Механизм и закономерности кристаллизации металлов кратко

Обновлено: 04.07.2024

Эмпирически доказано, что при небольшом давлении с уменьшением температуры все вещества (исключение - гелий) превращаются в твердые тела, то есть кристаллизуются.

Если давление достаточно высоко, то большое количество веществ превращается из жидкостей в твердые вещества. Вещества, называемые аномальными, сохраняют свою жидкую фазу вплоть до $T=0K$ при большом давлении. К таким веществам относят те вещества, плотность которых уменьшается при переходе от жидкости к твердому состоянию. Температура плавления таких веществ уменьшается при росте давления. К аномальным веществам относят, например:

Кристаллизацией называют переход из состояния жидкости в твердое состояние при определенных температуре и давлении.

В процессе кристаллизации выделяется теплота, которую именуют теплотой кристаллизации.

Кристаллизация – это фазовый переход первого рода. Она происходит при давлении ниже тройной точки.

Соотношение давления и температуры в фазовом переходе первого рода задает уравнение Клапейрона - Клаузиуса:

где $L$ - скрытая теплота кристаллизации; $V_2$ - удельный объем вещества в твердом состоянии; $V_1$ - удельный объем этого же вещества в виде жидкости.

У большого количества веществ удельный объем в процессе перехода из жидкого состояния в твердое, становится меньше, соответственно плотность растет. Получается, что для этих веществ давление в состоянии фазового перехода $p$ при увеличении температуры увеличивается, поскольку $\frac >0$.

Металлы могут находиться в трех состояниях:

  1. в виде газа;
  2. жидкости;
  3. твердом состоянии,

это зависит от температуры и давления.

Химически чистые металлы обладают температурой плавления, при которой они переходят из твёрдого состояния в жидкость, и температурой кипения, при которой они становятся газами.

Готовые работы на аналогичную тему

Температуры плавления металлов могут колебаться:

  • от $-38,9^0 C$ у ртути;
  • до $+3410^0C$ у вольфрама.

Возникновения кристаллической решетки идет в процессе перехода металла из состояния жидкости в состояние твердого тела. Если условия в этом процессе являются идеальными, то результатом этого перехода атомы расположатся в геометрически верной структуре, между ними будут определенные расстояния, то есть атомы составят кристаллическую решетку. Так, в процессе медленного охлаждения получают монокристаллы, масса которых достигает 200 грамм и больше. Эти кристаллы используют, например, в полупроводниковой технике.

Кривые охлаждения расплавов

Остывание расплавленного металла при уменьшении температуры происходит плавно (рис.1), кривая $A$. Однако, если достигается температура кристаллизации $T_k$, возникает горизонтальный отрезок, который связывают с наличием выделения скрытой теплоты кристаллизации, компенсирующей отвод теплоты. При дальнейшем уменьшении температуры металл становится твердым, и его температура продолжает уменьшаться.

Рисунок 1. Кривые охлаждения расплавов. Автор24 — интернет-биржа студенческих работ

В реальной действительности кривая кристаллизации несколько иная (рис.1 $B$). Это происходит потому, что металл в состоянии жидкости, способен существовать при температуре более низкой ($T_p$), чем температура кристаллизации. Температуру $T_p$ называют температурой переохлаждения ($T_p$ В процессе кристаллизации металлов можно выделить две стадии:

  1. Возникновение центов кристаллизации.
  2. Рост кристаллов.

Существует несколько схем, которые объясняют процесс кристаллизации жидких металлов. В расплаве возникают центы кристаллизации. При уменьшении температуры ниже, чем $T_p$ (или $T_k$) за короткий отрезок времени в веществе возникают новые центры кристаллизации, они растут. При свободном процессе кристаллизации появляется первичная ось, потом возникают вторичные оси и оси высших порядков. Кристаллы обретают древовидную (дендритную) форму.

В настоящих условиях кристаллизация протекает поначалу с большой скоростью, но при взаимном столкновении увеличивающихся кристаллов скорость процесса уменьшается. До тех пор, пока кристалл находится в жидкости, он обладает правильной формой. Когда кристаллы сталкиваются между собой, они срастаются, правильная форма их нарушается. Так появляются кристаллы с неправильной формой, называемые зернами (кристаллитами).

Факторы, влияющие на кристаллизацию

На прохождение процесса кристаллизации оказывают основное влияние:

  1. Наличие температуры переохлаждения.
  2. Скорость и направление отвода теплоты.
  3. Наличие примесей в металле, которые являются центрами кристаллизации.

Отметим, что в направлении отвода тепла в процессе кристаллизации, кристалл растет существенно быстрее, чем в других направлениях. Это ведет к возникновению неправильной формы кристаллов.

Рассмотрим кристаллизацию стали. Слитки стали создают в металлических изложницах. В этих емкостях металл не способен кристаллизоваться одновременно во всем объеме, поскольку теплота отводится от вещества не равномерно. Процесс затвердевания начинается у стенок и дна емкости, так как эти части имеют более низкую температуру, чем вещество внутри. Твердая сталь имеет более высокую плотность, чем ее расплав, в этой связи в слитке в верхней части, в результате уменьшения объема возникает усадочная раковина.

По химическому составу вещество будет неоднородным. Оси растущего кристалла имеют больше легкоплавких элементов, затвердевающих медленнее.

Любое вещество может находиться в трех агрегатных состояниях: твердом, жидком, газообразном.


Изменение свободной энергии в зависимости от температуры

Кристаллизация – это процесс образования участков кристаллической решетки в жидкой фазе и рост кристаллов из образовавшихся центров. Кристаллизация протекает в условиях, когда система переходит к термодинамически более устойчивому состоянию с минимумом свободной энергии. При соответствующем понижении температуры в жидком металле начинают образовываться кристаллики – центры кристаллизации или зародыши. Для начала их роста необходимо уменьшение свободной энергии металла, в противном случае зародыш растворяется. Минимальный размер способного к росту зародыша называется критическим размером, а зародыш – устойчивым. Переход из жидкого состояния в кристаллическое требует затраты энергии на образование поверхности раздела жидкость – кристалл. Процесс кристаллизации будет осуществляться, когда выигрыш от перехода в твердое состояние больше потери энергии на образование поверхности раздела. Зародыши с размерами равными и большими критического растут с уменьшением энергии и поэтому способны к существованию.

Свободная энергия – составляющая полной энергии, которая обратимо меняется с изменением температуры.


Зависимость энергии системы от размера зародыша твердой фазы

Рост продолжается в направлениях, где есть свободный доступ питающей среды. После окончания кристаллизации имеем поликристаллическое тело.

Размер зерен при кристаллизации зависит от числа частичек нерастворимых примесей, которые играют роль готовых центров кристаллизации- оксиды, нитриды, сульфиды. Чем больше частичек, тем мельче зерна закристаллизовавшегося вещества.

Мелкозернистую структуру можно получить в результате модифицирования, добавлением в жидкие металлы посторонних веществ-модификаторов. По механизму воздействия модификаторов различают:

А)вещества, не растворяющихся в жидком металле-выступают в качестве дополнительных центров кристализации;

Б)поверхностно-активные вещества, которые растворяются в металле, и, осаждаюсь на поверхности растущих кристаллов, препятствуют их росту

7. Строение металлического сплава зависит от того, в какие взаимодействия вступают компоненты, составляющие сплав. Почти все металлы в жидком состоянии растворяются друг в друге в любых соотношениях.

В зависимости от характера взаимодействия компонентов различают сплавы:

1. механические смеси;

2. химические соединения;

3. твердые растворы.

Сплавы механические смеси образуются, когда компоненты не способны к взаимному растворению в твердом состоянии и не вступают в химическую реакцию с образованием соединения.


Схема микроструктуры механической смеси

Сплавы химические соединения образуются между элементами, значительно различающимися по строению и свойствам, если сила взаимодействия между разнородными атомами больше, чем между однородными.


Кристаллическая решетка химического соединения

Сплавы твердые растворы – это твердые фазы, в которых соотношения между компонентов могут изменяться. Являются кристаллическими веществами. Характерной особенностью твердых растворов является: наличие в их кристаллической решетке разнородных атомов, при сохранении типа решетки растворителя. Твердый раствор состоит из однородных зерен


Схема микроструктуры твердого раствора

По характеру распределения атомов растворенного вещества в кристаллической решетке растворителя различают твердые растворы:


В растворах замещения в кристаллической решетке растворителя часть его атомов замещена атомами растворенного элемента. Замещение осуществляется в случайных местах, поэтому такие растворы называют неупорядоченными твердыми растворами.

Рис.4.4. Кристаллическая решетка твердых растворов замещения (а), внедрения (б)

Внедрение – размещение атомов раствор вещ-ва в своб промежутках растворителя.

Строение – зона столб кристаллов, зона равноосн крист.

Система – группа тел, выбираемых для изучения или исследования.

Компонент – вещ-ва, необходимые и достаточные для образования системы.

Фаза – однородная часть системы, отделенная от неё другой частью системы, пов-тью раздела, при переходе ч-з которую хим состав или структура изменяются скачком.

8.Диаграмма состояния и её построение Правило фаз

Фаза – однородная часть системы, отделенная от других частей системы поверхностного раздела, при переходе через которую структура и свойства резко меняются. Если вариантность C = 1 (моновариантная система), то возможно изменение одного из факторов в некоторых пределах, без изменения числа фаз. Если вариантность C = 0 (нонвариантная система), то внешние факторы изменять нельзя без изменения числа фаз в системе. Существует математическая связь между числом компонентов (К), числом фаз (Ф) и вариантностью системы ( С ). Это правило фаз или закон Гиббса



Если принять, что все превращения происходят при постоянном давлении, то число переменных уменьшится где: С – число степеней свободы, К – число компонентов, Ф – число фаз, 1 – учитывает возможность изменения температуры.

Диаграмма состояния представляет собой графическое изображение состояния любого сплава изучаемой системы в зависимости от концентрации и температуры


. Рис. 4.5. Диаграмма состояния

Диаграммы состояния показывают устойчивые состояния, т.е. состояния, которые при данных условиях обладают минимумом свободной энергии, и поэтому ее также называют диаграммой равновесия, так как она показывает, какие при данных условиях существуют равновесные фазы.

Температуры, соответствующие фазовым превращениям, называют критическими точками. Некоторые критические точки имеют названия, например, точки отвечающие началу кристаллизации называют точками ликвидус, а концу кристаллизации – точками солидус. По диаграмме состояния можно определить температуры фазовых превращений, изменение фазового состава, приблизительно, свойства сплава, виды обработки, которые можно применять для сплава.

Кристаллизация – это процесс образования участков кристаллической решетки в жидкой фазе и рост кристаллов из образовавшихся центров.

Кристаллизация протекает в условиях, когда система переходит к термодинамически более устойчивому состоянию с минимумом свободной энергии.

Процесс перехода металла из жидкого состояния в кристаллическое можно изобразить кривыми в координатах время – температура. Кривая охлаждения чистого металла представлена на рис. 1.


Рис.1. Кривая охлаждения чистого металла


– теоретическая температура кристаллизации;


. – фактическая температура кристаллизации.

Процесс кристаллизации чистого металла:

До точки 1 охлаждается металл в жидком состоянии, процесс сопровождается плавным понижением температуры. На участке 1 – 2 идет процесс кристаллизации, сопровождающийся выделением тепла, которое называется скрытой теплотой кристаллизации . Оно компенсирует рассеивание теплоты в пространство, и поэтому температура остается постоянной. После окончания кристаллизации в точке 2 температура снова начинает снижаться, металл охлаждается в твердом состоянии.

Механизм кристаллизации металлов.

При соответствующем понижении температуры в жидком металле начинают образовываться кристаллики – центры кристаллизации или зародыши . Для начала их роста необходимо уменьшение свободной энергии металла, в противном случае зародыш растворяется.

Минимальный размер способного к росту зародыша называется критическим размером , а зародыш – устойчивым.

Переход из жидкого состояния в кристаллическое требует затраты энергии на образование поверхности раздела жидкость – кристалл. Процесс кристаллизации будет осуществляться, когда выигрыш от перехода в твердое состояние больше потери энергии на образование поверхности раздела. Зависимость энергии системы от размера зародыша твердой фазы представлена на рис. 2.

Зародыши с размерами равными и большими критического растут с уменьшением энергии и поэтому способны к существованию.


Рис.2. Зависимость энергии системы от размера зародыша твердой фазы

Механизм кристаллизации представлен на рис.3.


Рис.3. Модель процесса кристаллизации

Центры кристаллизации образуются в исходной фазе независимо друг от друга в случайных местах. Сначала кристаллы имеют правильную форму, но по мере столкновения и срастания с другими кристаллами форма нарушается. Рост продолжается в направлениях, где есть свободный доступ питающей среды. После окончания кристаллизации имеем поликристаллическое тело.

Качественная схема процесса кристаллизации может быть представлена количественно кинетической кривой (рис. 4).


Рис. 4. Кинетическая кривая процесса кристаллизации

Процесс вначале ускоряется, пока столкновение кристаллов не начинает препятствовать их росту. Объем жидкой фазы, в которой образуются кристаллы уменьшается. После кристаллизации 50 % объема металла, скорость кристаллизации будет замедляться.

Таким образом, процесс кристаллизации состоит из образования центров кристаллизации и роста кристаллов из этих центров.

В свою очередь, число центров кристаллизации (ч.ц.) и скорость роста кристаллов (с.р.) зависят от степени переохлаждения (рис. 5).


Рис. 5. Зависимость числа центров кристаллизации (а) и скорости роста кристаллов (б) от степени переохлаждения

Размеры образовавшихся кристаллов зависят от соотношения числа образовавшихся центров кристаллизации и скорости роста кристаллов при температуре кристаллизации.

При равновесной температуре кристаллизации Т S число образовавшихся центров кристаллизации и скорость их роста равняются нулю, поэтому процесса кристаллизации не происходит.

Если жидкость переохладить до температуры, соответствующей т. а, то образуются крупные зерна (число образовавшихся центров небольшое, а скорость роста – большая).

При переохлаждении до температуры соответствующей т. в – мелкое зерно (образуется большое число центров кристаллизации, а скорость их роста небольшая).

Если металл очень сильно переохладить, то число центров и скорость роста кристаллов равны нулю, жидкость не кристаллизуется, образуется аморфное тело. Для металлов, обладающих малой склонностью к переохлаждению, экспериментально обнаруживаются только восходящие ветви кривых.

Рекристализационный отжиг (Рекристаллизация) – отжиг I-го рода, процесс зарождения и роста новых недеформированных зерен при нагреве наклепанного металла до определенной температуры.

Нагрев металла до температур рекристаллизации сопровождается резким изменением микроструктуры и свойств. Нагрев приводит к резкому снижению прочности при одновременном возрастании пластичности. Также снижается электросопротивление и повышается теплопроводность.

1 стадия – первичная рекристаллизация (обработки) заключается в образовании центров кристаллизации и росте новых равновесных зерен с неискаженной кристаллической решеткой. Новые зерна возникают у границ старых зерен и блоков, где решетка была наиболее искажена. Количество новых зерен постепенно увеличивается и в структуре не остается старых деформированных зерен.

Движущей силой первичной рекристаллизации является энергия, аккумулированная в наклепанном металле. Система стремится перейти в устойчивое состояние с неискаженной кристаллической решеткой.

2 стадия – собирательная рекристаллизация заключается в росте образовавшихся новых зерен.

Движущей силой является поверхностная энергия зерен. При мелких зернах поверхность раздела большая, поэтому имеется большой запас поверхностной энергии. При укрупнении зерен общая протяженность границ уменьшается, и система переходит в более равновесное состояние.

Температура начала рекристаллизации связана с температурой плавления


,


для металлов


для твердых растворов


для металлов высокой чистоты

На свойства металла большое влияние оказывает размер зерен, получившихся при рекристаллизации. В результате образования крупных зерен при нагреве до температуры t 1 начинает понижаться прочность и, особенно значительно, пластичность металла.

Основными факторами, определяющими величину зерен металла при рекристаллизации, являются температура, продолжительность выдержки при нагреве и степень предварительной деформации (рис. 6).


Рис. 6. Влияние предварительной степени деформации металла на величину зерна после рекристаллизации

С повышением температуры происходит укрупнение зерен, с увеличением времени выдержки зерна также укрупняются. Наиболее крупные зерна образуются после незначительной предварительной деформации 3…10 %. Такую деформацию называют критической. И такая деформация нежелательна перед проведением рекристаллизационного отжига.

Практически рекристаллизационный отжиг проводят для малоуглеродистых сталей при температуре 600…700 o С, для латуней и бронз – 560…700 o С, для алюминиевых сплавов – 350…450 o С, для титановых сплавов – 550…750 o С.

Превращения в железоуглеродистых сплавах

Диаграмма состояния Fe-Fe 3 C (рис. 7) показывает фазовый состав и превращения в сплавах с концентрацией от чистого железа до цементита.
Превращения в железоуглеродистых сплавах происходит как при кристаллизации (затвердевании) жидкой фазы (Ж), так и в твердом состоянии.


Рис. 7. Диаграмма состояния Fe – Fe 3 C (в упрощенном и полном виде).

Первичная кристаллизация идет в интервале температур, ограни-ченных линиями ликвидус (ACD) и солидус (AECF).

Вторичная кристаллизация происходит за счет превращения железа одной аллотропической модификации в другую и за счет изменения растворимости углерода в аустените и феррите, которая уменьшается с понижением температуры. Избыток углерода выделяется из твердых растворов в виде цементита. В сплавах системы Fe-Fe 3 C происходят следующие изотермические превращения:

Эвтектическое превращение на линии ECF (1147 °C)

Эвтектоидное превращение на линии PSK (727 °C)

Эвтектическая смесь аустенита и цементита называется ледебуритом (Л), а эвтектоидная смесь феррита и цементита – перлитом (П). Ледебурит содержит 4,3 % углерода. При охлаждении ледебурита ниже линий PSK входящий в него аустенит превращается в перлит и при нормальной температуре ледебурит представляет собой смесь перлита и цементита и называется ледебуритом превращенным (Л пр). Цементит в этой структурной составляющей образует сплошную матрицу, в которой размещены колонии перлита. Такое строение ледебурита объясняет его большую твердость (HB 700) и хрупкость.

Перлит содержит 0,8 % углерода. В зависимости от формы частичек цементит бывает пластинчатый и зернистый. Является прочной структурной составляющей с твердостью (HB210).

Линии диаграммы состояния Fе – Fе 3 C

Линии диаграммы представляют собой совокупность критических точек сплавов с различным составом, характеризующих превращения в этих сплавах при соответствующих температурах.

Рассмотрим значение линий диаграммы при медленном охлаждении.

ACD – линия ликвидус. Выше этой линии все сплавы находятся в жидком состоянии.
AECF – линия солидус. Ниже этой линии все сплавы находятся в твердом состоянии.
АС – из жидкого раствора выпадают кристаллы аустенита.
CD – линия выделения первичного цементита.
AE – заканчивается кристаллизация аустенита.
ECF – линия эвтектического превращения.
GS – определяет температуру начала выделения феррита из аустенита (910-727 °C).
GP – определяет температуру окончания выделения феррита из аустенита.
PSK – линия эвтектоидного превращения.
ES – линия выделения вторичного цементита.
PQ – линия выделения третичного цементита.

Области диаграммы состояния Fe – Fe 3 C

Линии диаграммы: делят все поле диаграммы на области равновесного существования фаз. Каждой области диаграммы соответствует определенное структурное состояние, сформированное в результате происходящих в сплавах превращений.

I – Жидкий раствор (Ж).
II –Жидкий раствор (Ж) и кристаллы аустенита (А).
III – Жидкий раствор (Ж) и кристаллы цементита первичного (Ц I ).
IV – Кристаллы аустенита (А).
V – Кристаллы аустенита (А) и феррита (Ф).
VI – Кристаллы феррита (Ф).
VII – Кристаллы аустенита (А) и цементита вторичного (Ц II ).
VIII – Кристаллы феррита (Ф) и цементита третичного (Ц III ).
IX – Кристаллы феррита (Ф) и перлита (П).
X – Кристаллы перлита (П) и цементита вторичного (Ц II ).
XI – Кристаллы аустенита (А), ледебурита (Л) и цементита вторичного (Ц II ).
XII – Кристаллы перлита (П), цементита вторичного (Ц II ) и ледебурита превращенного (Л пр).
XIII –Кристаллы ледебурита и цементита первичного (Ц I ).
XIV – Кристаллы цементита первичного (Ц I ) перлита (П) и ледебурита превращенного (Л пр).

Сталь эвтектоидного состава – содержание углерода 0,8 % (рис.8, сплав Ш).

В этом случае при охлаждении аустенита имеется только одна критическая точка А s , отвечающая температуре 727 С. При этой температуре аустенит находится в равновесии с ферритом и цементитом:


А s Ф p + Ц

Эвтектоидный распад аустенита состава точки S (0,8 %С) на феррит состава точки Р (0,025 %С) и цементит происходит при некотором переохлаждении, т.е. ниже 727 С. Эвтектоидная смесь феррита с цементитом называется перлитом . Соотношение феррита и цементита в перлите составляет примерно 7,3 : 1.

Подсчет ведется по правилу рычага, несколько ниже эвтектоидной линии:


При комнатной температуре – состав феррит и перлит


Рис. 8. Левый нижний участок диаграммы состояния железо-цементит. Вторичная кристаллизация сплавов:
а) диаграмма, б), в), г), д), е) кривые охлаждения сплавов

Похожие документы:

Методические указания и контрольные задания для студентов-заочников машиностроительных специальностей вузов москва "высшая школа" 1988

. при нагреве и охлаждении. Вариант 4 1.Опишите физическую сущность и механизм процесса кристалли­зации. 2.Для чего проводится . влияют модификаторы на процесс кристаллизации? Приведите примеры практического использования процесса модифицирования. 2. Как .

. Дисциплина «Физическое материаловедение . Кристаллизация Энергетические условия процесса кристаллизации. Механизм процесса кристаллизации. Самопроизвольная и несамопроизвлольная кристаллизация . механизму и механизму образования и роста зародышей. Сущность .

Физическая химия

. и фильтрация, конденсация, кристаллизация и вообще процесс образования новых фаз – . ограничивающего эту поверхность. Физическая сущность поверхностного натяжения в этом . необходимо использование представлений о механизме адсорбции и конкретных моделей .

. веществ нет горизонтального участка? Каков механизм процесса кристаллизации? При каком строении металлов . ? 14. В чем заключается физическая сущность процессов плавления и кристаллизации? 15. Объясните сущность и цели модифицирования. 16. .

1. Сварка. Сущность, принципиальная схема, особенности, преимущества, недостатки, область практического применения, классификация видов сварки

. разряд.  Сущность процесса – При сварке . стадия процесса кристаллизации: образование центров кристаллизации, . Специфическими особенностями физических свойств . 3-кассета; 4-механизм подачи проволоки; 5-6-механизмы вертикального и поперечного .

Порядок расположения атомов – тип кристаллической решетки – природное свойство металла, форма кристаллов и их размеры зависят от процесса перехода металла из жидкого состояния в твердое. Процесс образования кристаллов при затвердевании металлов называется кристаллизацией. При кристаллизации металлов выделяется тепло, а при переходе металлов из твердого состояния в жидкое происходит поглощение тепла. Наблюдения с помощью измеряющих температуру проборов за процессом понижения температуры

при переходе металла из жидкого состояния в твердое позволили установить определенную закономерность. Сначала температура понижается равномерно. В начальный период образования кристаллов вследствие выделения скрытой теплоты при формировании кристаллической решетки падение температуры прекращается, и она остается неизменной до полного затвердения металла. После того как весь металл затвердеет, температура снова начинает понижаться. Температура, соответствующая горизонтальной площадке, называется критической. Кристаллизация металлов подобна кристаллизации солей, и этот процесс состоит из двух элементарных процессов, протекающих одновременно. Первый заключается в образовании центров кристаллизации, или зародышей кристаллов, второй – в росте кристаллов из этих центров.

Первый этап – появление зародышей кристаллов металла. Второй этап – по мере остывания металла к зародышам присоединяются все новые и новые атомы жидкого металла, которые группируются в определенном порядке один возле другого, образуя элементарные ячейки кристаллической решетки. Этот процесс продолжается до тех пор, пока не закончится кристаллизация. Причем кристаллы затвердевшего металла имеют неправильную и весьма разнообразную форму, что объясняется условиями кристаллизации.

В процессе кристаллизации увеличивается количество кристаллов – в 1 мм 3 может образоваться свыше 1000 кристаллов. Кристаллы, имеющие неправильную внешнюю форму, называются кристаллитами, или зернами. Чистые металлы относительно редко применяются в машиностроении и других отраслях хозяйственного комплекса. Более широко используются сплавы, состоящие из двух и более элементов (из двух металлов, например меди и цинка, или из металла и неметалла, например железа и углерода). Элементы, входящие в сплав, называются компонентами. В зависимости от расположения атомов в кристаллической решетке различают твердые растворы замещения и твердые растворы внедрения. В твердом растворе замещения атомы растворимого компонента замещаются атомами растворителя, а в твердом растворе внедрения атомы растворителя размещаются между атомами растворимого компонента в наиболее слабых местах элементов кристаллической решетки.

Сплавы, представляющие собой твердые растворы, отличаются ценными свойствами. Они тверже и прочнее, чем входящие в него компоненты.

Компоненты некоторых сплавов при кристаллизации могут входить в химическую связь, образуя химическое соединение. Химические соединения обладают очень высокой твердостью и хорошим электросопротивлением.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Свойства металлов и сплавов

Свойства металлов и сплавов В этой главе будет рассказано о металлах, сплавах и их свойствах, что полезно не только для мастеров слесарного дела, но для всех, кто занимается чеканкой, ковкой, художественным литьем (этому посвящены последующие главы).Металл относится к

3. Способы упрочнения металлов и сплавов

3. Способы упрочнения металлов и сплавов Поверхностное упрочнение металлов и сплавов широко применяется во многих отраслях промышленности, в частности в современном машиностроении. Оно позволяет получить высокую твердость и износостойкость поверхностного слоя при

9. Кристаллизация металлов; зарождение кристаллов, критический зародыш; гомогенное и гетерогенное зарождение кристаллов; рост кристаллов. Кривые Таммана

9. Кристаллизация металлов; зарождение кристаллов, критический зародыш; гомогенное и гетерогенное зарождение кристаллов; рост кристаллов. Кривые Таммана Кристаллизация – это процесс перехода металла из жидкого состояния в твердое с образованием кристаллической

17. Теплоемкость и теплопроводность металлов и сплавов

17. Теплоемкость и теплопроводность металлов и сплавов Теплоемкость – это способность вещества поглощать теплоту при нагреве. Ее характеристикой является удельная теплоемкость – количество энергии, поглощаемой единицей массы при нагреве на один градус. От величины

18. Дилатометрия. Магнитные свойства металлов и сплавов. Методы определения

18. Дилатометрия. Магнитные свойства металлов и сплавов. Методы определения Дилатометрия – раздел физики; основная задача: изучение влияния внешних условий (температуры, давления, электрического, магнитного полей, ионизирующих излучений) на размеры тел. Главный предмет

32. Отжиг 1-го рода. Неравновесная кристаллизация

32. Отжиг 1-го рода. Неравновесная кристаллизация Этот вид термической обработки возможен для любых металлов и сплавов. Его проведение не обусловлено фазовыми превращениями в твердом состоянии. Нагрев при отжиге 1 рода, повышая подвижность атомов, частично или полностью

43. Маркировка, структура, свойства и области применения цветных металлов и их сплавов

43. Маркировка, структура, свойства и области применения цветных металлов и их сплавов К цветным металлам относятся медь, алюминий, магний, титан, свинец, цинк и олово, которые обладают ценными свойствами и применяются в промышленности, несмотря на относительно высокую

Читайте также: