Обмен хромопротеидов биохимия кратко

Обновлено: 05.07.2024

Хромопротеины – сложные белки, имеющие окрашенную простетическую группу. В организме животных они представлены, в основном, флавопротеинами и гемопротеинами. Представителями гемопротеинов являются: гемоглобин, миоглобин, цитохромы, ферменты – каталаза и пероксидаза.

Строение гемоглобина – олигомерный белок, имеющий четвертичную структуру и содержащий в своем составе 4 субъединицы двух типов. Гемоглобин А взрослого человека содержит 2α и 2γ субъединицы. Каждая субъединица состоит из белковой части – глобина и простетической группы – гемма. Белковые части субъединиц разного типа отличаются друг от друга первичной структурой (количеством и порядком расположения аминокислот). Гем в разных типах гемоглобина одинаков.

Гем соединяется с глобином координационной связью между атомом железа и азотом аминокислоты гистидин. Дополнительное взаимодействие – гидрофобное, между неполярными радикалами аминокислот в составе глобина с другой стороны.

Ферменты, катализизующие начальные реакции синтеза гемма локализованы в митохондриях. Исходными субстратами служат сукцинил-КоА и глицин.

Проблемы синтеза и распада хромопротеинов привлекают внимание как исследователей, так и практических врачей по двум основным причинам. Во-первых, вследствие широкого разнообразия биологически важных функций гемоглобина, хлорофилла и цитохромов, в молекулах которых центральную роль играет ядро порфирина, обладающее способностью координационно связываться с ионами металлов (см. главу 2). Во-вторых, изменения синтеза или распада порфиринов и соответственно их комплексов с белками приводят к нарушению жизненно важных функций и развитию болезней у человека и животных.

В данном разделе будут рассмотрены современные представления о синтезе и распаде железопорфиринов, в частности гемоглобина – наиболее изученного хромопротеина.

В организме человека содержится около 4,5–5,0 г железа. На долю гемоглобина крови из этого количества (если принять за 100% все железо в организме) приходится 60–70%, миоглобина – 3–5%, ферритина – 20% (от 17 до 23%), трансферрина – около 0,18%, функционального железа тканей – до 5%. Содержание железа в организме регулируется главным образом интенсивностью всасывания в кишечнике поступающего с пищей железа. Избыток его не всасывается. Потребность в железе резко возрастает при анемиях различного происхождения. Железо всасывается в кишечнике в виде неорганического двухвалентного иона Fe 2+ после освобождения его из комплексов с белками. В клетках слизистой оболочки кишечника железо уже в трехвалентной форме Fe 3+ соединяется с белком апоферритином с образованием стабильного комплекса ферритина. Дальнейший транспорт железа к местам кроветворения осуществляется в комплексе с β1-глобулинами сыворотки крови (комплекс получил название трансферрина) или железо соединяется с апоферритином тканей, где и депонируется в виде ферритина. При некоторых заболеваниях (например, при гемо-хроматозе) избыток железа откладывается в клетках системы макрофагов в виде гемосидерина – метаболически инертного соединения железа с белком.

Источниками железа для синтетических целей являются пищевые продукты, а также железо, освобождающееся при постоянном распаде эритроцитов в клетках печени и селезенки (около 25 мг в сутки). Простетические группы пищевых хромопротеинов (гемоглобин, миоглобин), включая хло-рофиллпротеины, не используются для синтеза железопротеинов организма, поскольку после переваривания небелковый компонент гем подвергается окислению в гематин, который, как и хлорофилл, не всасывается в кишечнике. Обычно эти пигменты выделяются с содержимым толстой кишки в неизмененной форме или в виде продуктов распада под действием ферментов кишечных бактерий. Следовательно, гемсодержащие соединения пищи не используются в качестве источника порфиринового ядра, а синтез сложного пиррольного комплекса в организме протекает из низкомолекулярных предшественников de novo.

Понятие и особенности хромопротеинов, основные функции и задачи гемоглобина. Определение гликозилированных гемоглобинов, характеристика и отличительные черты аномальных гемоглобинов. Возможные последствия повышения содержания билирубина в крови человека.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 01.05.2017
Размер файла 26,5 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство Здравоохранения и социального развития Республики Казахстан

Южно-Казахстанская государственная фармацевтическая академия

Кафедра биохимии, биологии и микробиологии

Приняла: Кан А.М.

Хромопротеины (от греч. chroma -- краска) -- сложные белки, состоящие из простого белка и связанного с ним окрашенного небелкового компонента -- простетической группы. Различают гемопротеины (содержат в качестве простетической группы гем), магнийпорфирины и флавопротеины (содержат производные изоаллоксазина). Хромопротеины участвуют в таких процессах жизнедеятельности, как фотосинтез, клеточное дыхание и дыхание всего организма, транспорт кислорода и углекислого газа, окислительно-восстановительные реакции, свето- и цветовосприятие.

Хромопротеины являются важнейшими участниками аккумулирования энергии, начиная от фиксации солнечной энергии в зелёных растениях и утилизации её до превращений в организме животных и человека. Хлорофилл (магнийпорфирин) вместе с белком обеспечивает фотосинтетическую активность растений, катализируя расщепление молекулы воды на водород и кислород (поглощением солнечной энергии). Гемопротеины (железопорфирины), напротив, катализируют обратную реакцию -- образование молекулы воды, связанное с освобождением энергии.

Хромопротеины

Для них простетическая часть окрашена (chromos - краска). К хромопротеинам относятся гемоглобин, миоглобин, каталаза, пероксидаза, ряд флавинсодержащих ферментов (сукцинатдегидрогеназа, альдегидоксидаза, ксантиноксидаза), цитохромы (гемсодержащие белки) и т.д. Велика биологическая роль этих белков - участвуют в физиологических процессах: дыхание клетки, транспорте кислорода и углекислого газа, окислительно-восстановительных процессах.

Гемоглобин. Его белковая часть представлена глобином, небелковая - гемом. Это олигомерный белок, т.е. имеет четвертичную структуру, состоящую из 4 субъединиц.

a цепи построены из 141 АК-остатка.

b цепи из 146 АК-остатков [рис. 4-х субъединиц, в каждой нарисована точка - гем].

Каждая из субъединиц связана с гемом:

Основная функция гемоглобина - транспортная (кислород, углекислый газ). Также он представляет собой основную буферную систему крови (75% от всей буферной емкости крови).

- HbO2 - оксигемоглобин (связан с молекулой O2);

- HbOH - метгемоглобин (образуется при соединении с нитросоединениями, не способен связывать кислород).

Типы гемоглобина. Всего известно более 100 типов, но их все делят на 2 группы:

1) Физиологические гемоглобины;

2) Патологические (аномальные).

К физиологическим гемоглобинам относятся:

- Hb P - примитивный гемоглобин, имеет место быть у 1-2 недельного эмбриона;

- Hb F - фетальный или гемоглобин плода, к моменту рождения составляет около 70% всего гемоглобина в крови;

- Hb A, Hb A2, Hb A3 - это гемоглобины взрослого организма. На Hb A приходится около 90-96%.

Физиологические типы гемоглобинов отличаются глобулиновой частью (АК-составом). Например Hb A содержит 2a и 2b субъединицы, а Hb F - 2a и 2g субъединицы.

К аномальным (возникающих при наследственных заболеваниях) гемоглобинам относятся:

- HbS - гемоглобин, сопутствующий серповидно-клеточной анемии. Отличается от нормального тем, что с N-конца в 6 положении b-цепи глутамин заменен на валин.

Миоглобин по сравнению с гемоглобином имеет третичную структуру, одну полипептидную цепь, один гем и может связывать одну молекулу кислорода. Гемоглобин и миоглобин функционируют вместе. Гемоглобин доставляет кислород из легких к тканям, а миоглобин перераспределяет его внутри клетки (доставляет к митохондриям).

Гемоглобин - основной дыхательный белок крови, относящийся к хромопротеидам. Он состоит из белковой (глобин) и небелковой (гем) части, является белком четвертичной структуры и состоит из четырех субъединиц, каждая из которых включает в себя полипептидную цепь, соединенную с гемом, полипептидные цепи попарно одинаковы. Так, гемоглобин взрослого типа (НЬ А) имеет 2а- и 2y-полипептидные цепи. Фетальный гемоглобин, преобладающий в крови новорожденного (Hb F), имеет в своем составе 2а- и 2у-полипептидные цепи. У взрослого человека в крови 95-98% приходится на долю гемоглобина А, 1-1,5% составляет Hb F, 2-2,5% - на гемоглобин А2 (а2б2). Гемоглобин находится в эритроцитах в виде нескольких производных. Присоединение кислорода (к железу тема) приводит к образованию оксигемоглобина (НbО2). Отдав кислород тканям, оксигемоглобин превращается в восстановленную форму (НbО2 ННb). Удаление диоксида углерода (углекислого газа) из тканей происходит путем его присоединения к свободным аминным группам глобина и при этом образуется карбаминогемоглобин (карбгемоглобин). Оксид углерода (СО) при соединении с железом гема образует стойкое соединение карбоксигемоглобин. Оксид углерода является продуктом обмена и образуется эндогенно при распаде гема (в норме - при старении эритроцитов). Содержание карбоксигемоглобина, в первую очередь, является показателем гемолиза эритроцитов. Железо гема находится в двухвалентной форме. При окислении его (Fe2+ Fe3+) образуется метгемоглобин. Окислителями железа гема могут быть различные продукты метаболизма-активные формы кислорода (АФК), ферменты, альдегиды и др. В норме за сутки образуется 2,5% метгемоглобина, а обнаруживается в крови 1,5%. Метгемоглобинредуктазная система восстанавливает метгемоглобин, переводя его в восстановленную форму, возвращая тем самым способность транспортировать кислород. К экзогенным метгемоглобинообразователям относятся нитриты, нитраты, присутствующие в избыточном количестве в воде, в пище, ряд лекарственных препаратов. Гемоглобин, образуя комплексные соединения с различными сульфопроизводными, образует сульфметгемоглобин. У здоровых людей это производное гемоглобина в крови не содержится. Обнаружение его свидетельствует о повышенном содержании сульфопроизводных в воде, пище, воздухе. В связи с этим сульфгемоглобин является своеобразным маркером экологической обстановки. хромопротеин гемоглобин билирубин кровь

Диагностическое значение имеет определение содержания гликозилированных (гликированных) гемоглобинов, образующихся в результате комплексирования гемоглобина с различными углеводородами. 95% от общего количества гликозилированных гемоглобинов приходится на долю гемоглобина A1c, образующегося в результате комплексирования гемоглобина и глюкозы.

Повышение содержания гликозилированных гемоглобинов наблюдается при сахарном диабете.

Определение гликозилированных гемоглобинов производится как для диагностики при массовых обследованиях населения, так и для контроля за соблюдением диеты у больных с сахарным диабетом, при подборе дозы инсулина и контроле за эффективностью лечения.

Содержание гликозилированного гемоглобина (Hb A1c) у здоровых находится в пределах 3-6% от общего гемоглобина или (0,55±0,09) мг фруктозы на 1 мг гемоглобина.

Аномальные гемоглобины

Наличие в эритроцитах людей аномальных или патологических гемоглобинов определяет состояния, обозначаемые как гемоглобинозы, или гемоглобинопатии. Это наследственные аномалии кроветворения, при которых молекулы патологических гемоглобинов имеют измененную структуру, поэтому подобные заболевания относятся к группе так называемых молекулярных болезней.

В настоящее время установлено более 200 аномальных гемоглобинов: B (S), С, D, Е, G, J, I, К, L, M, N, О, Р, Q и других, а также возможные их комбинации (SC, SD и др.).

Гемоглобин S

Отличается от гемоглобина А строением четвертого пептида, в котором на шестом месте вместо глутаминовой кислоты находится электрически нейтральный валин. Гемоглобин S мало растворим, нейтрален по заряду, электрофоретически менее подвижен. В капиллярах при отдаче кислорода гемоглобин S выпадает в осадок в форме веретенообразных кристаллоидов (тактоидов), которые растягивают оболочку и ведут к распаду эритроцитов. У гетерозиготов содержание гемоглобина S равняется 20 - 45 %, у гомозиготов - 60 - 90 %. Гетерозиготная форма аномалии протекает бессимптомно или сопровождается легкой гемолитической анемией. У гомозиготных особей уже с первых месяцев жизни развивается тяжелая форма серповидноклеточной анемии.

Гемоглобин F

Характерный для крови плода фетальный гемоглобин может быть обнаружен в повышенных количествах в эритроцитах крови недоношенных детей, при коклюше, серповидноклеточной анемии, талассемии, врожденной микроцитарной анемии, пернициозной анемии, острых и хронических лейкозах, миеломной болезни. Наибольшее содержание (до 97 %) наблюдается при большой талассемии.

Гемоглобин С

Отличается строением четвертого пептида молекулы гемоглобина, в котором на шестом месте вместо глутаминовой кислоты находится лизин. Центр распространения гена С - северная часть Ганы. Частота гетерозиготности по данным одних авторов, до 15 %, по данным других, - 16,5 - 28 %, среди негров США - 1,8 - 3% на Ямайке - 2,7 % (В. П. Эфроимсон). Наличие гена С в гомозиготном состоянии ведет к развитию выраженной спленомегалии, умеренной микроцитарной анемии с наличием эритроцитов мишеневидной формы. При наличии комбинации гемоглобинов С и S анемия оказывается более тяжелой.

Гемоглобин D

Обнаружен у 2 % берберов Марокко и у 0,4 % негров США. У гомозиготов наблюдается микроцитоз, слабый анизо- и пойкилоцитоз и мишеневидность эритроцитов. Описано несколько гемоглобинов D (в северо-западной Индии, среди сикхов в Индии, на острове Кипр, в Турции).

Гемоглобин Е

Обнаружен у жителей Юго-Восточной Азии: в Кампучии, Таиланде, Бирме, Бенгалии, у веддов Шри-Ланки, в северо-восточной Малайе, у населения Калимантана и Сулавеси. Частота распространения гена С в разных местностях колеблется от 1 - 3 до 13 (Таиланд) - 20 (Бирма) - 28 - 37 % (Кампучия). У гомозиготов ЕЕ наблюдается микроцитоз, компенсированный развитием эритроцитоза (до 7 - 8 x 1012 /л). Отмечены комбинации генов ES и ЕТ, дающие сублетальный эффект. Клинические проявления при других гемоглобинозах выражены слабо, а распространение более ограниченное (гены G, I, J, К, L, M, N, О, Р, Q).

Серповидно-клеточная анемия - это наследственная гемоглобинопатия, связанная с таким нарушением строения белка гемоглобина, при котором он приобретает особое кристаллическое строение - так называемый гемоглобин S. Эритроциты, несущие гемоглобин S вместо нормального гемоглобина А, под микроскопом имеют характерную серпообразную форму (форму серпа), за что эта форма гемоглобинопатии и получила название серповидно-клеточной анемии.

Серповидно-клеточная анемия весьма распространена в регионах мира, эндемичных по малярии, причем больные серповидно-клеточной анемией обладают повышенной (хотя и не абсолютной) врожденной устойчивостью к заражению различными штаммами малярийного плазмодия. Серповидные эритроциты этих больных также не поддаются заражению малярийным плазмодием в пробирке.

Поступающий с пищей гемоглобин в желудочно-кишечном тракте распадается на глобин и гем. Глобин как белок гидролизуется до АК. Гем окисляется в гематин и выводится с калом.

Эндогенный гемоглобин разрушается главным образом в печени, а также в селезенке, костном мозге и других органах. Начальный этап распада гемоглобина - разрыв метинового мостика и образование вердоглобина. Вердоглобин еще содержит в соем составе железо и глобин. Процесс начинается с окисления гема и разрыва системы порфириновых колец. Двухвалентное железо гемоглобина превращается при этом в трехвалентное. Это вердоглобин - от него спонтанно отщепляется белок глобин и освобождается железо. Дальнейшие превращения приводят к потере железа и глобина, в результате чего происходит развертывание порфиринового кольца и образование желчного пигмента биливердина. Глобин гидролизуется до АК, а железо соединяется с белком и под названием ферритина откладывается в организме как запасная форма железа. Оставшаяся небелковая часть биливердина восстанавливается в билирубин. Билирубин транспортируется кровью в печень, где освобождается от белка и обезвреживается путем образования диглюкуронидов. Образующийся же в печени билирубин находится в связанной форме. Из печени билирубин поступает в желчный пузырь и подвергается превращениям. Дальнейшие продукты восстановления получили название уробилиногеновых тел. Почти весь выделяющийся печенью билирубин превращается в стеркобилиноген. У здорового человека ежедневно образуется 250-300 мг билирубина, который почти полностью удаляется из организма. содержание его в крови 0,4-0,8 мг%. повышение содержания билирубина в крови свыше 2 мг% сопровождается развитием желтухи. Железо, освобождающееся в клетках ретикуло-эндотелия при распаде гемоглобина и других хромопротеидов не удаляется из организма, а используется в синтезе нового хромопротеида - ферритина, выполняющего роль депо железа в организме. 2/3 общего количества ферритина содержится в печени. Из печени железо ферритина транспортируется в место синтеза гемоглобина (костный мозг) в виде железосодержащего белка - трансферина.

Изменения в первичной структуре цепей гемоглобина, т.е. замена отдельных АК остатков на другие, является причиной возникновения ряда врожденных заболеваний. Образование значительных количеств аномальных гемоглобинов может обусловливать нарушение дыхательной функции крови.

При нарушении обмена хромопротеидов возникают заболевания:

Серповидноклеточная анемия - это наследственное заболевание. При этом заболевании эритроциты изменяют свою форму за счет выпадения гемоглобина в осадок внутри эритроцитов, в результате чего нарушается функция переноса кислорода.

Желтухи - гемолитическая, механическая и паренхиматозная. гемолитическая желтуха возникает в результате образования избытка билирубина, превосходящего способность нормальных печеночных клеток к конъюгации, при этом в крови накапливается неконъюгированный билирубин.

Порфирии - нарушение процессов синтеза гемоглобина и накопление побочных продуктов. Обусловлены наследственными нарушениями обмена веществ в костном мозгу - эритропоэтические порфирии. Также бывают порфирии, обусловленные аномалией печени - печеночные порфирии. При всех формах имеются поражения кожи, иногда симптомы со стороны нервной системы.

Желчные пигменты - биливердин и билирубин придают окраску желчи. Поступление в желчь служит нормальным путем выведения желчных пигментов, которые являются конечными продуктами катаболизма порфириновых компонентов гемопротеидов. Если желчные пигменты накапливаются в крови и других жидкостях тела, либо при избыточном их образовании, либо в результате недостаточного их выведения с желчью, они придают интенсивную желтую окраску кожи. Это заболевание - желтуха.

В некоторых тканях происходит катаболизм гемопротеидов. Всем знакомо появление целой “радуги”, образуемой желчными пигментами после кровоизлияний и местного распада гемоглобина в коже и подкожной клетчатке, например, при синяках и ссадинах. В норме печень осуществляет эффективное удаление желчных пигментов из циркулирующей крови. После ряда окислительно-восстановительных реакций, катализируемых микроорганизмами кишечника продукты превращения желчных пигментов - уробилины выводятся с фекалиями. Количество билирубина в крови имеет важное значение для этиологии желтухи.

Злокачественная анемия, авитаминоз B12, связаны с нарушением синтеза ДНК и обмена нуклеопротеидов. При этом заболевании снижено количество эритроцитов и, соответственно, гемоглобина. Анемия, развивающаяся при действии ионизирующей радиации: нарушение синтеза ДНК и подавление митотической активности клеток в кроветворных органах и тканях.

Часть сложных белков организма содержит в своем составе гем (гемоглобин, миоглобин, цитохромы, гемсодержащие ферменты). При распаде гема образуется билирубин, который является малорастворимым, токсичным соединением. Током крови билирубин доставляется в печень и там конъюгирует с глюкуроновой кислотой - таким образом повышается его растворимость и снижается токсичность. Под влиянием различных факторов может нарушаться образование и выведение билирубина и продуктов его метаболизма из организма. Повышение содержания билирубина в крови ведет к отложению его в тканях, вызывая их окрашивание в желтый цвет (желтуха).

При употреблении в пищу сложных белков в ЖКТ происходит их распад и отделение белковой части от простетической группы. Полипептидная цепь подвергается расщеплению до аминокислот. Процессы, происходящие с небелковой частью, определяются ее природой.

Важной группой сложных белков являются хромопротеины, в частности, имеющие в составе железо. В организме человека содержится 4,5-5,0 г железа. На долю гемоглобина крови приходится 60-70%. При употреблении в пищу сложных белков, содержащих железо, в кишечнике железо освобождается и всасывается в виде двухвалентного иона. Гем при переваривании подвергается окислению в гематин. Гематин не всасывается в кишечнике. Он выделяется в неизменном виде или распадается под действием ферментов кишечной микрофлоры.

Транспорт железа к местам кроветворения происходит в составе трансферрина - гликопротеина плазмы крови. В клетках тканей железо соединяется с белком апоферритином с образованием ферритина. Функция ферритина - депонирование железа. Больше всего ферритина в печени, селезенке и костном мозге. В соединении с белками железо находится в трехвалентном состоянии. Избыток железа не всасывается. Потребность в железе возрастает при различных анемиях.

Распад гемоглобина в тканях (образование желчных пигментов)

Продолжительность жизни эритроцитов составляет 120 дней. Разрушение эритроцитов и распад гемоглобина протекают в печени, селезенке и костном мозге. Распад гемоглобина начинается с разрыва связи между I и II кольцами порфиринового кольца под действием НАДФ-содержащей оксидазы. Далее распад происходит спонтанно.


Гемоглобин вердоглобин (зеленый пигмент) ®


® биливердин (желчный пигмент) билирубин

Железо

Глобин


Билирубин образуется в печени, селезенке и, по-видимому, эритроцитах. Он поступает в печень, затем с желчью в желчный пузырь.

Свободный билирубин плохо растворим в воде, адсорбируется на белках плазмы крови. Для его определения в крови диазореактивом Эрлиха необходимо предварительное осаждение белков спиртом. Поэтому его называют непрямым. Содержание билирубина в крови: общего - 15 мкмоль/,из этого количестванепрямого - около 75%.Повышение концентрации до
35 мкмоль/л приводит к желтухе, еще более высокий уровень – к тяжелому отравлению. В печени непрямой билирубин обезвреживается связыванием с УДФ-глюкуроновой кислотой под действием фермента УДФ-глюкуронилтрансферазы. Образуется билирубиндиглюкуронид - прямой билирубин. Он хорошо растворим в воде, дает прямую реакцию с диазореактивом.

В желчи всегда присутствует прямой билирубин. В составе желчных камней обнаруживается непрямой билирубин.

В кишечнике под действием бактерий билирубиндиглюкуронид расщепляется. Билирубин восстанавливается до мезобилирубина, затем до мезобилиногена (уробилиногена) и стеркобилиногена. Основная их часть выводится из организма с калом (около 300 мг/сутки), около 5% всасываются в кровь, попадают в желчь или выводятся с мочой (4 мг/сутки). На свету происходит превращение уробилиногена в уробилин. Уробилиноген бесцветен, а уробилин желтого цвета. Поэтому богатая уробилином моча при стоянии темнеет.


билирубин диглюкуронид

Небольшое количество мезобилиногена всасывается, поступает через воротную вену в печень и там разрушается. Повышенное содержание уробилиногена в моче - свидетельство недостаточности функции печени (печеночная или гемолитическая желтуха). Отсутствие стеркобилиногена в моче при наличии билирубина и биливердина - свидетельство полного прекращения поступления желчи в кишечник (закупорка протока желчного пузыря или общего желчного протока в результате желчнокаменной болезни, раковых поражений поджелудочной железы и др.).

В крови количество прямого и непрямого билирубина, а также соотношение между ними резко меняются при поражениях печени, селезенки, костного мозга, болезнях крови и т. д., поэтому определение содержания обеих форм билирубина в крови важно при диагностике различных форм желтухи.

Биосинтез гемоглобина

Синтез пиррольного комплекса в организме протекает из низкомолекулярных предшественников de novo. Источниками железа являются пищевые продукты и железо, освобождающееся при распаде эритроцитов.

Синтез гема.

I стадия. Участвуют глицин и сукцинил-КоА.


Образуется 5-аминолевулиновая кислота (d-АЛК).
5-аминолевулинатсинтаза - ключевой, аллостерический фермент синтеза тетрапирролов. Коферментом является пиридоксальфосфат. Данная реакция индуцируется стероидами и ингибируется по типу обратной связи конечным продуктом - гемом.

II стадия. Образование порфобилиногена ПБГ.


Фермент порфобилиногенсинтаза ингибируется конечными продуктами синтеза.

III стадия. Многоступенчатая. Из 4 молекул порфобилиногена синтезируется тетрапиррольный комплекс протопорфирин IX.

IV стадия. Протопорфирин IX присоединяет железо при участии феррохелатазы (гемсинтазы), и образуется гем. Источником железа является ферритин. В синтезе гема участвуют витамин В12, ионы меди.


Белковая часть молекулы гемоглобина синтезируется так же, как и все остальные белки. Синтез полипептидных цепей гемоглобина происходит только в присутствии гема.

Изменения в синтезе или распаде порфиринов и их комплексов с белками приводят к нарушению жизненно важных функций и развитию болезней.

Свинец вызывает стойкое угнетение фермента аминолевулинатдегидразы, участвующей в синтезе порфобилиногена и гема, что проявляется развитием анемии у детей городов (источник свинца - выхлопные газы автотранспорта).

Порфири́я - наследственное нарушение пигментного обмена, характеризуется нарушением синтеза гема и накоплением его предшественников в тканях. Различают печеночные либо эритропоэические порфирии. Болезнь проявляется фотодерматозом, повреждением хрящей, нервно-психическими расстройствами, гемолитическими кризами, желудочно-кишечными расстройствами.

ОБМЕН НУКЛЕОПРОТЕИНОВ

Распад НК.Под влиянием ферментов желудка, частично соляной кислоты, нуклеопротеины пищи распадаются на полипептиды и НК. Распад НК происходит в тонкой кишке гидролитическим путем под действием нуклеазпанкреатического сока. Нуклеазы относятся к фосфодиэстеразам. Существуют эндонуклеазыи экзонуклеазы, рибонуклеазыи дезоксирибонуклеазы.Продуктами гидролиза являются мононуклеотиды и олигонуклеотиды. Нуклеазы расщепляют молекулы НК и в тканях.

Распад нуклеозидфосфатов.Первая ступень - отщепление остатка фосфорной кислоты. На второй ступени происходит перенос остаткарибозы от нуклеозида на фосфорную кислоту. Эта реакция ускоряется рибозилтрансферазами.

Ф-У-А ® Ф + У-А; У-А + Ф ® У-Ф + А

Распад пуриновых основанийначинается с дезаминирования тех из них, которые обладают аминогруппами. Участвуют специфические аминогидролазы. Аденин превращается в гипоксантин, гуанин – в ксантин.

Гипоксантин и ксантин окисляются в мочевую кислоту, фермент – ксантиноксидаза.


Образование мочевой кислоты происходит главным образом в печени. Это основной продукт катаболизма пуриновых нуклеотидов у человека. В организме в сутки образуется 0,5-1 г мочевой кислоты; выводится она через почки.

Хроническое повышение концентрации мочевой кислоты (гиперурикемия) часто приводит к развитию подагры. Подагрический криз связан с отложением кристаллов урата натрия в суставе. Гиперурикемия обычно имеет наследственный характер.

Распад пиримидиновых оснований также начинается с дезаминирования. Дезаминированные пиримидиновые основания подвергаются восстановлению. Карбаминовая кислота и b-аланин - конечные продукты распада урацила и цитозина. Из тимина вместо b-аланина образуется
b-аминоизомасляная кислота.


®

Контрольные вопросы

1. Каковы характерные особенности обмена белков?

2. Дайте определение понятию "азотистый баланс".

3. Каковы основные причины распада тканевых белков?

4. Охарактеризуйте процесс переваривания белков в желудочно-кишечном тракте.

5. Каков механизм активации протеаз желудочно-кишечного тракта?

6. Какие превращения претерпевают аминокислоты под действием микрофлоры кишечника?

7. Какие белки для человека являются самыми полноценными?

8. Перечислите виды дезаминирования аминокислот.

9. Каково значение реакций трансаминирования?

10. Какие трансаминазы имеют важное значение в диагностике?

11. Приведите примеры реакций, протекающих с участием карбоксильной группы аминокислот.

12. В каком виде аммиак и аминный азот попадают из периферических тканей в печень для образования мочевины?

13. Почему содержание ферментов цикла мочевины возрастает как при обильном белковом питании, так и при голодании?

14. Охарактеризуйте роль фолиевой кислоты в метаболизме аминокислот.

15. Какие аминокислоты являются предшественниками гормонов в организме человека?

16. Приведите примеры заболеваний, развивающихся при нарушениях обмена ароматических аминокислот.

17. Какие вещества образуются при распаде гемоглобина?

18. Какие ферменты участвуют в распаде нуклеиновых кислот?

19. Назовите конечные продукты распада пуриновых и пиримидиновых оснований.

Читайте также: