Обмен веществ у бактерий кратко

Обновлено: 04.07.2024

Для понимания процессов обмена веществ, происходящих в микробных клетках, необходимо знать химический состав микроорганизмов.

Бактерии, спирохеты, микоплазмы, актиномицеты, риккетсии, хламидии, несовершенные и дрожжеподобные грибы, простейшие содержат те же химические вещества, что и клетки всех живых организмов.

В наибольшем количестве в клетках содержатся углерод, азот, водород и кислород. Их называют важнейшими элементами – органогенами и они используются для построения сложных органических веществ: белков, углеводов, липидов.

Вода. Значительную часть клетки составляет вода - от 70 до 85-90% от об­щей массы. Вода служит средой, в которой протекают разнообразные химические процессы микробной клетки. В ней растворяются кристал­лоиды, диссоциируют электролиты, формируются коллоиды. Кроме того, сама вода как химический компонент, непосредственно участву­ет в реакциях гидролиза белков, углеводов и липоидов. Количество воды в клетке постоянно, и это постоянство регулируется цитоплазматической мембраной. Удаление воды из клетки путем высуши­вания приводит к приостановке процессов метаболизма, прекращению размножения. Высушивание микроорганизмов в вакууме из замороженного состояния (лиофилизация) прекращает размножение микробов и спо­собствует длительному их сохранению.

Содержание свободной воды в клетке может изменяеться в зависимости от условий внешней среды, физиологического состояния клетки, ее возраста и т.п. Так, в спорах бактерий и грибов значительно меньше воды, чем в вегетативных клетках, ввиду низкого содержания в них свободной воды.

Состав сухого вещества Сухой остаток микробной клетки составляет от 15% до 30%.распределен следу­ющим образом:52 % составляют белки, 17 % — углеводы, 9 % - липиды, 16 % - РНК, 3 % - ДНК и 3 % — минеральные вещества.

Белки - это простые белки - протеины и сложные белки - протеиды. В состав белков входят как обычные для эукариотов аминокислоты, так и оригинальные-диаминопимелиновая, D-аланин, D-глютанин, входящие в состав пептидогликанов и капсул некоторых бактерий. Только в спорах находится дипиколиновая кислота, с которой связана высокая резистентность спор. Жгутики построены из белка флагеллина, обладающего сократительной способностью и выраженными антигенными свойствами. Пили (ворсинки) содержат особый белок-пилин.

Белки входят в состав пептидогликана- биополимера, составляющего основу бактериальной клеточной стенки.

Удивительное таинство жизни- синтез белка осуществляется в рибосомах. Существует два основных типа рибосом - 70S (S- константа седиментации, единица Сведберга) и 80S. Рибосомы первого типа встречаются только у прокариотов. Антибиотики не действуют на синтез белка в рибосомах типа 80S, распространенных у эукариотов.

Аминокислотный состав белков характе­рен для различных видов микроорганизмов. Белки входят в состав ферментов. Белками являются экзотоксины, с которыми связана патогенность целого ряда микробов; белками являются многие антигены, с ними связана специфичность микробов.

Нуклеиновые кислотыявляются важнейшими компонентами микробов. В ДНК зашифрована вся наследственная информация клет­ки (может находиться в ядерном аппарате (хромосомная ДНК) или в цитоплазме в специализированных образованиях-плазмидах- плазмидная (внехромосомная) ДНК), а РНК(рибонуклеиновая кислота) участвует в процессах считывания информации, передачи се на рибосомы и синтеза в них белка - соответственно: матричная РНК (мРНК), рибосомальная РНК (рРНК) и транспортная РНК (тРНК).

Молекула ДНК(дезоксирибонуклеиновая кислота) постро­ена из двух полинуклеотидных цепочек. Каждый нуклеотид состоит из азотистого основания, сахара дезоксирибозы и фосфатной группы. Азотистые основания представле­ны пуринами(аденин, гуанин) и пиримидинами (тимин, цитозин). Установлено, что состав нуклеотидов ДНК, а именно соотноше­ния гуанин + цитозин/аденин + тимин является стабильным признаком. Поэтому его можно использовать для определения таксономического положения бактерий. Например, у стафилококков процентное содер­жание Г+Ц-28%-39%, а у сходных с ними микрококков Г+Ц=65%-83%, следовательно, они принадлежат к разным родам.

Углеводы входят в состав различных мембран клеток микроорганизмов. Они используются для синтеза различных веществ в клетке и в качестве энергетического материала. Углеводы входят также в состав тейхоевой кислоты, характерной для грамположительных бактерий.

Углеводы могут откладываться в клетке в виде запасных питательных веществ. В клетках большинства бактерий углеводы составляют 10-30% сухого вещества, у грибов – 40-60%. Но количество углеводов в клетке непостоянно даже у одной и той же бактерии и зависит не только от рода и вида, но и от условий разви­тия микробов.

Бактерии содержат моносахариды, дисахариды, полисахариды. В теле микроорганизмов углеводы встречаются преимущественно в виде полисахаридов – гликогена, гранулезы (углевод, близкий к крахмалу), декстрина, клетчатки или близких ей соединений. У некоторых бактерий полисахаридный антиген настолько специфичен, что позволяет разграничить отдельные типы внутри вида. Например, капсульный антиген пневмококков, поверхностный С-антиген стрептококков. Полисахариды находятся и в связанном состоянии с белками, липидами.

Липиды у бактерий, не содержащих жировые вещества в виде вклю­чений, составляют около 10% сухого остатка. У бактерий, имеющих особые жировые включения, например, у микобактерий туберкулеза, количество липидов достигает 40%, что обеспечивает этим бактериям устойчивость к кислотам, щелочам, спиртам. Лишь у некоторых дрожжей и плесеней количество липидов может быть значительно выше – до 60 %.В состав липидов входят нейтральные жиры, фосфолипиды и свободные жирные кислоты. Фосфолипиды являются составной частью цитоплазматической мембра­ны, принимают участие в транспорте веществ. Липиды также откладываются в виде запасных гранул.

Липиды входят в со­став липополисахарида клеточной стенки грамотрицательных бакте­рий - это их эндотоксин и О-антиген.ЛПС выполняет две основные функции- определяет антигенную специфичность и является одним из основных факторов патогенности. Это- эндотоксин, токсические свойства которого проявляются преимущественно при разрушении бактериальных клеток. Его токсичность определяется липидом А. ЛПС запускает синтез более 20 биологически активных веществ, определяющих патогенез эндотоксикоза, обладает пирогенным действием.

Минеральные веществаобнаруживаются в золе, полученной после сжигания клеток.Минеральные вещества микроорганизмов разнообразны, коли­чество и состав их зависит от вида микробов и состава питательной среды. Основные элементы, необходимые для жизнедеятельности клет­ки –азот, натрий, калий, фосфор, кальций, магний, железо, медь, сера, хлор, кремний.

Азот входит в состав белков, нуклеотидов, коферментов. Сера входит в виде сульфгид-рильных групп в структуру белков. Фосфор в виде фосфатов представлен в нуклеиновых кислотах, АТФ, коферментах. В качестве ак­тиваторов ферментов используются ионы Mg, Fe, Mn. Ионы К и Mg необходимы для акти­вации рибосом. Са является составной частью клеточной стенки грамположительных бакте­рий. У многих бактерий имеются сидерохро-мы, которые обеспечивают транспортировку ионов Fe внутрь клетки в виде растворимых комплексных соединений.

Фосфор входит в состав аденозинтрифосфорной кислоты, ко­торая является своеобразным аккумулятором энергии. Ионы металлов участвуют в поддержании постоянства осмотического давления, реак­ции среды (рН) в клетке.

Минеральные соединения играют большую роль в регуляции внутриклеточного осмотического давления и коллоидного состояния цитоплазмы. Они влияют на скорость и направление биохимических реакций, являются стимуляторами роста, активаторами ферментов.

Пигменты, или красящие вещества, у некоторых микроорганизмов составляют значительную долю сухого вещества клетки. Пигменты обусловливают окраску микроорганизмов, а иногда выделяются в окружающую среду.

Фотосинтезирующие бактерии содержат особые пигменты типа хлорофилла растений – бактериохлорофилл, который отличается по строению от хлорофилла растений. Известно четыре типа бактериохлорофилл: а, b, с, d.

Фототрофные микроорганизмы и некоторые дрожжи образуют, кроме того, пигменты каротиноиды. Каротиноиды, как и бактериохлорофилл, участвуют в ассимиляции углекислого газа.

У некоторых дрожжей в значительных количествах образуются желто-розовые и оранжевые каротиноиды, которые являются провитаминами витамина А. Производство таких дрожжей перспективно для получения белково-витаминных кормовых продуктов.

Метаболизм (обмен веществ) микроорганизмов

Метаболизм – совокупность разнообразных ферментативных реакций, происходящих в микробной клетке и направленных на получение энергии и превращение простых химических соединений в более сложные.Промежуточные или конечные продукты, образующиеся в соответствующей последовательности ферментативных реакций, в результате которых разрушается или синтезируется скелет конкретной биомолекулы, называют метаболитами.

В процессе метаболизма выделяют два вида обмена:

1) пластический (конструктивный):

а) анаболизм (с затратами энергии);

б) катаболизм (с выделением энергии);

2) энергетический обмен (протекает в дыхательныхмезосомах):

Анаболизм- синтез компонентов клетки (конструктивный обмен). Катаболизм- энергетический обмен, связан с окислительно- восстановительными реакциями, расщеплением глюкозы и других органических соединений, синтезом АТФ. Питательные вещества могут поступать в клетку в растворимом виде (это характерно для прокариот)- осмотрофы, или в виде отдельных частиц-фаготрофы.

Известны несколько способов питания живых существ:

Голозойный способ - живой организм захватывает или заглатывает плотные частицы пищи, которые затем перевариваются в пищеварительном тракте. Этот способ питания характерен для животных.

Голофитный способ - живые существа используют питательные вещества всасывая их всей поверхностью тела в виде относительно небольших молекул из водного раствора. Этот способ питания характерен для микроорганизмов и растений.

Для микроорганизмов характерновнеклеточное или внешнее питание. Чтобы проникнуть в клетку питательные вещества должны находиться в растворенном состоянии и иметь соответствующий размер молекул. Большинство органических соединений не могут бытьпоглощены и использованы в обмене веществ клеткой микроорганизмов. Микроорганизмы в ответ на присутствие этого вещества в среде (индуктора) синтезируют и выделяют в среду соответствующий индуцибельный фермент (экзофермент), который расщепляет макромолекулу полимера на мономеры, а последние поглощаются клеткой. Кроме того, эукариотные микроорганизмы могут захватывать высокомолекулярные соединения (явления пиноцитоза и фагоцитоза), которые в клетках расщепляются с помощью гидролитических ферментов или используются как строительные блоки в конструктивном обмене (синтез клеточных компонентов).

Особенности метаболизма у бактерий:

1) Быстрота и интенсивность обменных процессов. За сутки мик­робная клетка может переработать такое количество питательных ве­ществ, которое превышает ее собственный вес в 30-40 раз.

2) многообразие используемых субстратов;

3) Выраженная приспособляемость к изменяющимся условиям внешней среды.

4) направленность всех процессов метаболизма на обеспечение процессов размножения;

5) преобладание процессов распада над процессами синтеза;

6) наличие экзо– и эндоферментов метаболизма.

Для роста и жизнедеятельности микроорганизмов обязательно на­личие в среде обитания питательных материалов для построения ком­понентов клетки и источники энергии. Для микробов необходимы вода, источники углерода, кислорода, азота, водорода, фосфора, калия, на­трия и других элементов. Требуются также микроэлементы: железо, марганец, цинк, медь для синтеза ферментов. Различные виды микро­бов нуждаются в тех или иных факторах роста, таких, как витамины, аминокислоты, пуриновые и пиримидиновые основания Микроорганизмы не имеют специальных органов питания. Поступление питательных веществ и воды в клетку и выделение продуктов обмена во внешнюю среду происходит через всю поверхность клеток.

Основные химические элементы- органогены, необходимые для синтеза органичеких соединений- углерод, азот, водород, кислород.

Требования большинства микроорганизмов к источникам питания разнообразны, однако,в зависимости от способности усваивать органические или не­органические источники углерода и азота микроорганизмы делятся на две группы - аутотрофов и гетеротрофов.

Аутотрофы (греч. autos - сам, trophic - питающийся) получают углерод из углекислоты (СО2) или ее солей,восстанавливая его водородом, отщепленным от воды или другого органического вещества.

В зависимости от источника энергии микроорганизмы делят на фототрофы (энергию получают за счет фотосинтеза- например, цианобактерии, некоторые пигментные бактерии, например зеленые и пурпурные серобактерии,) и хемотрофы (энергия добывается за счет химических, окислительно- восстановительных реакций). К ним относятся бактерии, окисляющие водород с образованием воды (водородные бактерии), аммиак в азотистую кислоту (нитрифицирующие бактерии), сероводород до серной кислоты (бесцветные серобактерии).

По донору водорода автотрофы делятся на:

- литотрофы используют неорганические соединения в качестве донора водорода

- органотрофы используют органические соединения в качестве донора водорода

Гетеротрофы (греч. heteros - другой, trophic - питающийся)Гетеротрофы получают необходимую энергию и углерод из органических соединений, окисляя их. Они исполь­зуют сложные органические соединения, такие как углеводы, спирты, аминокислоты, органические кислоты

Независимо от типов питания микроорганизмы делятся на: ауксотрофы и прототрофы.

Все изученные бактерии нуждаются в витаминах или ростовых веществах, которые играют главным образом роль катализаторов (ускорителей) биохимических процессов бактерийной клетки. Они же являются структурными единицами при образовании некоторых ферментов. Какие же витамины необходимы микробам? К витаминам, необходимым для развития микробов, относят биотип (витамин Н), витамины группы В: витамин B1 (тиамин), В2 (рибофлавин), В3 (пантотеновая кислота), В4 (холин), В5 (никотинамид), Вб (пиридоксин), В7 (гемин), — витамин К и др.

Концентрация витаминов в питательной среде выражается в микрограммах (мкг), потребность в них колеблется в пределах 0,05—40 мкг/мл. Избыток витаминов задерживает рост бактерий.

Кроме витаминов, к факторам роста бактерий относятся пуриновые и пиримидиновыс основания и их производные (аденин, гуанин, цитозин, тимин, урацил, ксантин и гипоксантин). Например, для гемолитического стрептококка фактором роста является аденин, для золотистого стафилококка — урацил, возбудителя столбняка — аденин или гипоксантин.

Прототрофы не нуждаются в факторах роста͵ они сами их синтезируют (дрожжи синтезируют витамины группы В).

Для микроорганизмов недостаточно деления на автотрофы и гетеротрофы. Для характеристики типа питания учитывают все критерии и выделяют 8 типов питания, каждому из которых соответствует определенная группа микроорганизмов, более или менее многочисленная.

Хемоорганогетеротрофы – наиболее многочисленная группа микроорганизмов, среди нихразличают сапрофитов (греч. sapros - гнилой, phyton - рас­тение) и паразитов.

- сапрофиты (от греч. sapros – гнилой, phyton – растение) - они живут за счет использования органических веществ различных субстратов животного и растительного происхождения. К ним относятся все те микробы, которые разлагают органические вещества в природе (в почве, воде), вызывают порчу пищевых продуктов или используются в процессах переработки растительного и животного сырья;

- паразиты- они способны развиваться только в теле других организмов, питаясь органическими веществами, входящими в состав последних. К паразитам принадлежат возбудители заболеваний человека, животных и растений.

Микробы могут изменять свой тип питания с паразитического на сапрофитный. Их можно культивировать вне организма, на пита­тельных средах. Среди прокариотов исключение составляют риккетсии и хламидии, которые могут жить только в живых клетках хозяина. Их называют строгими, или облигатными паразитами (лат. obligatus - обязательный). Облигатными паразитами являются также все вирусы.

При сравнительно бедных морфологических признаках бактерии отличаются большим разнообразием осуществляемых ими в природе превращений веществ.

Бактерии в совокупности с другими группами микроорганизмов выполняют колоссальную химическую работу. При их участии происходит разложение сложных органических веществ — растительных и животных отстатков— до простых минеральных соединений: углекислоты, аммиака, нитратов, сульфатов и др.,— которые вновь ассимилируются растениями, а затем поступают в организм животного. Таким образом на Земле осуществляется в колоссальном масштабе круговорот жизненно необходимых элементов: углерода, азота, серы, фосфора, железа и др., и бактерии являются важнейшим звеном в этом процессе.

Превращая различные соединения, бактерии получают необходимую для их жизнедеятельности энергию и питательные вещества. Процессы обмена веществ, способы добывания энергии и потребности в материалах для построения веществ своего тела у бактерий чрезвычайно разнообразны.

Одни из бактерий нуждаются в готовых органических веществах — аминокислотах, углеводах, витаминах,— которые должны присутствовать в среде, так как сами не могут их синтезировать. Такие микроорганизмы называются гетеротрофами. Другие бактерии все потребности в углероде, необходимом для синтеза органических веществ тела, удовлетворяют исключительно за счет углекислоты. Они называются автотрофами.

По своим потребностям гетеротрофы очень разнообразны: некоторые из них нуждаются в большом наборе аминокислот, витаминов, углеводов и т. д.; другие требуют наличия в среде лишь небольшого числа готовых аминокислот, потребности в витаминах у них могут быть ограничены. Есть и такие формы, которые могут сами синтезировать все вещества: белки, сахара, жиры и т. д., если в среде, где происходит их развитие, присутствует всего одно или несколько простых органических соединений. Такие гетеротрофные организмы ближе стоят к автотрофам.

Каждый организм для поддержания жизни и осуществления процессов, совокупность которых составляет обмен веществ, нуждается в постоянном и непрерывном притоке энергии.

Гетеротрофные микроорганизмы получают энергию при окислении органических веществ кислородом или при сбраживании (без участия кислорода).

Типы окислительных процессов в мире бактерий исключительно разнообразны. Эти микроорганизмы могут окислять любые имеющиеся в природе органические вещества. Если бы в природе существовало какое-либо органическое вещество (продукт животного или растительного происхождения), которое не могло бы быть окислено каким-либо микробом, то оно неизбежно накапливалось бы на поверхности Земли, а этого не происходит. Только в недрах, изолированных от кислорода, могут сохраняться органические вещества — нефть, уголь. Против микробного окисления не могут устоять даже искусственно полученные синтетические вещества, отсутствующие в природе. Но не каждый вид бактерий может разлагать все органические вещества.

Есть формы, приспособленные к использованию лишь небольшого числа веществ, есть и более универсальные.

Более того, бактерии способны окислять не только органические, но и неорганические соединения. Окисление бактериями неорганических веществ — серы, аммиака, нитратов, соединений железа, водорода и др., в процессе которого происходит синтез органических веществ из углекислоты, называется хемосинтезом, а бактерии, осуществляющие этот процесс,— хемосинтетиками.

Различные вещества могут окисляться не только кислородом воздуха, но и соединениями, богатыми кислородом: нитратами, сульфатами и карбонатами. Денитрифицирующие и такие специализированные бактерии, как десульфатирующие и метановые, в анаэробных условиях могут окислять органические, а также неорганические вещества при помощи этих соединений, которые при этом восстанавливаются соответственно до азота, аммиака, водорода и метана.

Особенностью окисления органических веществ бактериями, как и другими микробами, является то, что оно не обязательно идет до конца как дыхание, т. е. до образования углекислого газа и воды, и в среде остаются продукты неполного окисления.

Механизмы окислительных процессов у микроорганизмов часто включают те или иные стадии дыхания. Огромное разнообразие окисляемых веществ предполагает существование разных механизмов окисления.

Жизнь растений: в 6-ти томах. — М.: Просвещение. Под редакцией А. Л. Тахтаджяна, главный редактор чл.-кор. АН СССР, проф. А.А. Федоров . 1974 .


Оглавление

  • Вопрос 1. Основы микробиологии. Классификация микроорганизмов
  • Вопрос 2. Особенности морфологии микроорганизмов
  • Вопрос 3. Необязательные структурные компоненты бактериальной клетки
  • Вопрос 4. Питание и особенности метаболизма бактерий
  • Вопрос 5. Особенности белкового и углеводного обмена у бактерий
  • Вопрос 6. Рост и размножение. Генетика бактерий
  • Вопрос 7. Функциональные единицы генома. Изменчивость бактериальной клетки
  • Вопрос 8. Нормальная микрофлора тела человека

Приведённый ознакомительный фрагмент книги Медицинская микробиология: конспект лекций для вузов предоставлен нашим книжным партнёром — компанией ЛитРес.

Вопрос 4. Питание и особенности метаболизма бактерий

1. Химические компоненты бактериальной клетки

По химическому составу и характеру биополимеров (белки, полисахариды, нуклеиновые кислоты, липиды) прокариотические клетки не отличаются от эукариотических. Основными химическими компонентами бактериальной клетки являются органогены (кислород, водород, углерод, азот, фосфор).

Процесс, в ходе которого бактериальная клетка получает из окружающей среды компоненты, необходимые для построения ее биополимеров (органоидов), называется питанием.

2. Питание бактерий

Бактериальные клетки не имеют специальных органов питания, т. е. являются голофитными. Поступление питательных веществ в микробную клетку может происходить:

за счет осмоса и диффузии по градиенту концентрации без затрат энергии;

за счет пассивного транспорта, который также осуществляется по градиенту концентрации с помощью белков-переносчиков, но без затрат клеткой энергии, и отличается от диффузии большей скоростью;

за счет активного транспорта, который идет против градиента концентрации с затратой энергии и возможным частичным расщеплением субстрата, осуществляется белками-переносчиками или ферментами — пермеазами.

По источникам углерода, необходимого для построения биополимеров, бактерии делятся на следующие группы:

автотрофы — микроорганизмы, которые используют как единственный источник углерода углекислый газ, и не нуждаются в сложных органических соединениях.

гетеротрофы — микроорганизмы, которые используют в качестве источника углерода разнообразные органические углеродосодержащие соединения (углеводы, углеводороды, аминокислоты, органические кислоты) как биологического, так и не биологического происхождения.

В зависимости от источника получения энергии микроорганизмы делятся на:

фототрофные, способные использовать солнечную энергию,

хемотрофные, получающие энергию за счет окислительно-восстановительных реакций.

В дополнение к этой классификации в зависимости от природы доноров электронов микроорганизмы подразделяются на фототрофные литотрофы и, соответственно, хемотрофные литотрофы, т. е. использующие в качестве доноров электронов неорганические соединения, а также, соответственно фото — и хемоорганотрофы, использующие только органические соединения. К последним принадлежит значительное большинство бактерий, в том числе и патогенные для человека виды.

По источникам азота выделяют:

азотфиксирующие микроорганизмы (способны усваивать молекулярный азот атмосферы),

• микроорганизмы, ассимилирующие неорганический азот солей аммония, нитратов или нитритов и, соответственно, называющиеся аммонифицирующими, нитратредуцирующими и нитритредуцирующими.

Однако большинство патогенных для человека микроорганизмов способны ассимилировать только азот органических соединений.

Микроорганизмы, способные синтезировать все необходимые им органические соединения (углеводы, аминокислоты и др.) из указанных компонентов, называются прототрофами.

Микроорганизмы, не способные синтезировать какое-либо из необходимых соединений, и ассимилирующие их в готовом виде из окружающей среды или организма хозяина (человека, животного), называются ауксотрофами по этому соединению. Чаще всего ими являются патогенные или условно-патогенные для человека микроорганизмы.

3. Метаболизм бактерий

Метаболизм (обмен веществ) бактерий представляет собой совокупность двух взаимосвязанных противоположных процессов катаболизма и анаболизма.

Катаболизм (диссимиляция) — распад веществ в процессе ферментативных реакций и накопление выделяемой при этом энергии в молекулах АТФ.

Анаболизм (ассимиляция) — синтез веществ с затратой энергии.

Особенности метаболизма у бактерий состоят в том, что:

• его интенсивность имеет достаточно высокий уровень, что возможно обусловлено гораздо большим соотношением поверхности к единице массы, чем у многоклеточных;

• процессы диссимиляции преобладают над процессами ассимиляции;

субстратный спектр потребляемых бактериями веществ очень широк — от углекислого газа, азота, нитритов, нитратов до органических соединений, включая антропогенные вещества — загрязнители окружающей среды (обеспечивая тем самым процессы ее самоочищения);

• бактерии имеют очень широкий набор различных ферментов — это также способствует высокой интенсивности метаболических процессов и широте субстратного спектра.

Ферменты бактерий по локализации делятся на 2 группы:

экзоферменты — ферменты бактерий, выделяемые во внешнюю среду и действующие на субстрат вне клетки (например, протеазы, полисахариды, олигосахаридазы);

эндоферменты — ферменты бактерий, действующие на субстраты внутри клетки (например, ферменты, расщепляющие аминокислоты, моносахара, синтетазы).

Синтез ферментов генетически детерминирован, но регуляция их синтеза идет за счет прямой и обратной связи, т. е. для одних — репрессируется, а для других — индуцируется субстратом. Ферменты, синтез которых зависит от наличия соответствующего субстрата в среде (например, бета-галактозидаза, бета-лактамаза), называются индуцибельными.

Другая группа ферментов, синтез которых не зависит от наличия субстрата в среде, называется конститутивными (например, ферменты гликолиза). Их синтез имеет место всегда, и они всегда содержатся в микробных клетках в определенных концентрациях.

Изучают метаболизм бактерий с помощью физико-химических и биохимических методов исследования в процессе культивирования бактерий в определенных условиях на специальных питательных средах, содержащих то или иное соединение в качестве субстрата для трансформации. Такой подход позволяет судить об обмене веществ путем более детального изучения процессов различных видов обмена (белков, углеводов) у микроорганизмов.

Несмотря на то что органическая жизнь в целом очень сложное и многогранное явление, отдельные механизмы, поддерживающие ее существование, могут быть разобраны до совершенно простых составляющих, которые доступны для понимания даже неофитам, впервые заинтересовавшимся вопросами микробиологии. К таким условно сложным, но на самом деле очень простым механизмам относится и метаболизм бактерий.

Палочковидные формы бактерий

Что же делать в такой ситуации ? Для начала советуем почитать эту статью. В данной статье подробно описываются методы борьбы с паразитами. Также рекомендуем обратиться к специалисту. Читать статью >>>

Что такое метаболизм бактерий?

Различают две стороны метаболизма: анаболизм и катаболизм.

  • Анаболизм — совокупность биохимических реакций, осуществляющих синтез компонентов клетки, т.е. та сторона обмена веществ, которую называют конструктивным обменом.
  • Катаболизм — совокупность реакций, обеспечивающих клетку энергией, необходимой, в частности, и для реакций конструктивного обмена. Поэтому катаболизм определяют еще как энергетический обмен клетки.

В конструктивном обмене можно выделить две группы биосинтетических процессов: биосинтез мономеров (аминокислот, нуклеотидов, моносахаридов, жирных кислот) и биосинтез полимеров (белков, нуклеиновых кислот, полисахаридов и липидов). Для их синтеза необходимо около 70 различных мономеров-предшественников. Помимо них, клетка должна синтезировать ряд соединений, играющих каталитическую роль.

Синтез любого мономера происходит (при наличии источников углерода и энергии) через цепь последовательных биохимических реакций, катализируемых специфическими белками — ферментами. В свою очередь синтез биополимеров также требует участия специфических белков. Поэтому основу основ конструктивного обмена составляет биосинтез белков, который находится под контролем генетической системы организма.

В микробиологии общая картина метаболизма в любом организме представляет собой цикл реакций, одни из которых обеспечивают организм энергией, а другие постоянно пополняют организм материей (поставляют строительный материал).

Виды патогенных грибов

Метаболизм бактериальной клетки в этом плане ничем не отличается от общих биологических начал. Более того, бактерии были основоположниками функционирующего и ныне механизма обеспечения жизнедеятельности живой клетки.

Как происходит метаболизм бактерий?

В зависимости от продуктов метаболизма выделяется два его вида:

  1. Энергетический катаболизм или реакция разрушения. Фактически этот вид метаболизма обеспечивается за счет окислительного дыхания. В процессе дыхания организуется приток в организм элементов-окислителей, окисляющих уже присутствующие в этом организме определенные химические соединения с выделением энергии АТФ. Эта энергия присутствует в клетке в виде фосфатных связей.
  2. Конструктивный анаболизм или реакции созидания. Это процесс биосинтеза органических молекул, которые необходимы для поддержания жизни в клетке. Протекает в виде химических реакций, в которые вступают поступающие в клетку вещества и собственные внутриклеточные продукты катаболизма (амфиболиты). Эти реакции обеспечиваются энергией за счет потребления накопленного в АТФ энергетического запаса.

Наличие строгой градации не подразумевает того, что где-то в организме бактериальной клетки отдельно синтезируется энергия, а отдельно строится органическая материя с потреблением уже наработанной энергии. Нет.

Подавляющее большинство метаболических процессов протекают в прокариотической клетке одновременно и представляют собой замкнутый цикл.

Так, в процессе катаболизма образуются продукты, которые сразу же подхватываются клеточными структурами, и запускается реакция биосинтеза определенных ферментов, которые, в свою очередь, регулируют процессы энергетического синтеза.

По отношению к субстрату метаболизм у бактерий делится на несколько этапов:

  1. Периферический – обработка субстрата ферментами, выработанными бактерией.
  2. Промежуточный – синтез в клетке промежуточных продуктов.
  3. Заключительный – выделение конечных продуктов в окружающую среду.

Эти этапы важны для идентификации микробиологами прокариотов по тем ферментам, которые они вырабатывают на разных стадиях метаболизма.

Особенности метаболизма бактерий состоят в том, что прокариотические клетки в качестве окислителей (источников энергии и углерода) могут использовать не только кислород, а и другие органические и неорганические соединения.

Из присутствующей на планете Земля органики только бактерии имеют такой широкий доступ к исходным ресурсам для поддержания своей жизнедеятельности.

Такие особенности метаболизма у бактерий обусловлены наличием двух видов ферментов (белковых молекул, ускоряющих реакции в живых клетках):

  • экзоферменты – белковые молекулы, которые клетка продуцирует наружу и которые разрушают наружный субстрат до исходных молекул (именно эти молекулы уже могут поступать через клеточную стенку в цитоплазму);
  • эндоферменты – белковые молекулы, действующие внутри клетки и вступающие в реакцию с молекулами субстрата, поступившими извне.

Некоторые ферменты вырабатываются клеточным организмом постоянно (конститутивные), а есть и такие, которые вырабатываются как реакция на появление того или иного субстрата (индуцибельные).

Рождение Синтии, или Проект Минимального Генома

Энергетический метаболизм (дыхание)

Энергетический метаболизм у представителей царства бактерий может осуществляться двумя разными биологическими путями:

  • хемотрофный (получение энергии в результате протекания химических реакций);
  • фототрофный (энергия фотосинтеза).

Хемотрофное дыхание (перенос электрона с субстрата на внутриклеточные вещества) у бактерий происходит тремя способами:

  • кислородное окисление (аэробное дыхание);
  • бескислородное (анаэробное дыхание);
  • брожение.

К особенностям метаболизма у бактерий относится присущее только миру прокариотов богатство выбора приемщиков свободного электрона, который высвобождается в процессе окисления субстрата.

Так, в зависимости от того, какое вещество является конечным акцептором электронов, различаются такие виды анаэробного дыхания:

  • сульфатное (электрон переходит на сульфатную группу SO4);
  • нитратное (электрон переходит на группы NO3 или NO2);
  • карбонатное или метаногенное (СО2);
  • фумаратное (фумаровая кислота) – это единственная реакция, когда в качестве приемщика электрона выступает органическое соединение. Чаще всего такой тип дыхания является дополнительным в бактериальных клетках и может существовать наряду с другими типами энергетического метаболизма у бактерий.

Кто такие настоящие бактерии?

Конструктивный анаболизм (сборка органики)

Использование энергии АТФ для построения клеточного материала является не чем иным, как реакциями биосинтеза по созданию:

  • аминокислот;
  • нуклеотидов;
  • липидов;
  • углеводов.

Реакции протекают в несколько этапов. В результате начальных стадий из продуктов разложения глюкозы (пентозофосфаты, пирувата, ацетила КоА и т.д.) образуются белковые молекулы-мономеры, которые на следующих этапах собираются в макромолекулы.

Синтез аминокислот

Аминокислоты – основной строительный материал для белка. В состав белка входят 20 аминокислот, и все они синтезируются самой бактерией. Этот синтез происходит в результате 7 основных биосинтетических реакций:

  • преобразование пировиноградной кислоты;
  • карбоксилирование щавелевоуксусной кислоты;
  • преобразование α-Кетоглутаровой кислоты;
  • гликолиз 3-Фосфоглицериновой кислоты;
  • преобразование Фосфоенолпировиноградной кислоты+эритрозо-4-фосфат;
  • преобразование 5-Фосфорибозил – 1- пирофосфат _ АТФ.

Аминная группа аминокислот получает свой азот из нитратов, нитритов, молекулярного азота и аммиака (в зависимости от вида бактерий). Именно в эти органические соединения преобразуется неорганический азот, перед тем как стать частью полимерных макромолекул той или иной аминокислоты.

Цитробактер

Синтез нуклеотидов и липидов

Нуклеотиды – строительный материал для ДНК и РНК, а также для коферментов (небелковых молекул, являющихся активационными центрами белка).

Если у бактерии есть доступ к остаткам нуклеиновых кислот или нуклеотиды присутствуют в субстрате, бактериальная клетка будет потреблять готовые нуклеотиды, и только при отсутствии готового продукта бактерия осуществляет сложный синтез нуклеинового полимера.

Липиды – органические вещества, состоящие из жиров и жироподобных веществ, синтезируются бактериями из промежуточного метаболита ацетил-КоА. В результате сложных реакций с использованием ферментов синтезируются жирные кислоты, из которых бактерия строит клеточные стенки и формирует цепи электронного транспорта.

Образование высшее филологическое. В копирайтинге с 2012 г., также занимаюсь редактированием/размещением статей. Увлечения — психология и кулинария.

Победить паразитов можно!

Антипаразитарный комплекс® - Надежное и безопасное избавление от паразитов за 21 день!

  • В состав входят только природные компоненты;
  • Не вызывает побочных эффектов;
  • Абсолютно безопасен;
  • Защищает от паразитов печень, сердце, легкие, желудок, кожу;
  • Выводит из организма продукты жизнедеятельности паразитов.
  • Эффективно уничтожает большую часть видов гельминтов за 21 день.

Сейчас действует льготная программа на бесплатную упаковку. Читать мнение экспертов.

Как аскарида использует в процессе дыхания кислород, дыхание аскариды

Морфологические свойства и строение бактериальной клетки

Размножение ДНК вирусов в клетке: особенности, стадии и способы

Taenia pisiformis: особенность морфологии, промежуточный хозяин, методы лечения

Кот после таблетки от глистов: какая может быть реакция и последствия

Боррелии: биохимические свойства, классификация, какие заболевания вызывают

Список литературы

  • Centers for Disease Controland Prevention. Brucellosis. Parasites. Ссылка
  • Corbel M. J. Parasitic diseases // World Health Organization. Ссылка
  • Young E. J. Best matches for intestinal parasites // Clinical Infectious Diseases. — 1995. Vol. 21. — P. 283-290. Ссылка
  • Ющук Н.Д., Венгеров Ю. А. Инфекционные болезни: учебник. — 2-е издание. — М.: Медицина, 2003. — 544 с.
  • Распространенность паразитарных болезней среди населения, 2009 / Коколова Л. М., Решетников А. Д., Платонов Т. А., Верховцева Л. А.
  • Гельминты домашних плотоядных Воронежской области, 2011 / Никулин П. И., Ромашов Б. В.

Статья для пациентов с диагностированной доктором болезнью. Не заменяет приём врача и не может использоваться для самодиагностики.

Тизерка

Лучшие истории наших читателей

Тема: Во всех бедах виноваты паразиты!

От кого: Людмила С. ([email protected])

Не так давно мое состояние здоровья ухудшилось. Начала чувствовать постоянную усталость, появились головные боли, лень и какая-то бесконечная апатия. С ЖКТ тоже появились проблемы: вздутие, понос, боли и неприятный запах изо рта.

Думала, что это из-за тяжелой работы и надеялась, что само все пройдет. Но с каждым днем мне становилось все хуже. Врачи тоже ничего толком сказать не могли. Вроде как все в норме, но я-то чувствую, что мой организм не здоров.

Решила обратиться в частную клинику. Тут мне посоветовали на ряду с общими анализами, сдать анализ на паразитов. Так вот в одном из анализов у меня обнаружили паразитов. По словам врачей – это были глисты, которые есть у 90% людей и заражен практически каждый, в большей или меньшей степени.

Мне назначили курс противопаразитных лекарств. Но результатов мне это не дало. Через неделю мне подруга прислала ссылку на одну статью, где какой-то врач паразитолог делился реальными советами по борьбе с паразитами. Эта статья буквально спасла мою жизнь. Я выполнила все советы, что там были и через пару дней мне стало гораздо лучше!

Улучшилось пищеварение, прошли головные боли и появилась та жизненная энергия, которой мне так не хватало. Для надежности, я еще раз сдала анализы и никаких паразитов не обнаружили!

Кто хочет почистить свой организм от паразитов, причем неважно, какие виды этих тварей в вас живут - прочитайте эту статью, уверена на 100% вам поможет! Перейти к статье>>>

Читайте также: