Неорганические соединения клетки кратко

Обновлено: 06.07.2024

Урок позволит выявить особенности химического состава организмов, роль неорганических (воды, солей) и органических (углеводов, липидов) веществ в жизни клетки и организма.

Обучающиеся узнают, какие химические элементы входят в состав живых организмов, рассмотрят самое важное минеральное вещество на Земле, структуру молекулы воды и её биологическую роль, выяснят физические и химические свойства воды, благодаря которым возможно существование жизни на Земле.

Также обучающиеся увидят особенности строения органических веществ, узнают, на какие классы делятся углеводы и липиды, их значение для жизнедеятельности клетки и организма в целом.

4. Глоссарий по теме (перечень терминов и понятий, введенных на данном уроке);

Биологически значимые элементы, органогены, неорганические вещества, вода, водородная связь, гидрофильные вещества, гидрофобные вещества; органические вещества, регулярные и нерегулярные биополимеры; углеводы, липиды

Биологически значимые элементы – химические элементы, необходимые живым организмам для обеспечения нормальной жизнедеятельности.

Органогены — химические элементы, входящие в состав всех органических соединений, составляют около 98% массы клетки (углерод, водород, кислород, азот).

Неорганические вещества (неорганические соединения) клетки — простые вещества и соединения, не являющиеся органическими, не имеют характерного для органических веществ углеродного скелета.

Органические вещества – это сложные соединения, основой строения которых являются атомы углерода, составляют отличительный признак живого. Органические соединения многообразны, но четыре группы из них имеют всеобщее биологическое значение: белки, нуклеиновые кислоты, углеводы и липиды.

Водородная связь – вид взаимодействия между молекулами вещества. Молекулы воды удерживаются за счет водородных связей, которые возникли между частично положительным атомом водорода одной молекулы и частично отрицательным атомом кислорода другой молекулы. Водородные связи заметно слабее по сравнению с ковалентными. Однако они намного крепче, чем стандартное молекулярное притяжение частиц, свойственное твёрдым и жидким телам.

Гидрофильные вещества – хорошо растворимые в воде вещества, молекулы которых полярны и легко соединяются с молекулами воды. К ним относятся ионные соединения (содержат заряженные частицы): соли, кислоты, основания и полярные соединения (в молекулах присутствуют заряженные группы): сахара, простые спирты, аминокислоты.

Гидрофобные вещества– нерастворимые в воде вещества, энергия притяжения молекул которых к молекулам воды меньше энергии водородных связей молекул воды. К числу гидрофобных веществ относятся жиры, полисахариды, нуклеиновые кислоты, большинство белков.

Буферность – способность клетки поддерживать слабощелочную реакцию своего содержимого на постоянном уровне.

Регулярные полимеры – полимеры, в молекуле которых группа мономеров периодически повторяется (полисахариды).

Нерегулярные полимеры – полимеры, в которых нет определенной закономерности в последовательности мономеров (белки, нуклеиновые кислоты, некоторые полисахариды).

Углеводы – органические соединения, состоящие из атомов углерода, кислорода и водорода. В большинстве углеводов водород и кислород находятся, как правило, в тех же соотношениях, что и в воде (отсюда их название — углеводы).

Полисахариды – высокомолекулярные углеводы, молекулы которых представляют собой длинные линейные или разветвлённые цепочки моносахаридных остатков, соединённых гликозидной связью. При гидролизе образуют моносахариды или олигосахариды.

Липиды — обширная группа органических соединений, включающая жиры и жироподобные вещества. Молекулы простых липидов состоят из спирта и жирных кислот, сложных — из спирта, высокомолекулярных жирных кислот и других компонентов

5. Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц);

  1. Биология. 10 класс: учебник для общеобразоват. организаций: базовый уровень / Д.К. Беляев, Г.М. Дымшиц, Л.Н. Кузнецова и др. /; под ред. Д.К.Беляева и Г.М. Дымшица; стр. 9-19;

6. Открытые электронные ресурсы по теме урока (при наличии);

7. Теоретический материал для самостоятельного изучения;

В состав живой клетки входят те же химические элементы, которые входят в состав неживой природы. Из 104 элементов периодической системы Д. И. Менделеева в клетках обнаружено 60.

Их делят на три группы:

  1. основные элементы — кислород, углерод, водород и азот (98 % состава клетки);
  2. элементы, составляющие десятые и сотые доли процента, — калий, фосфор, сера, магний, железо, хлор, кальций, натрий (в сумме 1,9 %);
  3. все остальные элементы, присутствующие в еще более малых количествах, — микроэлементы.

Молекулярный состав клетки сложный и разнородный. Отдельные соединения — вода и минеральные соли — встречаются также в неживой природе; другие — органические соединения: углеводы, жиры, белки, нуклеиновые кислоты и др.— характерны только для живых организмов.

Неорганические вещества

Вода составляет около 80 % массы клетки; в молодых быстрорастущих клетках — до 95 %, в старых — 60 %.

Роль воды в клетке велика.

Минеральные соли в водных растворах клетки диссоциируют на катионы и анионы, обеспечивая устойчивое количество необходимых химических элементов и осмотическое давление. Из катионов наиболее важны К + , Na + , Са 2+ , Mg + . Концентрация отдельных катионов в клетке и во внеклеточной среде неодинакова. В живой клетке концентрация К высокая, Na + — низкая, а в плазме крови, наоборот, высокая концентрация Na + и низкая К + . Это обусловлено избирательной проницаемостью мембран. Разность в концентрации ионов в клетке и среде обеспечивает поступление воды из окружающей среды в клетку и всасывание воды корнями растений. Недостаток отдельных элементов — Fe, Р, Mg, Со, Zn — блокирует образование нуклеиновых кислот, гемоглобина, белков и других жизненно важных веществ и ведет к серьезным заболеваниям. Анионы определяют постоянство рН-клеточной среды (нейтральной и слабощелочной). Из анионов наиболее важны НРО4 2- , Н2РO4 — , Cl — , HCO3

Органические вещества

Органические вещества в комплексе образуют около 20—30% состава клетки.

Моносахариды (их общая формула СnН2nОn) — бесцветные вещества с приятным сладким вкусом, хорошо растворимы в воде. Они различаются по количеству атомов углерода. Из моносахаридов наиболее распространены гексозы (с 6 атомами С): глюкоза, фруктоза (содержащиеся в фруктах, меде, крови) и галактоза (содержащаяся в молоке). Из пентоз (с 5 атомами С) наиболее распространены рибоза и дезоксирибоза, входящие в состав нуклеиновых кислот и АТФ.

Полисахариды относятся к полимерам — соединениям, у которых многократно повторяется один и тот же мономер. Мономерами полисахаридов являются моносахариды. Полисахариды растворимы в воде, многие обладают сладким вкусом. Из них наиболее просты дисахариды, состоящие из двух моносахаридов. Например, сахароза состоит из глюкозы и фруктозы; молочный сахар — из глюкозы и галактозы. С увеличением числа мономеров растворимость полисахаридов падает. Из высокомолекулярных полисахаридов наиболее распространены у животных гликоген, у растений — крахмал и клетчатка (целлюлоза). Последняя состоит из 150—200 молекул глюкозы.

Углеводы — основной источник энергии для всех форм клеточной активности (движение, биосинтез, секреция и т. д.). Расщепляясь до простейших продуктов СO2 и Н2O, 1 г углевода освобождает 17,6 кДж энергии. Углеводы выполняют строительную функцию у растений (их оболочки состоят из целлюлозы) и роль запасных веществ (у растений — крахмал, у животных — гликоген).

Липиды — это нерастворимые в воде жироподобные вещества и жиры, состоящие из глицерина и высокомолекулярных жирных кислот. Животные жиры содержатся в молоке, мясе, подкожной клетчатке. При комнатной температуре это твердые вещества. У растений жиры находятся в семенах, плодах и других органах. При комнатной температуре это жидкости. С жирами по химической структуре сходны жироподобные вещества. Их много в желтке яиц, клетках мозга и других тканях.

Роль липидов определяется их структурной функцией. Из них состоят клеточные мембраны, которые вследствие своей гидрофобности препятствуют смешению содержимого клетки с окружающей средой. Липиды выполняют энергетическую функцию. Расщепляясь до СO2 и Н2O, 1 г жира выделяет 38,9 кДж энергии. Они плохо проводят тепло, накапливаясь в подкожной клетчатке (и других органах и тканях), выполняют защитную функцию и роль запасных веществ.

8. примеры и разбор решения заданий тренировочного модуля (не менее 2 заданий).

14. Филворд - английский кроссворд

Найдите и выделите цветом по вертикали и горизонтали названия химических элементов:

  1. самый распространённый элемент в земной коре и живых организмов;
  2. элемент – основа строения органических соединений, атомы которого способны соединяться друг с другом и с другими элементами, образуя длинные линейные, разветвленные или кольцевые молекулы;
  3. обязательный элемент в составе белков и нуклеиновых кислот;
  4. преобладающий положительный ион внутри клеток, участвует в создании биоэлектрического потенциала на мембране;
  5. основной компонент костей, зубов, необходим для мышечного сокращения, участвует в свёртывании крови и в синаптической передаче нервного импульса;
  6. структурный компонент хлорофилла, активирует работу многих ферментов;
  7. входит в состав костной ткани, нуклеиновых кислот, в составе сложных липидов образует мембранные структуры;
  8. преобладающий отрицательный ион в организме животных, участвует в создании биоэлектрического потенциала на мембране, компонент соляной кислоты в желудочном соке;
  9. входит в состав гемоглобина, миоглобина;
  10. необходим организмам в следовых количествах, обнаружен в составе некоторых ферментов и в инсулине;
  11. входит в состав гормона щитовидной железы тироксина;
  12. второй по распространённости элемент в земной коре, для некоторых организмов является важным биогенным элементом: входит в состав опорных образований у растений и скелетных — у животных.


Правильный вариант/варианты (или правильные комбинации вариантов):

Подсказка:при необходимости обратитесь к дополнительным материалам

Заполните пропуски в тексте, выбрав вариант ответа из выпадающего списка.

Минеральные вещества в клетке присутствуют в виде ионов и твёрдых нерастворимых солей. Ионы придают внутренней среде клетки или организма _____________________ реакцию среды. Эта способность клетки поддерживать кислотно-щелочной баланс (рН) своего содержимого на постоянном уровне, получила название ___________________________ .

Выпадающий список 1.

Выпадающий список 2.

Правильный вариант/варианты (или правильные комбинации вариантов):выделены жирным шрифтом

В состав клетки входит около 70 элементов Периодической системы элементов Менделеева, а 24 из них присутствуют во всех типах клеток. Все присутствующие в клетке элементы делятся, в зависимости от их содержания в клетке, на группы :

    • макроэлементы – H, O, N, C,. Mg, Na, Ca, Fe, K, P, Cl, S;
    • микроэлементы – В, Ni, Cu, Co, Zn, Mb и др.;
    • ультрамикроэлементы – U, Ra, Au, Pb, Hg, Se и др.

    Другой принцип классификации элементов:

    • органогены (кислород, водород, углерод, азот),
    • макроэлементы,
    • микроэлементы.

    Другой принцип классификации элементов

    В состав клетки входят молекулы неорганических и органических соединений.


    Неорганические соединения клетки – вода и неорганические ионы.
    Вода – важнейшее неорганическое вещество клетки. Все биохимические реакции происходят в водных растворах. Молекула воды имеет нелинейную пространственную структуру и обладает полярностью. Между отдельными молекулами воды образуются водородные связи, определяющие физические и химические свойства воды.

    Физические свойства воды

    Значение для биологических процессов

    Высокая теплоемкость (из-за водородных связей между молекулами) и теплопроводность (из-за небольших размеров молекул)

    Транспирация
    Потоотделение
    Периодическое выпадение осадков

    Прозрачность в видимом участке спектра

    Высокопродуктивные биоценозы прудов, озер, рек ( из-за возможности фотосинтеза на небольшой глубине)

    Практически полная несжимаемость (из-за сил межмолекулярного сцепления)

    Поддержание формы организмов: форма сочных органов растений, положение трав в пространстве, гидростатический скелет круглых червей, медуз, амниотическая жидкость поддерживает и защищает плод млекопитающих

    Подвижность молекул (из-за слабости водородных связей)

    Осмос: поступление воды из почвы; плазмолиз

    Вязкость (водородные связи)

    Смазывающие свойства: синовиальная жидкость в суставах, плевральная жидкость

    Растворитель (полярность молекул)

    Кровь, тканевая жидкость, лимфа, желудочный сок, слюна, у животных; клеточный сок у растений; водные организмы используют растворенный в воде кислород

    Способность образовывать гидратационную оболочку вокруг макромолекул (из-за полярности молекул)

    Дисперсионная среда в коллоидной системе цитоплазмы

    Оптимальное для биологических систем значение сил поверхностного натяжения (из-за сил межмолекулярного сцепления)

    Водные растворы – средство передвижения веществ в организме

    Расширение при замерзании (из-за образования каждой молекулой максимального числа – 4 – водородных связей_

    Лед легче воды, выполняет в водоемах функцию теплоизолятора

    Неорганические ионы:
    катионы K+, Na+, Ca2+ , Mg2+ и анионы Cl–, NO3- , PO4 2-, CO32-, НPO42-.

    Разность между количеством катионов и анионов (Nа+, К+, Сl-) на поверхности и внутри клетки обеспечивает возникновение потенциала действия, что лежит в основе нервного и мышечного возбуждения.
    Анионы фосфорной кислоты создают фосфатную буферную систему, поддерживающую рН внутриклеточной среды организма на уровне 6—9.
    Угольная кислота и ее анионы создают бикарбонатную буферную систему и поддерживают рН внеклеточной среды (плазмы крови) на уровне 7—4.
    Соединения азота служат источником минерального питания, синтеза белков, нуклеиновых кислот.
    Атомы фосфора входят в состав нуклеиновых кислот, фосфолипидов, а также костей позвоночных, хитинового покрова членистоногих.
    Ионы кальция входят в состав вещества костей; они также необходимы для осуществления мышечного сокращения, свертывания крови.

    Таблица. Роль макроэлементов на клеточном и организменном уровне организации.

    Роль макроэлементов на клеточном и организменном уровне организации

    продолжение таблицы

    Продолжение таблицы

    Окончание таблицы

    Таблица. Роль микроэлементов в жизни клетки, растительного и животного организмов.

    Роль микроэлементов в жизни клетки, растительного и животного организмов

    Продолжение таблицы

    Продолжение таблицы

    Тематические задания

    Часть А

    А1. Полярностью воды обусловлена ее способность
    1) проводить тепло
    3) растворять хлорид натрия
    2) поглощать тепло
    4) растворять глицерин

    А2. Больным рахитом детям необходимо давать препараты, содержащие
    1) железо
    2) калий
    3) кальций
    4) цинк

    А3. Проведение нервного импульса обеспечивается ионами:
    1) калия и натрия
    2) фосфора и азота
    3) железа и меди
    4) кислорода и хлора

    А4. Слабые связи между молекулами воды в ее жидкой фазе называются:
    1) ковалентными
    2) гидрофобными
    3) водородными
    4) гидрофильными

    А5. В состав гемоглобина входит
    1) фосфор
    2) железо
    3) сера
    4) магний

    А6. Выберите группу химических элементов, обязательно входящую в состав белков
    1) Na, K, O, S
    2) N, P, C, Cl
    3) C, S, Fe, O
    4) C, H, O, N

    А7. Пациентам с гипофункцией щитовидной железы дают препараты, содержащие
    1) йод
    2) железо
    3) фосфор
    4) натрий

    Часть В

    В1. Выберите функции воды в клетке
    1) энергетическая
    2) ферментативная
    3) транспортная
    4) строительная
    5) смазывающая
    6) терморегуляционная

    В2. Выберите только физические свойства воды
    1) способность к диссоциации
    2) гидролиз солей
    3) плотность
    4) теплопроводность
    5) электропроводность
    6) донорство электронов

    Часть С

    С1. Какие физические свойства воды определяют ее биологическое значение?

    Все клетки, независимо от уровня организации, сходны по химическому составу. В клетке содержится несколько тысяч веществ, которые участвуют в разнообразных химических реакциях. В живых организмах обнаружено около 80 химических элементов периодической системы Д.И.Менделеева. Для 24 элементов известны функции, которые они выполняют в организме, это биогенные элементы. По количественному содержанию в живом веществе элементы делятся на три категории:

    Макроэлементы :

    O, C, H, N — около 98% от массы живого вещества, элементы 1-ой группы;

    K, Na, Ca, Mg, S, P, Cl, Fe — элементы 2-ой группы. (1,9% массы живого вещества).

    Микроэлементы ( Zn, Mn, Cu, Co, Mo и многие другие), доля которых составляет от 0,001% до 0,000001. Микроэлементы входят в состав биологически активных веществ — ферментов, витаминов и гормонов.

    Ультрамикроэлементы (Au, U, Ra и др.), концентрация которых не превышает 0,000001%. Роль большинства элементов этой группы до сих пор не выяснена.

    Макро- и микроэлементы присутствуют в живой материи в виде разнообразных химических соединений, которые подразделяются на неорганические и органические вещества.

    Неорганические соединения клетки.

    К неорганическим веществам относятся: вода, составляющая примерно 70-80% массы организма; минеральные вещества — 1-1,5%.

    Вода. Самое распространенное в живых организмах неорганическое соединение. Ее содержание колеблется в широких пределах: в клетках эмали зубов вода составляет по массе около 10%, а в клетках развивающегося зародыша — более 90%.

    Без воды жизнь невозможна. Она не только обязательный компонент живых клеток, но и среда обитания организмов. Биологическое значение воды основано на ее химических и физических свойствах.

    Химические и физические свойства воды объясняются, прежде всего, малыми размерами молекул воды, их полярностью и способностью соединяться друг с другом водородными связями. В молекуле воды один атом кислорода ковалентно связан с двумя атомами водорода. Молекула полярна: кислородный атом несет небольшой отрицательный заряд, а два водородных — небольшие положительные заряды. Это делает молекулу воды диполем. Поэтому при взаимодействии молекул воды друг с другом между ними устанавливаются водородные связи. Они в 15—20 раз слабее ковалентной, но, поскольку каждая молекула воды способна образовывать 4 водородные связи, они существенно влияют на физические свойства воды. Большая теплоемкость, теплота плавления и теплота парообразования объясняются тем, что большая часть поглощаемого водой тепла расходуется на разрыв водородных связей между ее молекулами. Вода обладает высокой теплопроводностью. Вода практически не сжимается, прозрачна в видимом участке спектра. Наконец, вода —вещество, плотность которого в жидком состоянии больше, чем в твердом, при 4ºС у нее максимальная плотность, у льда плотность меньше, он поднимается на поверхность и защищает водоем от промерзания.

    Физические и химические свойства делают ее уникальной жидкостью и определяют ее биологическое значение. Вода — хороший растворитель ионных (полярных), а также некоторых не ионных соединений, в молекуле которых присутствуют заряженные (полярные) группы. Любые полярные соединения в воде гидратируются (окружаются молекулами воды), при этом молекулы воды участвуют в образовании структуры молекул органических веществ. Если энергия притяжения молекул воды к молекулам какого-либо вещества больше, чем энергия притяжения между молекулами вещества, то вещество растворяется. По отношению к воде различают: гидрофильные вещества — вещества, хорошо растворимые в воде; гидрофобные вещества — вещества, практически нерастворимые в воде. Большинство биохимических реакций может идти только в водном растворе; многие вещества поступают в клетку и выводятся из нее в водном растворе. Большая теплоемкость и теплопроводность воды способствуют равномерному распределению тепла в клетке.

    Благодаря большой потери тепла при испарении воды, происходит охлаждение организма. Благодаря силам адгезии и когезии, вода способна подниматься по капиллярам (один из факторов, обеспечивающих движение воды в сосудах растений). Вода является непосредственным участником многих химических реакций (гидролитическое расщепление белков, углеводов, жиров и др.). Определяет напряженное состояние клеточных стенок (тургор), а также выполняет опорную функцию (гидростатический скелет, например, у круглых червей).




    Минеральные вещества клетки. В основном представлены солями, которые диссоциируют на анионы и катионы. Для процессов жизнедеятельности клетки наиболее важны катионы К + , Na + , Ca 2+ , Mg 2+ , анионы HPO4 2- , Cl - , HCO3 -. Концентрации ионов в клетке и окружающей ее среде различны. Например, во внешней среде (плазме крови, морской воде) K + всегда меньше, а Na + всегда больше, чем в клетке. Существует ряд механизмов, позволяющих клетке поддерживать определенное соотношение ионов в протопласте и внешней среде.

    Различные ионы принимают участие во многих процессах жизнедеятельности клетки: катионы К + , Na + , Cl - обеспечивают возбудимость живых организмов; катионы Mg 2+ , Mn 2+ , Zn 2+ , Ca 2+ и др. необходимы для нормального функционирования многих ферментов; образование углеводов в процессе фотосинтеза невозможно без Mg 2+ (составная часть хлорофилла); буферные свойства клетки (поддержание слабощелочной реакции содержимого клетки) поддерживается анионами слабых кислот (НСО3 - , НРО4 - ) и слабыми кислотами (Н2СО3);

    Фосфатная буферная система:

    Гидрофосфат — ион Дигидрофосфат — ион

    Бикарбонатная буферная система:

    Гидрокарбонат — ион Угольная кислота

    Некоторые неорганические вещества содержатся в клетке не только в растворенном, но и в твердом состоянии. Например, Са и Р содержатся в костной ткани, в раковинах моллюсков в виде двойных углекислых и фосфорнокислых солей.

    Химический состав клетки

    Химические элементы клетки.

    Все клетки, независимо от уровня организации, сходны по химическому составу. В клетке содержится несколько тысяч веществ, которые участвуют в разнообразных химических реакциях. В живых организмах обнаружено около 80 химических элементов периодической системы Д.И.Менделеева. Для 24 элементов известны функции, которые они выполняют в организме, это биогенные элементы. По количественному содержанию в живом веществе элементы делятся на три категории:

    Макроэлементы :

    O, C, H, N — около 98% от массы живого вещества, элементы 1-ой группы;

    K, Na, Ca, Mg, S, P, Cl, Fe — элементы 2-ой группы. (1,9% массы живого вещества).

    Микроэлементы ( Zn, Mn, Cu, Co, Mo и многие другие), доля которых составляет от 0,001% до 0,000001. Микроэлементы входят в состав биологически активных веществ — ферментов, витаминов и гормонов.

    Ультрамикроэлементы (Au, U, Ra и др.), концентрация которых не превышает 0,000001%. Роль большинства элементов этой группы до сих пор не выяснена.

    Макро- и микроэлементы присутствуют в живой материи в виде разнообразных химических соединений, которые подразделяются на неорганические и органические вещества.

    Неорганические соединения клетки.

    К неорганическим веществам относятся: вода, составляющая примерно 70-80% массы организма; минеральные вещества — 1-1,5%.

    Вода. Самое распространенное в живых организмах неорганическое соединение. Ее содержание колеблется в широких пределах: в клетках эмали зубов вода составляет по массе около 10%, а в клетках развивающегося зародыша — более 90%.

    Без воды жизнь невозможна. Она не только обязательный компонент живых клеток, но и среда обитания организмов. Биологическое значение воды основано на ее химических и физических свойствах.

    Химические и физические свойства воды объясняются, прежде всего, малыми размерами молекул воды, их полярностью и способностью соединяться друг с другом водородными связями. В молекуле воды один атом кислорода ковалентно связан с двумя атомами водорода. Молекула полярна: кислородный атом несет небольшой отрицательный заряд, а два водородных — небольшие положительные заряды. Это делает молекулу воды диполем. Поэтому при взаимодействии молекул воды друг с другом между ними устанавливаются водородные связи. Они в 15—20 раз слабее ковалентной, но, поскольку каждая молекула воды способна образовывать 4 водородные связи, они существенно влияют на физические свойства воды. Большая теплоемкость, теплота плавления и теплота парообразования объясняются тем, что большая часть поглощаемого водой тепла расходуется на разрыв водородных связей между ее молекулами. Вода обладает высокой теплопроводностью. Вода практически не сжимается, прозрачна в видимом участке спектра. Наконец, вода —вещество, плотность которого в жидком состоянии больше, чем в твердом, при 4ºС у нее максимальная плотность, у льда плотность меньше, он поднимается на поверхность и защищает водоем от промерзания.

    Физические и химические свойства делают ее уникальной жидкостью и определяют ее биологическое значение. Вода — хороший растворитель ионных (полярных), а также некоторых не ионных соединений, в молекуле которых присутствуют заряженные (полярные) группы. Любые полярные соединения в воде гидратируются (окружаются молекулами воды), при этом молекулы воды участвуют в образовании структуры молекул органических веществ. Если энергия притяжения молекул воды к молекулам какого-либо вещества больше, чем энергия притяжения между молекулами вещества, то вещество растворяется. По отношению к воде различают: гидрофильные вещества — вещества, хорошо растворимые в воде; гидрофобные вещества — вещества, практически нерастворимые в воде. Большинство биохимических реакций может идти только в водном растворе; многие вещества поступают в клетку и выводятся из нее в водном растворе. Большая теплоемкость и теплопроводность воды способствуют равномерному распределению тепла в клетке.

    Благодаря большой потери тепла при испарении воды, происходит охлаждение организма. Благодаря силам адгезии и когезии, вода способна подниматься по капиллярам (один из факторов, обеспечивающих движение воды в сосудах растений). Вода является непосредственным участником многих химических реакций (гидролитическое расщепление белков, углеводов, жиров и др.). Определяет напряженное состояние клеточных стенок (тургор), а также выполняет опорную функцию (гидростатический скелет, например, у круглых червей).

    Минеральные вещества клетки. В основном представлены солями, которые диссоциируют на анионы и катионы. Для процессов жизнедеятельности клетки наиболее важны катионы К + , Na + , Ca 2+ , Mg 2+ , анионы HPO4 2- , Cl - , HCO3 -. Концентрации ионов в клетке и окружающей ее среде различны. Например, во внешней среде (плазме крови, морской воде) K + всегда меньше, а Na + всегда больше, чем в клетке. Существует ряд механизмов, позволяющих клетке поддерживать определенное соотношение ионов в протопласте и внешней среде.

    Различные ионы принимают участие во многих процессах жизнедеятельности клетки: катионы К + , Na + , Cl - обеспечивают возбудимость живых организмов; катионы Mg 2+ , Mn 2+ , Zn 2+ , Ca 2+ и др. необходимы для нормального функционирования многих ферментов; образование углеводов в процессе фотосинтеза невозможно без Mg 2+ (составная часть хлорофилла); буферные свойства клетки (поддержание слабощелочной реакции содержимого клетки) поддерживается анионами слабых кислот (НСО3 - , НРО4 - ) и слабыми кислотами (Н2СО3);

    Фосфатная буферная система:

    Гидрофосфат — ион Дигидрофосфат — ион

    Бикарбонатная буферная система:

    Гидрокарбонат — ион Угольная кислота

    Некоторые неорганические вещества содержатся в клетке не только в растворенном, но и в твердом состоянии. Например, Са и Р содержатся в костной ткани, в раковинах моллюсков в виде двойных углекислых и фосфорнокислых солей.


    Из неорганических веществ клетки вода составляет около 65% её массы: в молодых быстрорастущих клетках до 95%, в старых — около 60%. Роль воды|воды в клетках очень велика|велика, она является средой и растворителем, участвует в большинстве химических реакций, перемещении веществ, терморегуляции, образовании клеточных структур, определяет объем|объём и упругость клетки. Большинство веществ поступает в организм и выводится из него в водном растворе.

    Содержание минеральных веществ в клетках незначительно, но роль их велика|велика: они поддерживают осмотическое равновесие, регулируют различные биохимические и физиологические процессы. Например, ионы Na и К нужны для образования нервных импульсов, ионы Са нужны для свёртывания крови и др.

    Органические вещества — составляют 20-30% состава клетки. Они могут быть простыми (аминокислоты|аминокислоты, глюкоза, жирные кислоты|кислоты) и сложными (белки|белки, полисахариды, нуклеиновые кислоты|кислоты, липиды). Наиболее важное значение имеют белки|белки, жиры, углеводы, нуклеиновые кислоты|кислоты.

    Неорганические вещества клетки

    Неорганические вещества и их роль в клетке

    Вода. Из неорганических веществ, входящих в состав клетки, важнейшим является вода. Количество её составляет от 60 до 95% общей массы клетки. Вода играет важнейшую роль в жизни клеток и живых организмов в целом. Помимо того что она входит в их состав, для многих организмов это ещё и среда обитания.

    Роль воды|воды в клетке определяется её уникальными химическими и физическими свойствами, связанными главным образом с малыми размерами молекул, с полярностью её молекул и с их способностью образовывать друг с другом водородные связи.

    Вода как компонент биологических систем выполняет следующие важнейшие функции:

    • Вода—универсальный растворитель для полярных веществ, например солей, Сахаров, спиртов, кислот и др. Вещества, хорошо растворимые в воде, называются гидрофильными. Когда вещество переходит в раствор, его молекулы или ионы получают возможность двигаться более свободно; соответственно возрастает реакционная способность вещества. Именно по этой причине большая|большая часть химических реакций в клетке протекает в водных растворах. Её молекулы участвуют во многих химических реакциях, например при образовании или гидролизе полимеров. В процессе фотосинтеза вода является донором электронов, источником ионов водорода и свободного кислорода.
    • Неполярные вещества вода не растворяет и не смешивается с ними, поскольку не может образовывать с ними водородные связи. Нерастворимые в воде вещества называются гидрофобными. Гидрофобные молекулы или их части отталкиваются водой, а в её присутствии притягиваются друг к другу. Такие взаимодействия играют важную роль в обеспечении стабильности мембран, а также многих белковых молекул, нуклеинов вых кислот и ряда субклеточных структур.
    • Вода обладает высокой удельной теплоёмкостью. Для разрыва водородных связей, удерживающих молекулы воды|воды, требуется поглотить большое количество энергии. Это свойство обеспечивает поддержание теплового баланса организма при значительных перепадах температуры в окружающей среде. Кроме того, вода отличается высокой теплопроводностью, что позволяет организму поддерживать одинаковую температуру во всём его объёме.
    • Вода характеризуется высокой теплотой парообразования, т. е. способностью молекул уносить с собой значительное количество тепла при одновременном охлаждении организма. Благодаря этому свойству воды|воды, проявляющемуся при потоотделении у млекопитающих, тепловой одышке у крокодилов и других животных, транспирации у растений, предотвращается их перегрев.
    • Для воды|воды характерно исключительно высокое поверхностное натяжение. Это свойство имеет очень важное значение для адсорбционных процессов, для передвижения растворов по тканям (кровообращение, восходящий и нисходящий токи в растениях). Многим мелким организмам поверхностное натяжение позволяет удерживаться на воде или скользить по её поверхности.
    • Вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма.
    • У растений вода определяет тургор клеток, а у некоторых животных выполняет опорные функции, являясь гидростатическим скелетом (круглые и кольчатые черви, иглокожие).
    • Вода — составная часть смазывающих жидкостей (синовиальной — в суставах позвоночных, плевральной — в плевральной полости, перикардиальной — в околосердечной сумке) и слизей (облегчают передвижение веществ по кишечнику, создают влажную среду|среду на слизистых оболочках дыхательных путей). Она входит в состав слюны, жёлчи, слёз|слез, спермы и др.

    Минеральные соли|соли. Неорганические вещества в клетке, кроме воды|воды, прецспавлевы минеральными солями. Молекулы солей в водном растворе распадаются на катионы и анионы. Наибольшее значение имеют катионы (К+, Na+, Са2+, Mg:+, NH4+) и анионы (С1 , Н2Р04-, НР042- , НС03-, NO32—, SO42- ) Существенным является не только содержание, но и соотношение ионов в клетке.

    Разность между количеством катионов и анионов на поверхности и внутри клетки обеспечивает возникновение потенциала действия, что лежит в основе возникновения нервного и мышечного возбуждения. Разностью концентрации ионов по разные стороны|стороны мембраны обусловлен активный перенос веществ через мембрану, а также преобразование энергии.

    Анионы фосфорной кислоты|кислоты создают фосфатную буферную систему, поддерживающую рН внутриклеточной среды|среды организма на уровне 6,9.

    Угольная|Угольная кислота и её анионы формируют бикарбонатную буферную систему, поддерживающую рН внеклеточной среды|среды (плазма крови) на уровне 7,4.

    Некоторые ионы участвуют в активации ферментов, создании осмотического давления в клетке, в процессах мышечного сокращения, свёртывании крови и др.

    Ряд катионов и анионов необходим дпясинтеза важных органических веществ (например, фосфолипидов, АТФ, нуклеоти-дов, гемоглобина, гемоцианина, хлорофилла и др.), а также аминокислот, являясь источниками атомов азота и серы.

    Видео по теме : Неорганические вещества клетки

    Читайте также: