Молекулярный уровень жизни кратко

Обновлено: 05.07.2024

Биология - сложная наука, которая не только изучает организмы животных, растений, грибов на уровне отдельных субъектов, но и пытается заглянуть за эту субъектность, объединяя организмы в определенные группы, которые затем становятся единицами изучения ученых.

Также ученые стремятся рассмотреть отдельные составляющие организма, проследить взаимодействие этих составляющих друг на друга и их влияние на отдельный субъект. Изучая внутренние органы животных, исследователи пытаются понять, как один орган влияет на другой (например, как головной мозг регулирует деятельность остальных органов).

То есть биология пытается развить представление о целостности живой природы на основе анализа и синтеза, поэтому учеными были выделены уровни организации живых организмов для понимания устройства и взаимодействия всего живого и неживого.

Уровни организации жизни - это иерархически соподчиненные уровни организации биосистем, то есть низшие уровни подчинены высшим. Они отражают степень усложнения различных биосистем.

Существование жизни на всех уровнях подготавливается и определяется структурой низшего уровня, то есть характер клеточного уровня организации определяется молекулярным, характер организменного- клеточным уровнем.

Например, сердце формируется благодаря особому строению и функциям мышечных клеток, которое было определено их молекулярным строением.

Деление живого на уровни весьма условно, оно просто отражает системный подход в изучении природы.

Каждый отдельный уровень изучает соответствующий отдел науки о живом: молекулярной биологии, цитологии, генетики, анатомии, физиологии, экологии и других наук.

Выделяют три большие группы уровней организации:

  • суборганизменный
  • организменный (или онтогенетический)
  • надорганизменный

Суборганизменный уровень включает, в свою очередь, пять уровней: атомарный, молекулярный, субклеточный, клеточный, тканевый, органный.

Тканевый и органный уровни чаще всего объединяют в один - тканево-органный.

Организменный (или онтогенетический) уровень- это сам организм.

Надорганизменный уровень включает в себя три подуровня: популяционно- видовой, биогеоценотический, биосферный.


Мы с вами изучим основные уровни организации живых систем:

  • молекулярный
  • клеточный
  • тканевый
  • органный
  • организменный
  • популяционно-видовой
  • биогеоценотический
  • биосферный

Суборганизменные уровни организации

1. Молекулярный уровень организации жизни

Молекулярный уровень можно назвать первым и наименьшим, но именно он является определяющим в строении и функции последующих уровней организации, то есть это как бы основа всех дальнейших уровней.


Формируют этот уровень молекулы белков, жиров, углеводов, нуклеиновых кислот, которые сами по себе вне клеточных структур не являются живыми, но именно они создают надмолекулярные клеточные структуры, в которых проявляются отдельные, но очень важные признаки жизни.

Именно на молекулярном уровне происходят различные биохимические реакции, а реализация наследственной информации происходит благодаря молекулам ДНК и РНК . Механизмы этих процессов универсальные для всех живых организмов.

Благодаря изучению молекулярного уровня можно понять, как протекали процессы зарождения и эволюции жизни на нашей планете, каковы молекулярные основы наследственности, основы последовательных биохимических реакций в организме.


Компоненты молекулярного уровня: молекулы неорганических и органических соединений, молекулярные комплексы химических соединений (клеточная мембрана или мембраны ядра).

Основные процессы молекулярного уровня:

  • объединение молекул в особые комплексы
  • осуществление упорядоченных физико-химических реакций
  • копирование (редупликация) ДНК, кодирование и передача генетической информации

Науки, ведущие исследования на этом уровне:

  • биохимия
  • биофизика
  • молекулярная биология
  • молекулярная генетика

У меня есть дополнительная информация к этой части урока!


Атомный (элементарный) уровень: на нем рассматривается роль отдельных химических элементов в живом организме (Fe, F, I, Se, Na).

Субклеточный уровень образован органеллами клетки (митохондриями, хлоропластами, рибосомами, лизосомами), ядром, хромосомами и другими субклеточными структурами.

На уровне субклеточных (надмолекулярных) структур ученые изучают строение и функции органелл, а также других включений клетки

2. Клеточный уровень организации жизни

Единицей этого уровня является клетка (клетки бактерий, цианобактерий, одноклеточных животных и водорослей, одноклеточных грибов (мукор, дрожжи), клеток многоклеточных организмов)).

Клетка- это структурная и функциональная единица всего живого.

Именно на этом уровне прослеживаются все признаки живого (размножение, рост, обмен веществ, раздражение и другие признаки).

Клетка также является минимальной единицей живого, способной к самостоятельному существованию либо в виде одноклеточных организмов, либо в тканях многоклеточного организма.

Если говорить об организмах одноклеточных, то к таковым мы можем отнести бактерии и простейшие (амеб, эвглен, инфузорий), среди грибов к одноклеточным относятся дрожжи и мукор.

Если рассматривать многоклеточных организмов, то количество клеток в их организме может быть очень велико, и эти клетки могут сильно отличаться по строению, хоть и находятся в одном организме. Например, посмотрим на нервную и мышечную клетки человека:


Вне клетки жизни нет. Такие организмы, как вирусы, подтверждают это правило, потому что они могут проявлять признаки живого и реализовывать свою наследственную информацию только тогда, когда попали в живую клетку.

У меня есть дополнительная информация к этой части урока!


Стволовыми клетками называются незрелые клетки особого типа, способные развиваться во все виды клеток, составляющих различные ткани организма.

Стволовые клетки в организме находятся как бы в спящем состоянии, у них замедлен обмен веществ.

Они являются резервом организма в случае возникновения различных стрессовых ситуаций (травмы, ранения, болезни).

Также стволовые клетки необходимы для непрерывно происходящей в организме физиологической регенерации (замена старых клеток на новые).

Ученые полагают, что из стволовых клеток в отдаленной перспективе можно будет выращивать практически любую ткань, что может помочь лечению многих заболеваний.

44

Компоненты клеточного уровня: комплексы молекул химических соединений и органеллы клетки.

Основные процессы клеточного уровня:

  • биосинтез, фотосинтез, энергетический обмен, митоз, мейоз
  • регулирование химических реакций
  • деление клетки
  • привлечение химических элементов Земли и энергии Солнца в биосистеме

Науки, ведущие исследования на клеточном уровне:

  • цитология
  • генная инженерия
  • цитогенетика
  • эмбриология
  • микробиология

3. Тканевый уровень организации жизни

Единицей этого уровня является ткань.

Ткань- это совокупность клеток и межклеточного вещества, объединенных общностью происхождения, строения и выполняемых функций.

Ткани возникли в ходе эволюционного развития вместе с многоклеточностью организмов.

В ходе онтогенеза ткани образуются на ранних стадиях эмбрионального развития благодаря дифференциации клеток.

Дифференциация клеток- процесс, в результате которого клетка становится специализированной, то есть приобретает химические, морфологические и функциональные особенности, свойственные только для нее.

У животных различают несколько типов тканей: эпителиальная, соединительная, мышечная, нервная.


У растений выделяют следующие виды тканей: образовательная, основная (фотосинтезирующая), проводящая (флоэма, ксилема), покровная, механическая.

На этом уровне происходит специализация клеток.

Компоненты тканевого уровня: клетки и межклеточная жидкость.

Основные процессы тканевого уровня: процессы, характерные для того или иного вида тканей (гомеостаз, регенерация).

Наука, ведущая исследования на тканевом уровне:

4. Органный уровень организации жизни

Составляют этот уровень органы многоклеточных организмов.


Орган- это обособленная часть организма, имеющая определенную форму, строение, расположение и выполняющая конкретную функцию.

Орган чаще всего образован несколькими видами тканей, среди которых одна (две) преобладает.

У меня есть дополнительная информация к этой части урока!


У простейших организмов, конечно же, нет тканей и органов, так как они состоят всего из одной клетки, но функции пищеварения, дыхания, циркуляция веществ, выделение, передвижение и размножение осуществляются за счет различных органелл в их клетках.

Организменный уровень организации жизни

Все живое на Земле существует в виде обособленных субъектов- особей, которые формируют организменный уровень.

При изучении одноклеточных организмов ученые отмечают то, что особью является каждая отдельная клетка, например, бактерия, простейшие (амеба, инфузория, эвглена), то есть это организмы, которые одновременно могут представлены и клеточным и организменным уровнем организации.


Также на этом уровне рассматривают и многоклеточные организмы: растения, животные, грибы.

Компоненты органного уровня: клетки одноклеточных; клетки и ткани, из которых образованы органы многоклеточных организмов.

Основные процессы органного уровня:

  • раздражительность
  • размножение
  • рост и развитие
  • нервно-гуморальная регуляция процессов жизнедеятельности
  • гомеостаз

Науки, ведущие исследования на органном уровне:

  • анатомия
  • биометрия
  • морфология
  • физиология
  • гистология

У меня есть дополнительная информация к этой части урока!


Биометрия- система распознавания людей по одной или более физическим или поведенческим чертам (трёхмерная фотография лица или тела, образец голоса, отпечатки пальцев, рисунок вен руки, группа крови, специальное фото роговицы глаза и так далее).

К примеру, в Китае активно используется технология распознавания лиц в различных областях, начиная от оплаты покупок до общественной безопасности.

taurocholate-of-sodium-2901493_640.jpg


Молекулярный уровень — это начальный, самый низкий уровень организации жизни. На этом уровне проявляются реакции обмена веществ и энергии, реализация наследственной информации. Изучение процессов, протекающих на молекулярном уровне, позволяет разобраться, как могла появиться жизнь на планете Земля; даёт возможность понять, как осуществляется передача наследственных признаков и каковы механизмы обмена веществ.


В состав живых организмов входят такие же химические элементы, что и в состав неживых тел, но в других соотношениях. В живой природе самыми распространёнными являются органогенные неметаллы: углерод , кислород , водород и азот .

Главным элементом всех органических веществ является углерод. Атомы углерода соединяются друг с другом и с атомами других элементов, образуя цепи и циклы разных размеров, чем и обусловлено разнообразие органических соединений. Важнейшее значение имеют вещества, содержащиеся в живых клетках — белки , нуклеиновые кислоты , полисахариды . Эти вещества относятся к биологическим полимерам, или биополимерам.

Молекулы биополимеров могут быть образованы огромным количеством соединённых друг с другом мономерных звеньев, одинаковых или разных. Свойства биополимеров зависят от строения их мономеров. Главные вещества всего живого — белки и нуклеиновые кислоты.

adrenomedullin-872350_640.jpg

  • белки служат строительным материалом и регулируют процессы обмена веществ;
  • нуклеиновые кислоты хранят и передают наследственную информации (генетический код универсален, т. е. он одинаковый для всего живого);
  • полисахариды являются основными источниками необходимой для жизни энергии (процессы превращения разных видов энергии тоже универсальны — они протекают одинаково во всех живых организмах).

Все биополимеры построены по одному плану. Эти вещества образованы небольшим количеством повторяющихся звеньев (мономеров), одинаковых или разных. Так, в состав молекул белков входит \(20\) аминокислот, а в состав молекул нуклеиновых кислот — \(4\) вида нуклеотидов. Всё разнообразие биополимеров обусловлено разными сочетаниями этих мономеров, образующими огромное количество вариантов макромолекул. Такое строение биополимеров определяет всё разнообразие проявлений жизни на Земле.


Особые свойства биологических полимеров обнаруживаются, когда они находятся в живой клетке. В изолированном виде молекулы биополимеров являются неживыми.

Связь между молекулярным и более сложным клеточным уровнем обеспечивается тем, что биологические молекулы служат строительным материалом для клеточных структур.

Изучая биосферу, ознакомившись с биогеоценотическим, популяционно-видовым, организменным и клеточным уровнями организации живой материи, мы подошли к самому глубинному – молекулярному уровню организации жизни, находящемуся на границе между живой и неживой (косной) материей. Он является первоосновой жизни на нашей планете.

Молекулярный уровень можно рассматривать как первичную основу жизни.

Действительно, какую бы сторону биологической организации мы ни рассматривали, неизбежно приходим к макромолекулам органических соединений, реакциям и физико-химическим процессам между ними. Только через выяснение молекулярных механизмов процессов жизнедеятельности клетки можно подойти к пониманию сущностных свойств живого.

Однако следует подчеркнуть, что знание структуры и свойств макромолекул, умение изучать их в условиях лаборатории еще не дают понимания свойств жизни, поскольку жизнь начинается только тогда, когда эти многочисленные молекулы как структурные единицы целостной системы находятся в клетке и взаимодействуют между собой как единая система. Вне клетки процессов жизни нет. Выделенные из клетки макромолекулы теряют свою биологическую сущность и характеризуются лишь физическими и химическими свойствами, но не являются живыми. Поэтому их называют биологическими молекулами, или биомолекулами, так как они проявляет свои биологические свойства только в живых клетках.

Молекулярный уровень живой материи представлен многочисленным рядом биологических молекул – ДНК, РНК, АТФ, белками, углеводами, липидами и другими сложными соединениями, способными создавать крупные молекулярные комплексы, совместно выполняющие определенные специфические функции.

Все крупные молекулы органических веществ – полимеры, синтезированные из мономеров, соединенных в определенном порядке, фактически представляют собой особые системы, состояние из взаимосвязанных компонентов. Сами мономеры различны, но в одной и той же макромолекуле, соединенные друг с другом химическими связями, они становятся единым целым, выполняющим определенные функции.

Уникальность макромолекул – в специфике их биологических функций. Например, молекулы нуклеиновых кислот являются носителями генетического кода и участвуют в передаче генетической информации от клетки к клетке и от организма к организму. Молекулы липидов являются основными элементами, участвующими в строительстве биологических мембран и всех внутриклеточных структур. Молекулы белков служат катализаторами и регуляторами всевозможных химических реакций в клетке. Молекулы углеводов, будучи первоосновой построения биологических молекул всех органических соединений, участвуют в накоплении солнечной энергии в виде энергии химических связей. Молекулы хлорофилла являются активными участниками фотосинтеза. Функциональное своеобразие биологических молекул в клетке тесно связано с их физико-химическими и биохимическими свойствами.

Единство физико-химических свойств и биологических функций макромолекул – особенность молекулярного уровня организации живой материи.

Специфику молекулярного структурного уровня живой материи отражают его структура, процессы, организация, значение в природе.

Структурными элементами молекулярного уровня жизни оказываются макромолекулы различных органических соединений и взаимодействующие молекулярные комплексы в форме специфических структур. Среди них особо следует отметить ДНК, различные РНК, макроэргические молекулы АТФ, АДФ, ГТФ и многочисленные молекулярные комплексы (ферментные, белков-переносчиков, дыхательная цепь, а у растений – фотосистема I и фотосистема II, реакционный центр и др.). Одни из них локализованы в строго определенных местах, например фосфолипиды – в бислое мембраны, комплекс АТФ-синтазы – во внутренней мембране тилакоидов хлоропластов и крист митохондрий, но многие размещаются в цитоплазме (гиалоплазме, матриксе).

Основные процессы молекулярного уровня жизни: репликация (самовоспроизведение) генетической информации, ее транскрипция и трансляция; окислительно-восстановительные реакции синтеза и распада веществ; управление скоростью протекания реакций с помощью ферментов; фотосинтез (в хлорофиллсодержащих клетках), создающий органические вещества при участии солнечной энергии; биосинтез и полимеризация сложных макромолекул из молекул простых органических соединений (мономеров); обеспечение процессов жизнедеятельности энергией.

Организация молекулярного уровня жизни характеризуется величайшей сбалансированностью и упорядоченностью всех реакций метаболизма, саморегуляцией, системным характером протекания биохимических процессов, сложностью и разнообразием молекулярного состава, многочисленностью и специфичностью ферментов, а также матричной основой осуществления биосинтеза. Все это координируется генетической информацией. Гены задают программу, а сами процессы в молекулярных системах осуществляют ферменты в различных частях организма.

В организации молекулярного уровня имеет значение и то, что все химические вещества, синтезируемые в клетке, как правило, образуются в результате не одной, а нескольких последовательных реакций (примером может служить полисома в биосинтезе белков). В результате в гиалоплазме (матриксе) имеется множество однотипных молекул, способных выполнять активные функции взамен изношенных и инактивированных молекул.

Значение молекулярного уровня жизни

На молекулярном уровне осуществляется важнейший процесс жизни – превращение лучистой энергии Солнца в химическую, запасаемую в химических связях органических соединений. Энергия, ассимилированная органическими веществами в макроэргических связях АТФ, становится биологически доступной для всех живых организмов, особенно для гетеротрофов.

Преобразование солнечной энергии, создание живого вещества, кодирование информации, обеспечение генетической преемственности и устойчивости молекулярных структур в поколениях, упорядоченность физико-химических процессов – основная роль молекулярного уровня жизни в биосфере.

Наличие в живой материи молекулярных комплексов, осуществляющих определенные высокоупорядоченные биохимические процессы – биосинтез белков, гликолиз (в цитоплазме), клеточное дыхание (в митохондриях), фотосинтез (в хлоропластах), позволяет судить о наличии в живой материи биологических систем не только клеточного, но и молекулярного уровня жизни.



В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Общая характеристика молекулярного уровня"

Самое первое, с чего обычно начинается изучение новой темы по биологии – это строение. Потому что, не изучив строение, мы вряд ли сможем разобраться с функциями чего-либо.

Вот и вся живая природа или даже можно сказать жизнь на Земле имеет собственное строение. А не только наше сердце с четырьмя камерами или клетки листьев ромашки с хлоропластами внутри.


Упорядоченное строение всей живой природы в целом достаточно условно. Примерно так же, как и разделение всех живых организмов на группы – классификация. Но в тоже время оно общепринято и в любом случае помогает разобраться со всей невообразимой сложностью и запутанностью нюансов жизни на Земле.

Так вот. Всю живую природу можно представить в виде системы. Огромной и сложной. Объять необъятное невозможно, поэтому учёные выделили в этой системе отдельные части – уровни. Которые находятся в соподчинении друг с другом.

Как выделили эти уровни? Дело в том, что жизнь на Земле можно рассматривать, выбирая для изучения разные её части. Более или менее самодостаточные с каким-то одним типом взаимодействия элементов. То есть относительно завершённые. И разные по объёму.

Давайте посмотрим на эти части или, как их называют – уровни.

Химические процессы, происходящие внутри живых организмов, уникальны. Потому что в них участвуют вещества, которые не способны существовать и взаимодействовать между собой вне живых организмов.

Например, ферменты – сложные по строению белковые молекулы – могут проявлять свои свойства только при определённой температуре, давлении, кислотности среды. Эти условия не могут быть соблюдены вне живого организма, соответственно, и ферменты вне живого организма не могут работать. Они утрачивают свою рабочую структуру.


Соответственно, это и самый простой, начальный уровень организации живого. Так как меньше молекул только отдельные атомы химических элементов. А вот уже если рассматривать взаимодействие атомов между собой – здесь мы не найдём кардинальных отличий – происходит это в живой природе или неживой. Поэтому начальным уровнем организации живого вещества является молекулярный.

Следом за молекулярным выделяют клеточный уровень. Здесь изучается взаимодействие клеточных органоидов на уровне одной клетки. Если организм одноклеточный, то этот уровень совпадает со следующим – организменным.

На организменном уровне изучается работа органов и систем органов многоклеточного организма.

Следующие уровни немного сложнее для понимания, потому что, скажем так, их невозможно потрогать. А можно только представить и убедить себя в том, что они есть. За организменным уровнем следует популяционно-видовой. Где изучается взаимодействие особей между собой в отдельно взятой популяции или виде в целом.
Что здесь можно изучать? Например, численность зайцев на определённой территории, их возрастную структуру, то есть количество особей разного возраста в популяции, половую структуру и так далее.


Без таких данных кроме всего прочего человек не сможет составить достоверный прогноз развития данной части природного сообщества. А это бывает просто необходимо для успешного развития сельского хозяйства и не только.

Более крупным уровнем является экосистемный. Здесь рассматриваются уже не отдельно взятые зайцы леса, а ВСЕ живые организмы, населяющие участок земной поверхности в их взаимодействии со средой обитания. Например, можно рассчитать, сколько данная дубрава выделяет кислорода за это лето. Или за год и так далее.

Наивысшем уровнем организации живого является биосферный. Он состоит из множества экосистем, о которых мы только что говорили. Точнее, не из множества экосистем. А из всех.

Изучая природу на этом уровне, мы можем узнать, например, концентрацию углекислого газа во всей атмосфере Земли, рассчитать, сколько его потребляют живые организмы и предсказать, угрожает ли человечеству глобальное потепление, таяние ледников, повышение уровня воды в мировом океане и всемирный потоп.


Вот таким получился наш краткий обзор уровней организации живой материи. А сегодня начинаем подробное знакомство с первым и самым элементарным – молекулярным. Но несмотря на то, что он первый и в принципе, самый простой по организации – это один из самых загадочных и в силу разных причин, малоизученных уровней.

Попытаемся разобраться в том, что известно о молекулярном уровне на сегодняшний день. Хотя бы частично.

Для этого нам понадобятся знания из химии. По этому уровню без них не ступить и шагу. Вообще, запомните. Химик может позволить себе некоторые пробелы в знании биологии. Потому что знать химию без знания биологии – это возможно. А вот человеку, который слабо разбирается в химии, но собирается стать биологом – дорога туда заказана. Вот почему на нас, биологах, лежит двойная нагрузка. Но давайте двигаться дальше.

Итак, исключительная роль в функционировании живых организмов принадлежит молекулам органических веществ. Как вы знаете, это белки, жиры, углеводы и нуклеиновые кислоты. Также вы знаете, что в состав живых организмов входит более 100 химических элементов. И знаете, что основная роль здесь принадлежит углероду. Почему? А потому, что атомы углерода способны соединяться друг с другом в цепочки. Давая при этом огромнейшее разнообразие органических веществ, которых насчитывается десятки миллионов. По сравнению с несколькими сотнями тысяч неорганических. Кстати, органическую химию ещё так и называют – химия углерода.

А сложные органические вещества, образующие цепочки, в свою очередь – полимерами – от греческого πολύ- – много и μέρος – часть. То есть, это вещества, состоящие из повторяющихся фрагментов – остатков других веществ – мономеров. Из того же греческого – μόνος – один.

В 8 классе вы достаточно подробно останавливались на строении таких веществ при изучении собственных процессов пищеварения. Помните? Откусили кусок булки, а в слюне её уже поджидает фермент амилаза. Которая расщепляет длинные молекулы крахмала до мальтозы, состоящую уже всего из двух молекул. С появлением во рту мальтозы на неё набрасывается фермент мальтаза и режет молекулу сахара напополам всего до одной молекулы сладенькой глюкозы.


Таким образом молекула крахмала, состоящая из повторяющихся молекул глюкозы – это полимер, а сама глюкоза, которая представляет собой одну молекулу – мономер.

Полимер крахмал состоит из мономеров – молекул глюкозы.

Количество мономеров в полимере может быть разным. От нескольких десятков тысяч в том же крахмале до сотен миллионов в молекуле дезоксирибонуклеиновой кислоты.

Не все полимеры или, точнее биополимеры, то есть те, которые встречаются в живых организмах, состоят из одинаковых мономеров. Например, белки, которые начинают перевариваться у нас в желудке, состоят из аминокислот. А аминокислот, которые могут входить в состав белков, двадцать. Поэтому полимеры белки относят к гетерополимерам. То есть, они состоят из разных мономеров.


Вы не запутались? Если честно, на самом деле это всё достаточно сложно. Как и сама жизнь. Имея сложное строение, полимеры проявляют и самые разнообразные свойства. Которые напрямую зависят от количества звеньев, входящих в их состав. А количество мономеров может изменяться в очень широких пределах, как мы выяснили. Но и это не всё. Каждая молекула уникальна благодаря разному чередованию этих звеньев и их взаимному расположению. В результате мы получаем немыслимое разнообразие биомолекул и теперь можем не удивляться многообразию жизненных форм на Земле. НО! В то же время все биологические молекулы построены по единому принципу. И это одно из доказательств единства живой природы.

Да. Наверное, на самом деле мы с вами произошли от бактерий. Если они появились на Земле первыми.


В какой-то мере единство живой природы подтверждает и такой факт - каждый тип органических веществ у всех организмов выполняет сходные функции.

Белки – основные структурные элементы клеток, а также главные ускорители и регуляторы химических реакций.

Углеводы и жиры в основном отвечают за обеспечение необходимой жизненной энергией.

Ну а уникальное строение нуклеиновых кислот (представьте – за открытие строения только одной молекулы ДНК из миллионов других органических веществ учёным была присуждена Нобелевская премия) позволяет записывать, сохранять и передавать в неизменном виде наследственную информацию. То есть всю информацию о строении тех же органических веществ и о том, как когда и где они должны появляться, какие функции выполнять и когда разрушаться, и перерабатываться. Это невероятный объём данных. Если их сравнить с общепринятыми на сегодняшний день, то мы получим, что в одном грамме ДНК (организм человека содержит 150 г) может храниться 700 терабайт данных. Это 233 жёстких диска по 3 терабайта с общим весом в 151 килограмм. Круто, да? Природа уже давно всё придумала за нас.

Молекулярный уровень жизни является базовым для существования всего живого. Именно здесь происходит то, что мы называем процессами жизнедеятельности. Например, каким бы образом живой организм не добывал себе для энергии пищу – будь то бесшумная сова в ночном лесу с мышью в когтях или это мощный дуб, впитывающий листьями углекислый газ, а корнями воду – все они в конечном итоге существуют за счёт образования на молекулярном уровне аденозинтрифосфорной кислоты – универсального источника энергии. С которым вы тоже обязательно познакомитесь на следующих уроках.

Если попробовать сравнить клетку с городом, то клеточные органоиды в нём – это предприятия. А всё высокотехнологичное оборудование этих предприятий – наши с вами органические вещества. Сможет город сохранять свою жизнедеятельность без работающего оборудования промышленных предприятий? Нет. Так и следующие уровни организации жизни на Земле не могут существовать без ещё полного загадок и тайн взаимодействия органических веществ на молекулярном уровне. И если кто-то задастся целью узнать, как же устроена жизнь на планете Земля – ему не обойтись без изучения строения и свойств органических веществ клетки.

Читайте также: