вида в данных условиях, несмотря на то, что значения других факторов оптимально. Такая зависимость получила название закона ограничивающих факторов. Отклоняющиеся от оптимума факторы в подобной ситуации приобретают первостепенное значение для жизни вида в целом и отдельных особей в частности, что в конечном итоге определяет их географический ареал.
Если определенный фактор среды или совокупность действующих факторов оказывают угнетающее действие на организм, то такие факторы называются лимитирующими, или ограничивающими.
Ограничивающим, или лимитирующим, фактором является любой, приближающийся или выходящий за границы устойчивости для организма данного вида. Если определенный фактор среды или совокупность действующих факторов оказывают угнетающее действие на организм, то такие факторы называются лимитирующими, или ограничивающими. Например, чаще всего лимитирующим фактором в пустыне для растений является вода, потому что при наличии достаточного количества света, оптимальной температуры, нормального газового состава атмосферы и т.п. при недостатке влаги растения погибают.

Вопрос 3. Что такое закон минимума?
Интенсивность тех или иных биологических процессов часто оказывается чувствительной к двум или большему числу факторов окружающей среды. В этом случае решающее значение будет принадлежать тому из них, который имеется в минимальном с точки зрения потребностей организма количестве. Это простое правило было сформулировано основоположником науки о минеральных удобрениях немецким химиком, автором теории минерального питания растений Юстусом Либихом и получило название закона минимума.


В данном видеоуроке рассматривается влияние экологических факторов на живые организмы. Вы узнаете, что зависимость скорости того или иного процесса от фактора внешней среды можно показать на графике, а также построить кривую толерантности. Познакомитесь с законом минимума Юстуса Либиха, а также узнаете о необходимости пищевых ресурсов для жизнедеятельности организмов. В данном уроке приводятся такие понятия, как кривые толерантности, экотип, лимитирующие экологические факторы, пищевые ресурсы


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Общие закономерности влияния экологических факторов на организмы. Экологические ресурсы"

Организмы способны выживать только в пределах определённого диапазона изменчивости экологического фактора.

В условиях с крайними значениями, например, в среде со слишком высокой и слишком низкой температурой животный и растительный мир очень скуден. Однако в среде со средними значениями климатических факторов численность организмов заметно увеличивается.

Если нарисовать на графике кривую, которая характеризует скорость того или иного процесса (дыхания, питания, роста и др.) в зависимости от фактора внешней среды (конечно, при условии, что этот фактор оказывает влияние на основные жизненные процессы), то кривая почти всегда будет иметь форму колокола.

Такие кривые называют кривые толерантности.

Толерантность — это выносливость организмов по отношению к колебаниям какого-либо экологического фактора, способность организма выдерживать отклонения этого фактора от оптимальных значений.


Кривая толерантности имеет две критические точки, нижнюю критическую точку и верхнюю критическую точку, определяемые минимальным и максимальным значениями экологического фактора.


Заключённый между ними интервал изменчивости фактора является диапазоном экологической толерантности. Чем шире амплитуда колебаний фактора, при которой организм может сохранять жизнеспособность, тем выше его устойчивость, т.е. толерантность к тому или иному воздействию.


Видам с узким диапазоном толерантности (то есть организмам способным существовать в конкретных неизменных условиях среды) характерны кривые с очень острыми пиками.


Плавные кривые соответствуют широкому диапазону толерантности.

Исходя из этого специалист в области экологии Виктор Эрнест Шелфорд в 1913 году установил, что любой живой организм имеет определённые, эволюционно унаследованные верхний и нижний пределы толерантности к любому экологическому фактору.


Виктор Эрнест Шелфорд

Организмы с широким диапазоном толерантности (то есть с широкими границами устойчивости ко многим факторам) имеют шансы на более широкое распространение.

Такие организмы способны образовывать экотипы.

Экотип — это совокупность экологически близких популяций вида, связанных с определённым типом местообитаний и обладающих генетически закреплёнными анатомо-морфологическими и физиологическими особенностями, которые выработались в результате продолжительного воздействия сходных режимов экологических факторов.

К примеру особи медуз, волосистых цианей, обитающие в северных широтах, передвигаются с той же скоростью, что и медузы того же вида в южных широтах.

То есть особи одного и тоже вида благодаря широкому диапазону толерантности заселили территории с разными экологическими условиями и приспособились к ним. Однако окружающая среда очень часто нестабильна. Например, в засушливый период растениям не хватает воды, а в дождливый – света, часто почва бедна необходимыми для роста микроэлементами.

Немецкий химик Юстус фон Либих установил, что продуктивность культурных растений, в первую очередь, зависит от того питательного вещества (минерального элемента), который представлен в почве наиболее слабо.


Юстус фон Либих

Например, если в почве фосфора лишь 20 % от необходимой нормы, а кальция — 50 % от нормы, то ограничивающим фактором будет недостаток фосфора, который может привести к снижению урожая.

И поэтому в первую очередь в почву необходимо внести тот элемент, который имеется в минимальном количестве с точки зрения потребностей организма и в данном случае – фосфорсодержащие удобрения.

Другими словами, урожай (продукция) зависит от фактора, который находится в минимуме.

Исходя из этого Юстус Либих сформулировал закон минимума, гласящий, что наиболее значимым для организма является тот фактор, который более всего отклоняется от оптимального его значения.


Но даже те же самые минеральные вещества, очень полезные при оптимальном содержании их в почве, снижают урожай, если они присутствуют в избытке. Значит, факторы могут быть лимитирующими (ограничивающими), находясь не только в минимуме, но и в максимуме.

Лимитирующие экологические факторы ─ это факторы, которые ограничивают развитие организмов из-за недостатка или их избытка по сравнению с потребностью (оптимальным содержанием).

Нехватка одного вещества часто приводит к дефициту других веществ.

Например, недостаток влаги в почве ограничивает поступление в растения всех остальных веществ, необходимых для их питания. Так как именно вода переносит растворённые питательные вещества из почвы к корневой системе растений, обеспечивая их рост.

Благополучный рост и развитие растения зависят от совокупного действия всех факторов, включая температуру, влажность, освещённость и т. д.

Но, несмотря на то, что все факторы находятся во взаимовлияющей связи, заменить друг друга они не могут.

Например, нельзя действие влажности (воды) заменить действием углекислого газа или солнечного света, и т.д.

Однако без чего организмы действительно не могут обойтись, так это без ресурсов.

Ресурсы бывают пищевыми – это вещества, которые идут на построение тел, и энергетическими – это энергия, необходимая для жизнедеятельности.

Солнце – это основной источник энергии на планете Земля.


Благодаря незначительной части солнечной энергии обеспечивается жизнедеятельность живых организмов.

Первыми улавливают энергию солнца хлоропласты растений. В хлоропластах встроены фотосинтетические пигменты хлорофиллы, с помощью которых происходит реакция фотосинтеза – синтеза органических веществ из углекислого газа и воды с обязательным использованием энергии света.

Растения Земли поглощают и усваивают всего около 0,3 % энергии излучения Солнца, падающей на земную поверхность. Но и этого, на первый взгляд, маленького количества энергии достаточно, чтобы обеспечить синтез огромного количества массы органического вещества биосферы.

Продуктом фотосинтеза является кислород, самый важный химический элемент для жизни организмов. А также глюкоза, с помощью которой синтезируется целлюлоза, формирующая волокна растений.

Растения служат пищей для животных. При поедании растений происходит расщепление и окисление получивших органических веществ. В результате чего высвобождается энергия, которая расходуется на процессы жизнедеятельности организмов: рост, движение, размножение, развитие, обогрев тела.

Таким образом поглощённая растениями солнечная энергия распределяется между организмами, при переходе по пищевой цепочке от звена к звену.

Помимо энергетического ресурса организмам важны и пищевые ресурсы.

Пищевые ресурсы — это и есть сами организмы. Автотрофные (фото- и хемосинтезирующие) организмы становятся ресурсами для гетеротрофов, принимая участие в пищевой сети.

Питательная ценность растений и животных различна. Важнейшее отличие растительной пищи в том, что растительные клетки окружены стенками, состоящими из целлюлозы лигнина и других веществ, представляющих собой волокна, которые не усваиваются многими животными-консументами.


Наличие этих стенок — основная причина высокого содержания углерода в растениях — потенциального источника большого количества энергии. Эта энергия доступна лишь организмам, способным при помощи фермента расщеплять целлюлозу и лигнин: целлюлозоразрушающие бактерии, многие грибы, черви, гусеницы и улитки.

У большинства млекопитающих (как и большинства других животных) нет ферментов, способных расщеплять целлюлозу. Однако многие травоядные животные (например, жвачные) имеют в пищеварительном тракте бактерии-симбионты, которые расщепляют и помогают хозяевам усваивать целлюлозу. Что касается птиц, то они перетирают её в своём мускулистом желудке.


Различные ткани и органы растений отличаются по своей питательной ценности. Семена любых растений, как правило, обладают более высокой калорийностью, чем другие части растений.

Плотоядным же вообще жевать ничего не нужно, так как все компоненты, необходимые им для жизни, содержатся в мясе жертвы в готовом к усвоению виде, поэтому многие хищники заглатывают пищу целиком.

Состав тела травоядных достаточно однообразен и ничем не отличается от такового у плотоядных, то есть мясо гусеницы, земляных червей и крупных травоядных по содержанию белков, углеводов, жиров, воды и минеральных солей в одном грамме ничем не отличается.


А для растений важным пищевым ресурсом являются элементы минерального питания, которые извлекаются из почвы (если растение наземное) или из воды (если растение водное).

К ним относят азот, фосфор, серу, кальций, магний, железо, а также многие другие элементы. Впоследствии из них строятся огромные молекулы белков, нуклеиновых кислот, углеводов, жиров, то есть жизненно необходимых для клеток веществ.

Читайте также: