Метафазная пластинка это в биологии кратко

Обновлено: 02.07.2024

Митоз — основной способ деления эукариотических клеток, при котором сначала происходит удвоение, а затем равномерное распределение между дочерними клетками наследственного материала.

Митоз представляет собой непрерывный процесс, в котором выделяют четыре фазы: профазу, метафазу, анафазу и телофазу. Перед митозом происходит подготовка клетки к делению, или интерфаза. Период подготовки клетки к митозу и собственно митоз вместе составляют митотический цикл. Ниже приводится краткая характеристика фаз цикла.

Интерфаза состоит из трех периодов: пресинтетического, или постмитотического, — G1, синтетического — S, постсинтетического, или премитотического, — G2.

Пресинтетический период (2n 2c, где n — число хромосом, с — число молекул ДНК) — рост клетки, активизация процессов биологического синтеза, подготовка к следующему периоду.

Синтетический период (2n 4c) — репликация ДНК.

Постсинтетический период (2n 4c) — подготовка клетки к митозу, синтез и накопление белков и энергии для предстоящего деления, увеличение количества органоидов, удвоение центриолей.

Метафаза (2n 4c) — выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза (4n 4c) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами).

Телофаза (2n 2c в каждой дочерней клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счет борозды деления, в растительных клетках — за счет клеточной пластинки.

Митотический цикл, митоз

Митотический цикл, митоз: 1 — профаза; 2 — метафаза; 3 — анафаза; 4 — телофаза.

Биологическое значение митоза. Образовавшиеся в результате этого способа деления дочерние клетки являются генетически идентичными материнской. Митоз обеспечивает постоянство хромосомного набора в ряду поколений клеток. Лежит в основе таких процессов, как рост, регенерация, бесполое размножение и др.

Мейоз

Мейоз — это особый способ деления эукариотических клеток, в результате которого происходит переход клеток из диплоидного состояния в гаплоидное. Мейоз состоит из двух последовательных делений, которым предшествует однократная репликация ДНК.

Первое мейотическое деление (мейоз 1) называется редукционным, поскольку именно во время этого деления происходит уменьшение числа хромосом вдвое: из одной диплоидной клетки (2n 4c) образуются две гаплоидные (1n 2c).

Интерфаза 1 (в начале — 2n 2c, в конце — 2n 4c) — синтез и накопление веществ и энергии, необходимых для осуществления обоих делений, увеличение размеров клетки и числа органоидов, удвоение центриолей, репликация ДНК, которая завершается в профазе 1.

Профаза 1 подразделяется на стадии: лептотена (завершение репликации ДНК), зиготена (конъюгация гомологичных хромосом, образование бивалентов), пахитена (кроссинговер, перекомбинация генов), диплотена (выявление хиазм, 1 блок овогенеза у человека), диакинез (терминализация хиазм).

Мейоз

Мейоз: 1 — лептотена; 2 — зиготена; 3 — пахитена; 4 — диплотена; 5 — диакинез; 6 — метафаза 1; 7 — анафаза 1; 8 — телофаза 1;
9 — профаза 2; 10 — метафаза 2; 11 — анафаза 2; 12 — телофаза 2.

Купить проверочные работы
и тесты по биологии


Биология. Животные. Работаем по новым стандартам. Проверочные работы

Биология. Человек. Работаем по новым стандартам. Проверочные работы
Биология. 9 класс. Тесты

Метафаза 1 (2n 4c) — выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза 1 (2n 4c) — случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая — к другому), перекомбинация хромосом.

Телофаза 1 (1n 2c в каждой клетке) — образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы. У многих растений клетка из анафазы 1 сразу же переходит в профазу 2.

Второе мейотическое деление (мейоз 2) называется эквационным.

Интерфаза 2, или интеркинез (1n 2c), представляет собой короткий перерыв между первым и вторым мейотическими делениями, во время которого не происходит репликация ДНК. Характерна для животных клеток.

Профаза 2 (1n 2c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

Метафаза 2 (1n 2c) — выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом; 2 блок овогенеза у человека.

Анафаза 2 (2n 2с) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом.

Телофаза 2 (1n 1c в каждой клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

Биологическое значение мейоза. Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. Являясь основой комбинативной изменчивости, мейоз обеспечивает генетическое разнообразие гамет.

Амитоз

Амитоз — прямое деление интерфазного ядра путем перетяжки без образования хромосом, вне митотического цикла. Описан для стареющих, патологически измененных и обреченных на гибель клеток. После амитоза клетка не способна вернуться в нормальный митотический цикл.

Клеточный цикл

Клеточный цикл — жизнь клетки от момента ее появления до деления или смерти. Обязательным компонентом клеточного цикла является митотический цикл, который включает в себя период подготовки к делению и собственно митоз. Кроме этого, в жизненном цикле имеются периоды покоя, во время которых клетка выполняет свойственные ей функции и избирает дальнейшую судьбу: гибель или возврат в митотический цикл.

Формирование экваториальной пластинки

Экваториальная (метафазная) пластинка — расположение хромосом во время одной из стадий деления ядра клетки (метафазы), во время которой они располагаются по экватору ядерного веретена и при рассматривании сбоку при малых увеличениях производят — из-за невозможности рассмотреть отдельные хромосомы в плоскости экватора в это время — впечатление хроматиновой пластинки, лежащей по экватору, то есть на равном расстоянии от обоих полюсов клетки. После образования экваториальной пластинки начинается процесс разъединения сестринских хромосом и расхождения их к противоположным полюсам. (Анафаза)

клетка пластинка – это структура, которая образуется в клетках наземных растений в процессе их деление клеток.

Клетки наземных растений, в отличие от клеток животных, имеют клеточная стенка сделанный из жестких сахаров, которые окружают их клеточные мембраны. В дополнение к защите клетки от повреждений, клеточные стенки помогают поддерживать растение Жесткие вертикальные структуры, такие как листья и стебли.

Эти жесткие опорные конструкции позволяют растениям расти высокими и широко распускать листья, получая больше солнечного света. У большинства растений клеточная стенка состоит из целлюлозы – структуры молекул глюкозы, которая образует твердые, жесткие поверхности.

Интересно, что целлюлоза, из которой состоят клеточные стенки, не усваивается людьми или животными, но может разлагаться на сахар некоторыми производящими метан архебактерии, Это одна из причин симбиотических отношений между многими животными и архебактериями в нашем кишечнике.

Во время клеточного деления растительные клетки должны образовывать новую клеточную стенку, чтобы отделить их дочерние клетки, Этот новый фрагмент клеточной стенки должен образовываться в середине родительской клетки, чтобы гарантировать, что половина хлоропластов родительских клеток, ген копии и т. д. оказываются на каждой стороне клеточной стенки.

Образуется, когда везикулы из аппарат Гольджи ношение фосфолипидов, необходимых для клеточная мембрана и сахара, необходимые для формирования клеточной стенки, доставляются и собираются по сети цитоскелет волокна шпинделя который формируется в середине клетки, когда клетка готовится к делению.

Функция клеточной пластинки

Клеточные стенки служат двойной цели защиты ценного содержимого растительных клеток, таких как их ядра, и позволяют растению иметь отдельно стоящую структуру.

Поскольку растения не имеют скелетов, как животные, и постоянно растут и изменяются в соревнование чтобы получить больше солнечного света, важно, чтобы отдельные части растений, такие как стебли и листья, могли самостоятельно противостоять силе гравитации.

Вот почему наземные растения имеют клеточные стенки, но животные, у которых есть скелеты, и морские растения, которые живут в невесомой среде под водой, могут не иметь клеточных стенок.

Наличие клеточных стенок делает деление клеток немного сложным для растений. Разделить пополам и создать дочерние клетки – процесс, который называется «цитокинез – клетки без клеточных стенок просто сжимают клеточную мембрану пополам вокруг середины. Клеточная мембрана подобна гибкому пакету, который можно зажимать и переформировать по мере необходимости, когда клетке необходимо изменить форму.

Однако жесткая клеточная стенка не может быть согнута или зажата таким же образом. Он ограничивает форму клетки во время размножения и не может быть просто зажат вокруг середины.

Вместо этого, чтобы выполнить цитокинез, растения должны собрать новый срез клеточной стенки, чтобы их дочерние клетки имели структурную целостность, необходимую растению для поддержания своей формы. Они делают это через ряд шагов, о которых мы поговорим ниже.

Формирование клеточной пластинки

Этапы клеточного цикла делятся на:

  • интерфаза – где клетка растет и созревает
  • Митотическая фаза – где клетка начинает работать в направлении деления себя

интерфаза

Эти стадии в дальнейшем превращаются в конкретные шаги, в которых клетка выполняет все действия, необходимые для производства двух здоровых дочерних клеток. Этапы интерфазы являются:

Митотическая фаза

После G2 наступает митотическая фаза, когда клетка начинает предпринимать действия, которые ей необходимо разделить.

Чтобы сформировалась клеточная пластинка, пространство должно быть очищено от любых вакуолей или любых других препятствий, которые могут мешать; хромосомы должны быть отсортированы так, чтобы каждая дочерняя клетка получала копию каждой; и тогда клеточная пластинка может сформироваться, отделяя цитоплазма из двух дочерних клеток.

Все это и многое другое происходит во время митотической фазы.

Этапы митотической фазы:

Теперь каждая дочерняя клетка начнет расти и готовиться к расщеплению на две дочерние клетки!

викторина

Ответ на вопрос № 1

D верно. Все вышеперечисленное является причиной, по которой животные не используют жесткие клеточные стенки, как растения.

2. В какой фазе клеточного цикла образуется клеточная пластинка?A. G1B. S фазаC. G2D. Митотическая фаза

Ответ на вопрос № 2

D верно. Клеточная пластинка образуется во время цитокинеза, последней стадии митотической фазы.

3. Что из нижеперечисленного НЕ является правильным соединением фаз клеточного деления с этапами формирования клеточной пластинки?A. Препрофаза – Фрагмосома формируется в виде вакуолей, которые удаляются, образуя прозрачную полосу цитоплазмы, где позже может образоваться клеточная пластинка.B. Анафаза – клеточная пластинка собирается вдоль метафазной пластинки.C. Цитокинез. Клеточная пластинка собирается из фосфолипидов и сахаров вдоль каркаса фрагмопласта.D. Ни один из вышеперечисленных.

Ответ на вопрос № 3

В верно. Клеточная пластинка собирается во время цитокинеза, заключительной фазы митоз, В клетках с большими вакуолями во время препрофазы создается четкий путь для формирования клеточной пластинки.

Митоз — это наиболее распространенный способ деления эукариотических клеток. При митозе геномы каждой из двух образовавшихся клеток идентичны между собой и совпадают с геномом исходной клетки.

Митоз является последним и обычно самым коротким по времени этапом клеточного цикла. С его окончанием жизненный цикл клетки заканчивается и начинаются циклы двух новообразовавшихся.

Диаграмма иллюстрирует длительность этапов клеточного цикла. Буквой M — обозначен митоз. Наибольшая скорость митоза наблюдается в зародышевых клетках, наименьшая — в тканях с высокой степенью дифференциации, если их клетки вообще делятся.

Хотя митоз рассматривают независимо от интерфазы, состоящей из периодов G1, S и G2, подготовка к нему происходит именно в ней. Самым важным моментом является репликация ДНК, происходящая в синтетическом (S) периоде. После репликации каждая хромосома состоит уже из двух идентичных хроматид. Они сближены по всей своей длине и соединены в области центромеры хромосомы.

В интерфазе хромосомы находятся в ядре и представляют собой клубок тонких очень длинных хроматиновых нитей, которые видны лишь под электронным микроскопом.

В митозе выделяют ряд последовательных фаз, которые также могут называться стадиями или периодами. При классическом упрощенном варианте рассмотрения выделяют четыре фазы. Это профаза, метафаза, анафаза и телофаза. Часто выделяют больше фаз: прометафазу (между профазой и метафазой), препрофазу (характерна для растительных клеток, предшествует профазе).

С митозом связан другой процесс – цитокинез, который протекает в основном в период телофазы. Можно сказать, что цитокинез является как бы составной частью телофазы, или оба процесса идут параллельно. Под цитокинезом понимают разделение цитоплазмы (но не ядра!) родительской клетки. Деление ядра называют кариокинезом, и оно предшествует цитокинезу. Однако при митозе как такового деления ядра не происходит, т. к. сначала распадается одно – родительское, потом образуются два новых – дочерних.

Бывают случаи, когда кариокинез происходит, а цитокинез — нет. В таких случаях образуются многоядерные клетки.

Длительность самого митоза и его фаз индивидуальна, зависит от типа клеток. Обычно профаза и метафаза является самыми длительными периодами.

Средняя продолжительность митоза около двух часов. Животные клетки обычно делятся быстрее, чем клетки растений.

При делении клеток эукариот обязательно образуется двухполюсное веретено деления, состоящее из микротрубочек и связанных с ними белков. Благодаря ему происходит равное распределение наследственного материала между дочерними клетками.

Фазы митоза

Профаза

В профазе происходят следующие процессы (в основном параллельно):

Ядерная оболочка распадается

Формируются два полюса веретена деления

Митоз начинается с укорочения хромосом. Составляющие их пары хроматид спирализуются, в результате чего хромосомы сильно укорачиваются и утолщаются. К концу профазы их можно увидеть в световой микроскоп.

Ядрышки исчезают, т. к. образующие их части хромосом (ядрышковые организаторы) находятся уже в спирализованном виде, следовательно, неактивны и не взаимодействуют между собой. Кроме того распадаются ядрышковые белки.

В клетках животных и низших растений центриоли клеточного центра расходятся по полюсам клетки и выступают центрами организации микротрубочек. Хотя у высших растений центриолей нет, микротрубочки также образуются.

От каждого центра организации начинают расходиться короткие (астральные) микротрубочки. Формируется структура похожая на звезду. У растений она не образуется. Их полюса деления более широкие, микротрубочки выходят не из малой, а из относительно широкой области.

Распад ядерной оболочки на мелкие вакуоли знаменует конец профазы.

Справа на микрофотографии зеленым цветом подсвечены микротрубочки, синим — хромосомы, красным – центромеры хромосом.

Также следует отметить, что в период профазы митоза происходи фрагментация ЭПС, она распадается на мелкие вакуоли; аппарат Гольджи распадается на отдельные диктиосомы.

Прометафаза

Ключевые процессы прометафазы идут большей часть последовательно:

Хаотичное расположение и движение хромосом в цитоплазме.

Соединение их с микротрубочками.

Движение хромосом в экваториальную плоскость клетки.

Хромосомы оказываются в цитоплазме, они беспорядочно двигаются. Оказавшись на полюсах, у них больше шансов скрепиться с плюс-концом микротрубочки. В конце концов нить прикрепляется к кинетохоре.

Такая кинетохорная микротрубочка начинает нарастать, чем отдаляют хромосому от полюса. В какой-то момент к кинетохоре сестринской хроматиды крепится другая микротрубочка, нарастающая с другого полюса деления. Она тоже начинает толкать хромосому, но уже в противоположном направлении. В результате хромосома становится на экваторе.

Кроме астральных и кинетохорных микротрубочек есть те, которые идут от одного полюса к другому, как бы распирают клетку в перпендикулярном экватору направлении.

Метафаза

Признаком начала метафазы является расположение хромосом по экватору, образуется так называемая метафазная, или экваториальная, пластинка. В метафазу хорошо видны количество хромосом, их отличия и то, что они состоят из двух сестринских хроматид, соединенных в районе центромеры.

Хромосомы удерживаются за счет сбалансированных сил натяжения микротрубочек разных полюсов.

Анафаза

Сестринские хроматиды разделяются, каждая двигается к своему полюсу.

Полюса удаляются друг от друга.

Телофаза

Движение хромосом останавливается

Восстанавливается ядерная оболочка

Большая часть микротрубочек исчезает

Телофаза начинается, когда хромосомы перестают двигаться, остановившись у полюсов. Они деспирализуются, становятся длинными и нитевидными.

Микротрубочки веретена деления разрушаются от полюсов к экватору, т. е. со стороны своих минус-концов.

Вокруг хромосом образуется ядерная оболочка путем слияния мембранных пузырьков, на которые в профазе распалось материнское ядро и ЭПС. На каждом полюсе формируется свое дочернее ядро.

Поскольку хромосомы деспирализуются, ядрышковые организаторы становятся активными и появляются ядрышки.

Возобновляется синтез РНК.

Если на полюсах центриоли еще не парные, то около каждой достраивается парная ей. Таким образом на каждом полюсе воссоздается свой клеточный центр, который отойдет в дочернюю клетку.

Обычно телофаза заканчивается разделением цитоплазмы, т. е. цитокинезом.

Цитокинез

Цитокинез может начаться еще в анафазе. К началу цитокинеза клеточные органеллы распределяются относительно равномерно по полюсам.

Разделение цитоплазмы растительных и животных клеток происходит по-разному.

У животных клеток благодаря эластичности цитоплазматическая мембрана в экваториальной части клетки начинает впячиваться во внутрь. Образуется борозда, которая в конце концов смыкается. Другими словами, материнская клетка делится перешнуровкой.

В растительных клетках в телофазе нити веретена не исчезают в области экватора. Они сдвигаются ближе к цитоплазматической мембране, их количество увеличивается, и они образуют фрагмопласт. Он состоит из коротких микротрубочек, микрофиламентов, частей ЭПС. Сюда перемещаются рибосомы, митохондрии, комплекс Гольджи. Пузырьки Гольджи и их содержимое на экваторе образуют срединную клеточную пластинку, клеточные стенки и мембрану дочерних клеток.

Значение и функции митоза

Благодаря митозу обеспечивается генетическая стабильность: точное воспроизводство генетического материала в ряду поколений. Ядра новых клеток содержат столько же хромосом, сколько их содержала родительская клетка, и эти хромосомы являются точными копиями родительских (если, конечно, не возникли мутации). Другими словами, дочерние клетки генетически идентичны материнской.

Читайте также: