Механизм корневого давления кратко

Обновлено: 05.07.2024

В результате активной работы ионных на­сосов в корне и осмотического (пассивного) поступления во­ды в сосуды ксилемы в сосудах развивается гидростатическое давление, получившее название корневого давления. Оно обеспе­чивает поднятие ксилемного раствора по сосудам ксилемы из корня в надземные части. Показано, что у растений, обитаю­щих в холодных и плохо аэрируемых почвах, а также в резуль­тате действия ядов и ингибиторов корневое давление снижено. Механизм поднятия воды по растению вследствие разви­вающегося корневого давления называют нижним концевым двигателем.

Верхний концевой двигатель, обеспечиваю­щий передвижение воды вверх по растению, создается и под­держивается высокой сосущей силой транспирирующих клеток листовой паренхимы.

Транспирация — это физиологический процесс испарения во­ды растением. Основным органом транспирации является лист.

Растение имеет очень большую листовую поверхность, что создает огромную поверхность испарения. В результате потери воды клетками листьев в них снижается водный потенциал, т. е. возрастает сосущая сила. Это приводит к усилению поглощения клетками листа воды из ксилемы жилок и передвижению воды по ксилеме из корней в листья.

Сила верхнего концевого двига­теля будет тем больше, чем активнее транспирация. Верхний концевой двигатель может работать при полном отключении нижнего концевого двигателя, причем для его работы исполь­зуется не метаболическая энергия, а энергия внешней среды — температура и движение воздуха.

Из корневого волоска вода поступает в соседние клетки, а затем в сосуды корня и по ним под давлением поднимается в другие органы растения. Этот процесс обеспечивается корневым давлением.

Корневое давление — это сила (гидростатическое давление), обеспечивающая поступление воды в клетки или межклетники коры, а затем в сосуды корня и по ним — в другие органы растения. Показано, что у растений, обитающих в холодных и плохо аэрируемых почвах, а также в результате действия ядов и ингибиторов корневое давление снижено.

Корнево́е давле́ние — давление в проводящих сосудах корней растений, в основе которого лежит явление осмоса: клетки корня выделяют минеральные и органические вещества в сосуды, что создаёт более высокое давление, чем в почвенном растворе. Вместе с транспирацией корневое давление вызывает поднятие пасоки (воды и растворённых в ней питательных веществ) вверх по стеблю растения. Достигает 1-3, до 10, ат; сила зависит от наличия кислорода и температуры, вследствие чего максимум давления наблюдается днём и минимум — ночью [1].

Корнево́е давле́ние — давление в проводящих сосудах корней растений, в основе которого лежит явление осмоса: клетки корня выделяют минеральные и органические вещества в сосуды, что создает более высокое давление, чем в почвенном растворе

Корнево́е давле́ние — давление в проводящих сосудах корней растений, в основе которого лежит явление осмоса: клетки корня выделяют минеральные и органические вещества в сосуды, что создает более высокое давление, чем в почвенном растворе.

Корневая система имеет поглощающую или всасывающую зону - это зона корневых волосков. Поступив в клетку корневого волоска вода становится частью живой системы - клетки растения - и подчиняется закономерностям, действующим в живой клетке. Передвижение по растению определяется двумя основными двигателями водного потока в растении:нижним двигателем водного потока или корневым давлением,верхним двигателем водного потока или присасывающим действием атмосферы.

Корневое давление создается при переходе воды из коры корня в сосудистую систему корня при прохождении воды через пропускные клетки перицикла, из которых вода под давлением как бы впрыскивается в сосуды ксилемы. Доказательством этого служат явления гуттации и "плача растений".

Гуттация - это выделение капельно-жидкой влаги листьями через гидатоды в условиях затрудненного испарения.

Плач растения - это вытекание пасоки (воды с растворенными в ней минеральными веществами, находящейся в ксилеме) из стеблей растений со срезанными побегами. Механизм образования корневого давления по-видимому состоит из двух аспектов:переноса воды по законам осмоса, дополнительной сократительной деятельности актомиозиновых белков, находящихся в перицикле и паренхимных клетках корня.

Присасывающее действие атмосферы определяется концентрацией водяных паров в атмосфере. Этот показатель в атмосфере почти всегда меньше, чем в листе растения, за исключением условий повышенной влажности воздуха, например, во время дождя, тумана.

Большая часть биоколлоидов клетки принадлежит к гидрофильным соединениям, способным к обратимым изменениям степени своей оводненности. Поглощая воду, коллоидная мицелла набухает, при отдаче же ею воды происходит отбухание. При этом в клетке развиваются весьма значительные силы, достигающие иногда сотен атмосфер.

Сила, которую нужно приложить к коллоидной системе, чтобы предотвратить поглощение ею воды, называется давлением набухания. Этому свойству биоколлоидов принадлежит важная роль в процессах поглощения протоплазмой воды, в передаче воды в вакуоль и в выделении воды клеткой.

При прорастании семян, например, обусловленном только явлением набухания, поглощение воды идет с силой до 105 килопаскаль.

Эндодерма - самый внутренний слой первичной коры, облекающий центральный цилиндр, часть эндодермы представлена тонкостенными клетками, называющимися пропускными. Именно через эти клетки вода под давлением проникает из клеток коры корня в центральный сосудистый цилиндр (ксилему).

Корневое давление зависит:

от условий влажности почвы (чем больше гидромодуль почвы, т.е. количество воды на единицу площади, тем интенсивнее идет поглощение воды растением),

от температуры почвы (ниже 12оС и выше 30оС поглощение воды замедляется),

от аэрации почвы (так как при нарушении аэрации ухудшается процесс дыхания, т.е. получения энергии клеткой, а, значит, и поглощения и передачи воды).

7. Транспирация: виды, механизмы, физиологическая роль и зависимость от внутренних и внешних факторов. Методы учета и возможности регулирования транспирации.

ТРАНСПИРАЦИЯ, у растений - потеря влаги в виде испарения воды с поверхности листьев или других частей растения.

Биологическое значение транспирации состоит в терморегуля­ции растения, в обеспечении деятельности верхнего концевого двигателя водного тока, при помощи которого осуществляется и поступление различных веществ, а также в регулировании насы­щенности клеток водой, благодаря чему создаются оптимальные условия для процессов жизнедеятельности.

Типы транспирации:

1. Устьичная транспирация.

Число устьиц в листе в среднем составляет 50-500 на 1 кв. мм. Транспирация с поверхности листа идет почти с такой же скоростью как и с поверхности чистой воды. Это объясняется законом Стефана: через малые отверстия скорость диффузии газов пропорциональна не площади поверхности, а диаметру или длине окружности. То есть испарение из ряда мелких отверстий идет быстрее, чем из крупного отверстия того же диаметра. Это связано с явлением краевой диффузии. При диффузии из отверстий, стоящих на некотором расстоянии друг от друга молекулы воды, располагающиеся по краям, испаряются быстрее (рис. 3).

2. Кутикулярная транспирация.

Потеря воды растением через кутикулу имеет большое значение, когда устьица закрыты (засуха).

У молодых растений кутикулярная транспирация составляет около 50% всей транспирации, а у зрелых – 1/10. В старых листьях кутикулярная транспирация снова возрастает в результате разрушения и растрескивания кутикулы. Кутикулярна транспирация регулируется толщиной слоя кутикулы. Виды, имеющие толстый слой кутикулы, меньше теряют воду. А виды с тонкой кутикулой больше.

Как степень открытия устьиц влияет на интенсивность транспирации, так же внешние условия влияют на транспирацию , как на физический процесс.

Прежде всего на транспирацию влияет степень насыщенности атмосферы водой. Чем меньше относительная влажность воздуха, тем ниже его водный потенциал и тем быстрее идет транспирация. С увеличением влажности воздуха транспирация уменьшается; и при большой влажности воздуха происходит только гуттация

Транспирация зависит от температуры. С её повышением значительно увеличивается количество воды, насыщающей воздушное пространство, что увеличивает дефицит влаги в воздухе, а следовательно увеличивается и транспирация.

Свет – главный фактор, регулирующий транспирацию, который на испарение воды с водной поверхности практически не влияет. Влияние света на транспирацию связано прежде всего с тем, что клетки листа, содержание хлорофилл, поглощают не только инфракрасные лучи, но и видимы свет, необходимый для фотосинтеза. На фотосинтез лист расходует только 1-2% поглощенного света, а остальная энергия (98%) превращается в тепло, которая используется на испарение. Свет так же косвенно влияет на транспирацию, вызывая открытие устьиц.

В естественных условиях на интенсивность транспирации влияет ветер, но не так сильно как на испарение со свободной водной поверхности. В основном его влияние проявляется на третьем этапе устьичной транспирации, так как действие на внутренние ткани, из которых идет испарение, ограничено. Увеличение интенсивности транспирации происходит до 0,4 – 0,8 м/с, дальнейшее усиление ветра уже не влияет на транспирацию, так как в таком случае транспирация зависит от диффузии воды через устьица.

Транспирация зависит от влажности почвы. Здесь прямая зависимость. Чем меньше воды в почве, тем меньше её в клетках листа, а следовательно транспирация уменьшается., так как устьица прикрываются. Транспирация так же снижается, при недостатке недостаток кислорода в почве, что снижает дыхание корней, поглощение ими минеральных веществ, а следовательно и воды.

Интенсивность транспирации зависит от условий минерального питания, При недостатке азота, фосфора, или калия усиливает транспирацию. Транспирация сокращается если растение получает полное минеральное удобрение. Это объясняется тем, что поглощенные ионы и синтезированные вещества связывают воду, а испаряется только свободная вода.

Транспирация зависит и от внутренних условий.

Прежде всего интенсивность транспирации зависит от содержания воды в листьях. Всякое уменьшение воды в листьях уменьшает транспирацию.

Интенсивность транспирации зависит от количества свободной воды, водоудерживающей силы клеток. Чем меньше свободной воды, и меньше транспирация. Величина листовой поверхности так же является условием влияющим потери воды растением. Чем она больше, тем и больше теряется воды. Однако здесь могут быть различные приспособления растений, выработанных в процессе эволюции, снижающих испарение: опушенность листовой пластинки, погружение устьиц в мезофилл, толщина кутикулы.

Интенсивность транспирации зависит от соотношения поверхности корней и побегов. При увеличении доли корней транспирация увеличивается.

Возрастные изменения как листа, так и растения существенно влияют на интенсивность транспирации. Она может меняться у разных растений в зависимости от фаз и этапов онтогенезе.


В статье представлена информация о том, что такое корневое давление. В растениях отсутствует регулярная циркуляция сока, сравнимая с кровью животных, или постоянный поток в любом одном направлении, за исключением временного. Корневое давление вызывает подъем жидкости в растениях.

Роль корневого давления

В низкорослых растениях корневое давление наиболее видимо ночью или рано утром, то есть через некоторое время после того, как транспирация прекратилась, и прежде, чем она начнет действовать снова с дневным светом. Корневое давление способствует их жизни и росту.

Что такое корневое давление для лиственных деревьев и кустарников? Этим видам растений требуются значительные силы для пробуждения своих зимних почек и стимуляции их к росту. Растения растут быстрее ночью, чем днем, потому что корневое давление в темное время суток оказывает свою полную силу.

Процесс корневого давления

Процесс давления в корневой системе

Рассмотрим, что такое корневое давление. Это поперечное осмотическое давление в клетках системы корней, благодаря чему сок в растениях поднимается к стеблям и листьям.

Корневое давление возникает в ксилеме растений, когда влажность почвы находится на высоком уровне, либо в темное время суток.

Ночью в некоторых растениях корневое давление способствует появлению капель сока от кончиков или краев листьев. Оно анализируется при срезании стеблей растений поблизости уровня почвы. Сок будет сочиться из разреза стебля в течение нескольких часов или дней и для того, чтобы под действием корневого давления измерить его уровень и силу продвижения, можно использовать манометр.

Соки накапливаются в корневой ксилеме, после чего отправляются в стебли, цветы и листья. Корневое давление растений характеризуется активным распределением минеральных питательных веществ и ионов в корневище.

Транспирация у растений

Оно дает усилие, которое проталкивает воду вверх по стеблю, но этого недостаточно, чтобы объяснить движение воды в листья на вершине самых высоких деревьев.

Корневое давление растений транспортирует воду и растворенные минеральные питательные вещества от корней через ксилему к верхушкам. Максимальное корневое давление составляет около 0,6 мегапаскаль.

Движение минеральных веществ и жидкости вверх сосудистых растений происходит благодаря транспирации.

Движение воды внутри растения

Существуют 2 способа, которые позволяют воде двигаться вверх. Это корневое давление и транспирация:

1. Давление корня: вода перемещается от корней вверх. В виду того, корневое давление не способно достаточно высоко поднять воду, для этого необходим другой процесс.

2. Транспирация. Большая часть жидкости проходит через отверстия, которые называются устьица. Они находятся с нижней стороны листьев. Вода движется из-за давления корня вверх по стеблю, после чего "включается" процесс транспирации, и она подается к листьям.

Вода - это полярная молекула. Когда ее молекулы сближаются, они образуют водородную связь. Вода поступает в ксилему в корни при помощи осмоса. Она постоянно испаряется с поверхности листьев, поэтому так важно, чтобы круговорот воды был постоянным. Без ее поступления жизнь растений невозможна, поэтому корневое давление имеет большое значение для жителей зеленого мира.

Движение воды

Поглощение минералов корнями

Минералы поступают в корень через корневые волоски. Этот процесс требует энергии, поэтому волоски корня содержат много митохондрий, чтобы создавать ее. Митохондрии - это органеллы в цитоплазме клеток, которые преобразуют углеводы в энергию с клеточным дыханием.

Каждому садоводу интересно было бы знать, что такое корневое давление и какое его значение в жизни растений. Все они имеют корневое давление, благодаря чему растут, насыщаются влагой и питательными веществами.

Читайте также: