Нанотехнологии это кратко для детей

Обновлено: 07.07.2024

Появившись совсем недавно, нанотехнологии все активней входят в область научных исследований, а из нее – в нашу повседневную жизнь. Разработки ученых все чаще имеют дела с объектами микромира, атомами, молекулами, молекулярными цепочками.

Основной единицей измерения в нанотехнологических исследованиях является нанометр – миллиардная доля метра. В таких единицах измеряются молекулы и вирусы, а теперь и элементы компьютерных чипов нового поколения. Именно в наномасштабе протекают все базовые физические процессы, определяющие макровзаимодействия.

Природа сама наталкивает человека на идею создания нанообъектов. Любая бактерия, по сути, представляет собой организм, состоящий из наномашин: ДНК и РНК копируют и передают информацию, рибосомы формируют белки из аминокислот, митохондрии вырабатывают энергию. Очевидно, что на данном этапе развития науки ученым приходит в голову копировать и совершенствовать эти явления.

Создание сканирующего туннельного микроскопа в 1980 году позволило ученым не только различать отдельные атомы, но и двигать их и собирать из них конструкции, в частности, компоненты будущих наномашин – двигатели, манипуляторы, источники питания, элементы управления. Создаются нанокапсулы для прямой доставки лекарств в организме, нанотрубки в 60 раз прочней стали, гибкие солнечные элементы и множество других удивительных устройств.

Наноматериалы

Одним из основных видов нанообъектов являются наночастицы. При разделении вещества на частицы размером в десятки нанометров общая суммарная поверхность частиц в веществе увеличивается в сотни раз, а вследствие этого усиливается взаимодействие атомов материала с внешней средой, ведь теперь они почти все на поверхности. Это явление используется в современной технике. Например, в медицине применяется нанопорошок серебра, которое обладает антисептическими свойствами. Наночастицы диоксида титана отталкивают грязь и позволяют создать самоочищающиеся поверхности. Нанопророшок алюминия ускоряет сгорание твердого ракетного топлива. Новые литиево-ионные аккумуляторы, содержащие наночастицы заряжаются буквально за пару минут. Подобных примеров много уже сейчас. Еще одним элементом, открытым в восьмидесятых годах стали фуллерены. Эти конструкции напоминают мячи, состоящие из атомов углерода.

Другим хорошо известным наноэлементом является углеродная нанотрубка. Это одноатомный слой углерода, свернутый в цилиндр диаметром в несколько нанометров. Впервые эти объекты был получены в 1952 году, но лишь в 1991 году они привлекли внимание ученых. Прочность этих трубок превышает прочность стали в десятки раз, они выдерживают нагрев до 2500 градусов и давление в тысячи атмосфер. Эта прочность свойственна и изготовленным на их основе материалам. В электронике нанотрубки могут применяться как хорошие проводники , а также и полупроводники. Это станет прорывом в электронике, позволив микросхемам уменьшаться согласно закономерности Мура.

Еще одним наноматериалом является графен – двумерный углеродный слой, плоскость, состоящая из атомов углерода. Этот материал был впервые получен русскими физиками, работающими в Англии. Многие ученые полагают, что этот материал, обладающий уникальными свойствами, в будущем станет основой микропроцессоров, вытеснив современные полупроводники. Кроме того, этот материал также невероятно прочен.

Все эти наноэлементы все чаще находят применение в различных областях технологии – от медицины до космических исследований. Еще одним объектом наноразработок является так называемая квантовая точка, наноразмерный кристалл полупроводника. Они представляют собой удобный источник света, окраска которого зависит от размеров точки: большие точки испускают красное свечение, маленкие – голубое. Такие точки могут быть использованы в медицине для точной визуализации очагов болезни при диагностике, например, в онкологии. Ими можно будет отслеживать даже различные биомолекулы. Также квантовые точки считаются перспективным материалом для солнечных батарей и дисплеев на полимерных пленках.

Нанотехнологии в медицине

Одной из наиболее перспективных областей применения нанотехнологий остается, безусловно, медицина. Ученые не первый год работают над проблемой доставки лекарственных препаратов непосредственно к клеткам, пораженным инфекцией или болезнью. Основная конструкция транспорта такова: капсула из биоматериала размером 50-200 нанометров, в которой находятся молекулы лекарства. Снаружи капсула покрыта полимерными цепочками, с помощью которых определяется, когда капсула достигнет целевых тканей, после чего произойдет вбрасывание лекарства и распадение оболочки. Последние стадии можно откладывать и контролировать их наступление дистанционно, например, нагревом или ультразвуком. На прошедшем недавно форуме демонстрировался механизм администрирования локальной радиации к клеткам пораженной опухолью печени с помощью наноструктурированного пористого кремния. Кроме того, планируется использовать нанотехнологии при диагностике различных, в том числе онкологических, заболеваний, а также при работе с геномом человека.

Все эти и многие другие идеи находятся сейчас не только на стадии разработок, но и на этапе практического применения. Результаты некоторых тестов потрясают воображение, некоторые заканчиваются провалом. Вместе с тем растет энтузиазм ученых по поводу приближения эры воплощения самых фантастических идей, например, полного контроля над всеми природными процессами или нанофабрик, собирающих любые предметы непосредственно из атомов. Создано множество сценариев развития будущего нанотехнологий, включая и те, которые не сулят человечеству ничего хорошего. Однако можно сказать, что интерес к нанотехнолгиям сейчас настолько велик, что именно он подчас и определяет направление, которое они принимают.

нанотехнологии

Всё быстрее и стремительнее в нашу жизнь входят такие понятия, как нанодостижения, нанотехнологии, нанонаука, наноиндустрия. По телевидению и радио выступают учёные, политики, педагоги, которые говорят о том, что сегодня нанотехнологиям уделяется огромное внимание, потому что нанотехнологии – это будущее всего мира, это научно-техническая революция, способная произвести переворот всей жизни, и которая, возможно, через некоторый период времени прочно войдёт в обиход каждого человека. Уже сейчас нанотехнологии внедряются в медицину, в робототехнику, в промышленность и сельское хозяйство.

Нанотехнологии состоят из достижений в области химии, физики, биологии и других наук.

Ещё в ноябре 2004 года правительством Российской Федерации был взят курс на развитие нанотехнологий.

Будущее НАНОМИРА

В быту:

  • Наноплёнки для автомобильных стёкол для защиты от пыли и грязи.
  • Лечебная косметика и одежда.

В промышленности:

  • Использование наноматериалов в строительстве.
  • Нанороботостроение.

Военная индустрия:

  • Создание военной техники с использованием нановеществ.
  • Создание секретных и невидимых объектов.
  • Создание сверхпрочных металлов для оборудования и техники.
  • Наносистемы связи и наноодежда для военных.

Сельское хозяйство:

Медицина:

Цель программ по нанотехнологии – привить детям интерес к российской науке. А начинать можно с дошкольного образования.

Всегда помните китайскую мудрость:

То, что я услышал, я забыл.

То, что я увидел, я помню.

То, что я сделал, я знаю.

Изучение нанотехнологий на первой ступеньке научных знаний – это уникальная возможность вырастить не только творческую личность, но и, может быть, ученого или изобретателя, или просто успешного ученика, обладающего умением находить нестандартные решения при решении задач, умеющего делать выводы и находить выходы из любых сложных ситуаций.

Будущие маленькие исследователи и фантазёры – это будущее нашей науки! И быть может, когда-то наши маленькие гении смогут сказать словами Гаргуца Игоря М.:

Что такое нанотехнология?

Почему маленькие объекты приобретают столь специфические свойства на уровне наномасштабов? К примеру, небольшие группы (их называют кластерами) атомов золота и серебра демонстрируют уникальные каталитические свойства, в то время как большие по размеру образцы обычно инертны. А наночастицы серебра демонстрируют отчетливо выраженные антибактериальные свойства и потому обычно используются в новых типах перевязочных материалов.

При уменьшении размера частиц возрастает отношение поверхности к объему. По этой причине наночастицы существенно легче вступают в химические реакции. В дополнение к этому на уровне менее 100 нм появляются эффекты квантовой физики. Квантовые эффекты могут влиять на оптические, электрические или магнитные свойства материалов непредсказуемым образом.

Маленькие кристаллические образцы некоторых веществ становятся прочнее, поскольку они просто достигают состояния, при котором не могут раскалываться так, как это происходит у больших кристаллов, когда на них воздействуют с усилием. Металлы становятся похожими в некотором отношении на пластмассу.

Каковы перспективы применения нанотехнологий?

Еще в 1986 году футуролог Эрик Дресслер нарисовал образ утопического будущего, в котором самореплицирующиеся (то есть воспроизводящие сами себя) нанороботы выполняют всю необходимую обществу работу. Эти крошечные устройства способны ремонтировать человеческий организм изнутри, делая людей виртуально бессмертными. Нанороботы могут также свободно перемещаться в окружающей среде, что делает их незаменимыми в борьбе с загрязнением этой среды.

Исследователи из финансируемого армией США Института армейских нанотехнологий в Кембридже (США) используют нанотехнологии для создания принципиально нового типа обмундирования. Их цель — создать ткань, которая может менять окраску, отклонять в сторону пули и энергию взрывной волны и даже склеивать кости.

Где применяются нанотехнологии в настоящее время?

Нанотехнологии уже используются при производстве жестких дисков персональных компьютеров, каталитических конвертеров — элементов двигателей внутреннего сгорания, теннисных мячей с длительным сроком службы, а также высокопрочных и одновременно легких теннисных ракеток, инструментов для резки металлов, антистатических покрытий для чувствительной электронной аппаратуры, специальных покрытий для окон, обеспечивающих их самоочистку.

Как создаются наноустройства?

В настоящее время используется два основных способа изготовления наноустройств.

Можно создавать наноустройства, перетаскивая отдельные атомы с помощью так называемого атомного силового микроскопа (либо сканирующего туннельного микроскопа), достаточно чувствительного для выполнения подобных процедур. Впервые эта методика была продемонстрирована специалистами IBM — с помощью сканирующего туннельного микроскопа они выложили аббревиатуру IBM, расположив соответствующим образом 35 атомов ксенона на поверхности никелевого образца.

Сверху вниз. Эта методика предполагает, что мы используем макроскопический образец и, к примеру, с помощью травления создаем на его поверхности обычные компоненты микроэлектронных устройств с параметрами, характерными для наномасштабов.

Представляет ли нанотехнология угрозу здоровью человека или окружающей среде?

Некоторые комментаторы высказываются также относительно того, что широкое использование нанотехнологий может привести к рискам социального и этического плана. Так, к примеру, если использование нанотехнологий инициирует новую промышленную революцию, то это приведет к потере рабочих мест. Более того, нанотехнологии могут изменить представление о человеке, поскольку их использование поможет продлевать жизнь и существенно повышать устойчивость организма.


Няндомский железнодорожный колледж

Цель: Познакомиться с основами нанотехнологий, показать их значимость в современном мире.

1. Адаптировать учащихся к перспективам нанотехнологий.

2. Способствовать формированию познавательного интереса учащихся, расширить и углубить их представления о влиянии размеров атомных структур на разнообразные физические свойства.

3. Способствовать желанию самостоятельно изучать научную информацию в Интернете и умению анализировать получаемую информацию о развитии нанотехнологий.

Основные понятия:

Нано – дольная приставка единиц, обозначающая 10 -9 .

Наночастица – это частица, объект, имеющий размеры 1-100 нанометра.

Нанотехнология – это технология работы с веществом на уровне отдельных атомов.

План лекции:

Как представить себе такую короткую дистанцию? Проще всего это сделать с помощью денег: нанометр и метр соотносятся по масштабу как копеечная монета и земной шар (кстати, если каждый житель Земли даст по монетке, этого вполне хватит, чтобы выложить цепочку вокруг экватора.Уменьшим слона до размера микроба (5000 нм) – тогда блоха у него на спине станет величиной как раз в нанометр. Если бы рост человека вдруг уменьшился до нанометра, мы могли бы играть в футбол отдельными атомами! Толщина листа бумаги казалось бы нам тогда равной… 170 километрам.

Откинем фантазию о крошечных человечках и насекомых. На самом деле нанометрами измеряются лишь самые примитивные существа, вирусы (их длина в среднем 100 нм). Сложные молекулы белков, строительные блоки живого, имеют размеры в 10нм. Простые молекулы в десятки раз меньше. Величина атомов – несколько ангстрем (один ангстрем равен 0,1 нм). Например, диаметр атома кислорода – 0,14 нм. Здесь проходит нижняя граница наномира. Именно в наномире идут процессы фундаментальной важности – совершаются химические реакции, выстраивается строгая геометрия кристаллов, структуры белков. С этими процессами и работают нанотехнологи В этом особом мире работают свои законы и взаимосвязи, значительно отличающиеся от тех, которые действуют в нашем мире. Мы воспринимаем окружающие нас явления с точки зрения знакомых нам законов. Например, мы можем объяснить, почему может разрушиться строение, или почему набравшее скорость тело движется по инерции еще некоторое время. Однако нас удивляет, почему капля воды, муха, или даже некоторые виды ящериц удерживаются на потолке так, как будто закон гравитации на них не действует. Удивительными являются для нас и такие обычные явления, как несмачиваемость листьев некоторых растений или плодов. Все это заставляет задуматься над тем, какие силы работают в данном случае.

Ещё одно из замечательных изобретений природы – лапки геккона. Геккон – небольшая ящерка, прославилась тем, что может свободно перемещаться по вертикальным стенам или даже потолку. И все потому, что его лапки покрыты до миллиарда тончайшими волосками особой формы. Они тесно соприкасаются с поверхностью и притягиваются к ней за счет так называемой ван-дерваальсовой силы, силы, действующей между молекулами. Нанотехнологи уже создали экспериментальные аналоги таких нанолипучек на основе углеродных нанотрубок – вполне возможно, что скоро каждый сможет попробовать себя в роли человека-паука.

В самом общем смысле нанотехнологии включают создание и использование материалов, устройств и технических систем, функционирование которых определяется наноструктурой, то есть ее упорядоченными фрагментами размером от 1 до 100 нм.

Согласно рекомендации 7-ой Международной конференции по нанотехнологиям (Висбаден, 2004 г) выделяют следующие типы наноматериалов:
– нанопористые структуры;
– наночастицы;
– нанотрубки и нановолокна;
– нанодисперсии (коллоиды);
– наноструктурированные поверхности и пленки;
– нанокристаллы и нанокластеры.

Нанотехнологии – это способы создания наноразмерных структур, которые придают материалам и устройствам полезные, часто непривычные для нас свойства. Нанотехнология позволяет поместить частицу лекарства в нанокапсулу и точно нацелить на пораженную болезнью клетку, не повредив соседние. Фильтр, пронизанный бесчисленными нанометровыми каналами, которые пропускают воду, но слишком тесны для примесей и микробов, тоже продукт нанотехнологий. В лабораториях нанотехнологов уже испытывают суперматериалы – углеродные волокна, в тысячи раз прочнее стали, покрытия, делающие предмет невидимым. Создание материалов с такими замечательными свойствами стало возможно благодаря тому, что нанотехнологи работают с веществом на атомном и молекулярном уровне.

Солнечные батареи преобразуют энергию дневного света в электрическую. Раньше такие устройства были только на космических станциях, самые дорогие из них давали эффективность лишь 34%. Нанотехнологии вплотную взялись за солнечную энергетику. Солнечные батареи нового поколения - это дешевая полимерная пленка, вместо дорогого кристаллического кремния, которую обрабатывают на слегка переделанных машинах для производства фотоплёнки. В таком полимере при его освещении возникают токи, а чтобы их аккуратно собрать и выдать потребителю энергию, используют нанотехнологии: покрытие, содержащее фуллерены. Новые солнечные батареи будут обладать рядом существенных преимуществ по сравнению с традиционными батареями на основе кремния, которые применяются сегодня. Прежде всего, элементы питания нового типа не требуют прямого падения солнечных лучей, благодаря чему смогут генерировать электричество даже в пасмурную погоду. Кроме того, себестоимость производства таких батарей будет на порядок ниже себестоимости изготовления батарей на базе кремния.

Каждый из нас знаком с энергетикой плееров, диктофонов, фонариков, игрушек. Её основа – обычная литий-ионная батарейка. Здесь тоже видны первые результаты развития нанотехнологий. Недавно начался промышленный выпуск литий-ионных аккумуляторов, содержащих наночастицы и нанопористые материалы – они заряжаются с немыслимой ещё вчера скоростью: на 80% всего лишь за минуту (обычно для этого требуется несколько часов). Представьте, какое преимущество для электромобилей даст эта новинка!

Совсем недавно появились антиопухолевые препараты в форме нанокапсул. Такие препараты атакуют главным образом клетки опухоли, не поражая организм в целом (в отличие от традиционных онкологических средств) эффективность лечения за счет этого вырастает во много раз. Антимикробное действие серебра резко повышается, если его применить виде наночастиц. Уже несколько лет существуют заживляющее повязки для ожогов и серьёзных ран, содержащие такое наносеребро. В недалёком будущем начнется промышленный выпуск хитозановых повязок, которые ускорят заживление ран в разы. Планируется выпуск наноцемента для костей – он будет наполнителем, создавая нечто вроде каркаса, на который потом нарастает естественная костная ткань.

Московские нанотехнологи разработали телевизор, который можно свернуть в рулон. Толщиной он всего несколько миллиметров и представляет собой органический светодиод. На сегодняшний день есть у него серьёзный недостаток – на воздухе поверхностный слой быстро портится.

Инженеры из Фраунгоферовского института интегральных схем IIS разработали трансформатор напряжения, который может работать от входного напряжения в 20 милливольт. Этот миниатюрный электроприемник приводят в действие самые малые токи, и получить их можно из окружающей среды, например, из тепла человеческого тела.

При разнице температур всего в 2°C (например, между человеческой кожей и окружающим пространством) теплогенератор размером 2х2 см с новым трансформатором напряжения IC генерирует до 4 мВ. Такие миниатюрные и, соответственно, экономичные в изготовлении трансформаторы напряжения имеют большое преимущество во многих областях применения: в медицинской технике, в инженерных системах зданий и сооружений, в автомобилях, в системах автоматизации и логистике.

Перспективы нанотехнологии. По прогнозам экспертов, к 2020 году многие идеи, которые сегодня находятся на стадии исследований, будут реализованы. Давайте немного пофантазируем, представим мир недалекого будущего. Электричеством нас будут обеспечивать солнечные батареи, встроенные в стены и крыши домов. Телевизоры, компьютеры будут компактными виде стикеров. Все окружающие нас предметы будут оснащены миниатюрными процессорами, чтобы, например, поддерживать необходимую температуру, давление, влажность, следить за составом воздуха. Микро- и нанодатчики помогут в обнаружении любых угроз, от пожара до атаки террористов. Даже одежда будет самоочищающая и умеющая контролировать эмоциональное состояние того, кто её носит. Наноматериалы ширко будут использоваться в технике и промышленности, они будут защищать от грязи, коррозии, различных повреждений. Однако самое интересное и важное – как повлияет развитие нанотехнологий на частную жизнь человека, на жизнь общества в целом. Уже ясно, что эти технологии сильно изменят мир. Но предвидеть эти изменения в деталях пока не может никто.

Нанотехнологии – это наше настоящее и будущее. Наверное, нет ни одной сферы жизнедеятельности человека, которую они бы не затронули. Мир нанотехнологий интересен и доступен не только ученым. Ищите, читайте, анализируйте информацию. Занавес в удивительный мир нанотехнологий приоткрыт! Попробуйте самостоятельно познакомиться, например, с наноартом, космическим лифтом.

Читайте также: