Квантовая теория материи кратко

Обновлено: 04.07.2024

T=10k, R=10x, Q=10z, M=10y T=10k-2, R=10x+3, Q=10z+2, M=10y+5

Lg = 1012м, Lq = 10-7, Ls = 10-30м.

Re (метр) Rp T (сек) Me (кг) Mp Q (Кулон) p (кг/ м3)

Мегамир 1026 1029 10-26 1052 1057 1020 10-29

Макромир 10 7 1010 3,2* 10-7 1025 1030 108 103

Микромир 10-15 10-12 1017 10-30 10-24 1,6*10-19 1013

Галактика 3*1020 7* 1015 3*1042

Солнечная Система 5*1012 5* 10-9 2*1030

Мегамир – Макромир 1019 1019 1027 1012

Макромир – Микромир 1022 3,2*1024 1056 1027,5

Галактика – Солнечная Система 108 1,4* 106 1012

G= 6, 67* 10-11 * (5, 4* 10-22)3 / 6, 65* 10-55 * (7, 4* 10-25)2 = 1, 5* 1029 (м3 / кг * с2).

G= 6, 67* 10-11 * (1019)3 / 1027 * (1019)2 = 10-18 (м3 / кг * с2) - это для Мегамира!! !

Концепции квантовой физики появились в начале ХХ века. Именно она заставила нас по-другому посмотреть на мир частиц, заполняющих собой всё и вся.

Учёные выяснили, что элементарных частиц существует огромное множество, а также подтвердилась гипотеза Эйнштейна о том, что энергия переходит в материю, а материя – в энергию, то есть при столкновении элементарных частиц могут рождаться новые частицы. Понятие точечной частицы заменило другое понятие – понятие квантового поля , из которого соткано всё пространство-время, и кванты этого поля – это и есть элементарные частицы.

Например, у нас есть одна колеблющаяся частица. Если рассматривать её в отдельности, то можно изучить её кинетическую и потенциальную энергию. Если мы возьмём поле, занимающее всю Вселенную, то в каждой точке будут находиться такие колеблющиеся частицы. Они могут быть связанными друг с другом (то есть колебания одной частицы будут влиять на другую) – тогда это будет выглядеть как движущаяся волна, так как одна частица будет влиять на вторую, вторая – на третью и так далее. Трудность заключается в том, что если частица, подобно маятнику, будет колебаться вдоль одной оси, то у неё будет только одна степень свободы. А если она будет колебаться вдоль разных осей (например, вдоль оси Х, У и Z ), то у неё будет уже 3 степени свободы. Получается, что поле, как система таких движущихся частиц, имеет бесконечное число степеней свободы, так как в поле, заполняющем собой всю Вселенную, этих частиц огромное количество. Описать математически это очень сложно – это первая трудность квантовой механики.

Вторая трудность заключается в том, что, если в классической механике число частиц было постоянным, то, согласно квантовой механике, одна частица может породить ещё одну. Дело в том, что классическая физика не рассматривала большой энергетический интервал. А вот при движении частиц на очень высоких скоростях они уже будут обладать и высокими энергиями – об этом нам говорит знаменитое уравнение Альберта Эйнштейна:

Соответственно, если на высокой скорости одна частица сталкивается с другой, то может родиться и третья. Число частиц постоянно меняется – они могут не только рождаться, но и уничтожаться. Как же описать такую сложную систему?

Квантовое поле, которым пронизана вся Вселенная, легко можно сравнить с водой. Например, вы сидите на берегу озера, поверхность которого абсолютно безмятежна, её ничто не тревожит – это поле. Бросьте в воду камень, и пойдёт волна – вы увидите её гребень в форме горки, родившийся в результате взаимодействия с камнем, - это частица. Главная идея квантовой теории поля – это то, что частицы являются элементарными возмущениями полей. Таким образом, наша реальность – это поле, а мы состоим из элементарного возмущения полей. Будучи рожденными этими самыми полями, их кванты содержат в себе все свойства своих прародителей. Такова роль частиц в мире, в котором одновременно существует множество океанов, именуемых полями.

Отсюда вытекает и принцип корпускулярно-волнового дуализма: частицы могут вести себя как волны, а волны – как частицы. Согласно квантовой теории поля, вся Вселенная заполнена не одним, а различными полями из-за того, что частицы могут иметь бесконечное число степеней свободы: это электрические поля, магнитные, гравитационные и другие. При этом, частице соответствует возмущение на этих разных полях.

Например, положительное возмущение электрического поля и гравитационного будут соответствовать протону, так как у него положительный заряд. Если идёт возмущение только гравитационного поля, то виновник этому – нейтрон, так как он нейтрален и имеет массу. Если идёт возмущение электрического и магнитного полей, а гравитационное при этом остаётся спокойным, то мы уже будем иметь дело с фотоном, так как у него нет массы.

Представим, что квантовое поле – это набор энергетических уровней, некая слоистая лестница. Каждая точка в таком пространстве будет описываться определённым значением, соответствующим напряженности электрического, магнитного, гравитационного поля в этой конкретной точке. Когда частица входит в пространство, она изменяет его различные поля в соответствии со своими физическими параметрами (например, в соответствии с электрическим зарядом или массой). Анализируя значения этих полей в данном месте, учёные могут определить, какая частица только что пересекла это пространство.

Когда частицы взаимодействуют друг с другом, передаётся и энергия от одного поля к следующему. Так, например, возмущение электрического поля может передаваться магнитному или гравитационному. Когда пара частица-античастица аннигилирует, масса может быть преобразована в фотон, а значит, в электромагнитную энергию. Но Вселенная не спешит растрачивать свою энергию зря: она всегда сохраняется и может переходить из одного поля в другое. Получается, что ничего не исчезает просто так, и конец одного всегда является началом чего-то нового.

Понятие материи, на самом деле, многоуровневое. Рассмотрим эти уровни по отдельности.

Из чего построено всякое вещество? Атомы химических элементов образуют соединения посредством химической связи. Химическими методами можно поменять связи между атомами, но не затронуть типового свойства атома – превратить его в другой элемент. До открытия ядерных реакций понятие материи в основном сводилось к атомам и их взаимосвязям.

Открытие радиоактивности, эксперименты Резерфорда показали сложность строения атома. Атом содержит ядро и электроны. Расщепление ядер показало, что они в свою очередь, так же как и атомы, сложны. Вводится понятие элементарных частиц. Этими частицами являются нейтрон, протон и электрон. На сегодняшний день при данном уровне развития науки понятие материи сводится к элементарным частицам. Но это еще не предел.

Установлено, что столкновение элементарных частиц рождает новые элементарные частицы, но это не обломки первых, а такие же элементарные частицы. Частицы превращаются друг в друга, в излучение, поскольку их сущность – энергия, та самая потенция, о которой еще мыслил Аристотель. Более того, эти частицы в состоянии образовываться из кинетической энергии – энергии движущегося тела.

Энергия – подлинное бытие. Она же и есть материя, хотя не обязательно обладает плотностью, как это должно было бы быть при классическом подходе. Энергия – это то, из чего все образуется и во что, в конечном счете, может превратиться.

Энергия воплощается в вещах, в излучении, во взаимодействиях тел – все это формы материи, а так же ее движения. Материя подчиняется единому уравнению. Ранее в математике было показано, что существует ограниченное число групп симметрии. Данные группы лежат в основе законов природы, точнее в их формальном математическом представлении. Универсальное уравнение материи так же симметрично относительно этих групп. Решения этого уравнения представляют собой элементарные частицы.

Не все так безоблачно с пониманием мира с позиций квантовой теории. Существует пока непреодоленное противоречие между квантовой теорией и теорией относительности.

Связано это с тем, что в теории относительности присутствует предельное ограничение точности по времени. Отсюда вытекает возможность сколь угодно больших энергий в соответствие с принципом неопределенности.

Данное рассмотрение позволяет сделать вывод о том, что и древние мыслители имели некоторое правильное понимание проблемы материи. Материя действительно строительный материал и потенция, так как энергия это и возможность совершения некой работы, а так же источник возникновения элементарных частиц.

С другой стороны, отчасти прав был Платон, когда говорил, что элементам – элементарным частицам в современном понимании – соответствует число, решение универсального уравнения материи в рамках квантовой теории.

Не стоит полагать, что древние философы уже, якобы, знали все то, до чего дошла современная наука. Их рассуждения были чисто умозрительными и в ряде случаев неверными. Реальная ситуация такова, что современные представления о материи можно соотнести с представлениями древних и увидеть много общего. Главная особенность современных взглядов в том, что они, в отличие от древних взглядов, подкреплены серьезнейшим эмпирическим материалом.

После того, как с распространением света проблемы были сняты, и стало ясно, что свет спокойно может распространяться в пустоте, встал вопрос о зависимости скорости света от скорости среды, в которой он распространяется. На опыте оказалось, что скорость света в движущейся по направлению распространения света воде даже меньше, чем в покоящейся. Такие, странные на первый взгляд, результаты привели ученых в замешательство. В последствии оказалось, что скорость света по отношению к движущемуся навстречу ему телу не превышает скорость света в вакууме.

Эйнштейн сделал смелое предположение: скорость света в вакууме – максимально достижимая материальным телом скорость. Это предположение стало постулатом теории относительности. Поскольку предельной скоростью движения материального тела может быть скорость света в вакууме, то, не вдаваясь в конкретные выражения теории относительности, оказывается, что время и расстояние в движущейся системе отсчета относительно другой системы связано с ее скоростью относительно этой второй системы отсчета.

В теории относительности вводится понятие одновременности, отличное от обыденного понятия. Одновременными могут считаться только те события, информация о которых, например, свет, прибывают в точку наблюдения в один и тот же момент времени, судя по часам, находящимся в этой точке.

Весьма интересным оказалось соотношение массы и энергии, найденное Эйнштейном. В связи с этим возникли антиматериалистические тенденции в философии. Правда эти антиматериалистические тенденции не получили широкого распространения.

На рубеже XIX и XX веков активно развивается квантовая теория. Рэлей и Джинс пытались объяснить с позиций классической механики хорошо известный факт, заключающийся в том, что при нагревании тела независимо от его цвета, оно начинает светиться цветом, зависящим от температуры. Сначала тело светится красным, далее оранжевым, потом при еще большем повышении температуры белым цветом. Представления классической механики, применяемые к объяснению данного факта, приводили к противоречиям с наблюдениями. Кроме того, классическая механика была абсолютно не в состоянии объяснить устойчивость атомов в свете планетарной модели, бытовавшей в то время.Стало ясно, что надо менять теорию.

Макс Планк – немецкий физик, попытался объяснить наблюдаемые явления на основе некоторых соотношений, казавшихся ему верными. Поначалу данные соотношения М. Планка имели характер догадок, причем сам Планк продолжал их анализировать. Физический смысл этих соотношений был неясен даже самому М. Планку! Оказалось, что М. Планк говорил о новой физической реальности – квантованности энергии, которую может поглощать или испускать атом. Дело в том, что по предположению М. Планка значение энергии атома не континуально, а прерывисто.

Введение вероятностных представлений в физику дало совсем иное понимание процессов микромира. Несмотря на это нововведение, классические представления не утратили своего значения. Теперь для применения классической или квантовой теории обозначились четкие границы. На самом деле, классические представления не совсем точно соответствуют природе.

Так одновременно сколь угодно точно определить координату и импульс частицы невозможно. Произведение этих неопределенностей имеет порядок постоянной Планка. Проблема состоит в том, что в отличие от прежних представлений, когда исследователь и его инструменты никак (или почти никак) не влияли на результаты эксперимента, исследование микромира производится другими объектами того же микромира. Например, чтобы определить координату электрона, необходимо, чтобы он провзаимодействовал с фотоном, иначе мы никак не получим информации. Это взаимодействие существенно изменит координату электрона. Аналогичная ситуация с импульсом. В микромире описание процессов возможно лишь на вероятностном уровне.

Итак, в конце XIX века в физике произошло множество открытий, носящих революционный характер: открытие А. Беккерелем в 1897 году явления радиоактивности; в 1900 году М. Планк выдвинул квантовую гипотезу о прерывности процессов излучения. В результате в физике сформировалось два, казалось несовместимых представления о материи – корпускулярное и континуальное (полевое). В 1913 году Н. Бор предложил свою модель атома (стационарную), в которой электрон, вращавшийся вокруг ядра, излучал энергию только порциями при переходе с одной орбиты на другую. Это противоречило известным законам электродинамики, но позволило сделать прорыв в науке, т.е. создать фундаментальные физические теории – квантовую механику и квантовую электродинамику. Над их созданием работали Э. Резерфорд, Л. де Бройль, Э. Шредингер, В. Гейзенберг, М. Борн.

Важнейшие понятия новых теорий

Корпускулярно-волновой дуализм – наличие у каждой частицы материи свойств волны и частицы одновременно.

Cоотношение неопределенностей Гейзенберга – невозможность одновременного измерения координат и импульса частицы.

Мировые универсальные константы – постоянные, которые не сводимы друг к другу и имеют значение для всей наблюдаемой части Вселенной:

- скорость света в вакууме (с = 300 000 км/с) – это максимальная скорость для всех возможных взаимодействий в природе;

- гравитационная постоянная (G), используемая в законе всемирного тяготения;

- постоянная Планка (h) – это квант энергии, входит во все уравнения, описывающие процессы на уровне микромира;

- постоянная Больцмана (k), она устанавливает связь между микроскопическим динамическими явлениями и макроскопическими характеристиками состояния объединений частиц.


Квантовая теория гораздо сложнее этой визуализации.

Но рождение квантовой физики в начале 1900-х годов дало понять, что свет состоит из крошечных неделимых единиц — или квантов — энергии, которые мы называем фотонами. Эксперимент Янга, проводимый с одиночными фотонами или даже с отдельными частицами материи, такими как электроны и нейроны, представляет собой загадку, которая заставляет задуматься о самой природе реальности. Некоторые даже использовали его для утверждений, что на квантовый мир влияет человеческое сознание. Но действительно ли простой эксперимент может продемонстрировать подобное?

Может ли сознание определять реальность?

В современной квантовой форме эксперимент Янга включает стрельбу отдельными частицами света или материи через две щели или отверстия, вырезанных в непрозрачном барьере. По одну сторону барьера находится экран, записывающий прибытие частиц (скажем, фотографическая пластинка в случае с фотонами). Здравый смысл заставляет нас ожидать, что фотоны будут проходить или через одну, или через другую щель и накапливаться за соответствующим проходом.

Но нет. Фотоны попадают в определенные части экрана и избегают других, создавая чередующиеся полосы света и темноты. Эти так называемые интерференционные полосы напоминают картину встречи двух волн. Когда гребни одной волны выравниваются с гребнями другой, вы получаете конструктивную интерференцию (яркие полосы), а когда гребни выравниваются с впадинами, вы получаете деструктивную интерференцию (темнота).

Но ведь через устройство проходит только один фотон за раз. Похоже на то, что фотон проходит через обе щели сразу и интерферирует сам с собой. Это противоречит здравому (классическому) смыслу.

Математически говоря, через обе щели проходит не физическая частица или физическая волна, а так называемая волновая функция — абстрактная математическая функция, представляющая состояние фотона (в данном случае положение). Волновая функция ведет себя как волна. Она попадает по двум щелям, и новые волны выходят по другую стороны щелей, распространяются и интерферируют между собой. Совмещенная волновая функция позволяет рассчитать вероятность того, где может находиться фотон.

Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового.

Этот очевидно вызванный измерением коллапс волновой функции стал источником множества концептуальных трудностей в квантовой механике. До коллапса нет никакого способа наверняка сказать, где окажется фотон; он может быть в любом месте с ненулевой вероятностью. Нет никакого способа проследить траекторию фотона от источника к детектору. Фотон нереален в том смысле, в котором реален самолет, летящий из Сан-Франциско в Нью-Йорк.

Квантовая теория в деталях

Но эти эксперименты не являются эмпирическим доказательством таких утверждений. В эксперименте с двойной щелью, выполненном с одиночными фотонами, можно лишь проверить вероятностные предсказания математики. Если вероятности всплывают в процессе досылания десятков тысяч идентичных фотонов через двойную щель, теория утверждает, что волновая функция каждого фотона схлопнулась — благодаря нечетко определенному процессу под названием измерение. Вот и все.

Кроме того, существуют другие интерпретации эксперимента с двойной щелью. Взять, например, теорию де Бройля-Бома, в которой говорится, что реальность — это и волна, и частица. Фотон направляется к двойной щели с определенным положением в любой момент и проходит через одну щель или другую; следовательно, у каждого фотона есть траектория. Она проходит через пилотную волну, которая проникает через обе щели, интерферирует и затем направляет фотон в место конструктивной интерференции.

Подписывайтесь на наш канал в Яндекс Дзен. Там можно найти много всего интересного, чего нет даже на нашем сайте.

В 1979 году Крис Дьюдни и его коллеги из Колледжа Брикбек в Лондоне смоделировали предсказание этой теории о траекториях частиц, которые пройдут через двойную щель. За последние десять лет экспериментаторы подтвердили, что такие траектории существуют, хоть и использовали спорную методику так называемых слабых измерений. Несмотря на спорность, эксперименты показали, что теория де Бройля-Бома все еще в состоянии объяснить поведение квантового мира.

Что более важно, этой теории не нужны наблюдатели, или измерения, или нематериальное сознание.

Теория коллапса

Как не нужны и так называемым теориям коллапса, из которых следует, что волновые функции схлопываются случайным образом: чем больше число частиц в квантовой системе, тем вероятнее коллапс. Наблюдатели просто фиксируют результат. Команда Маркуса Арндта из Венского университета в Австрии проверяли эти теории, посылая все большие и большие молекулы через двойную щель. Теории коллапса предсказывают, что когда частицы материи становятся массивнее определенного порога, они больше не могут оставаться в квантовой суперпозиции и проходить через обе щели одновременно, и это уничтожает картину интерференции. Команда Арндта отправила молекулу из 800 атомов через двойную щель и все равно увидела интерференцию. Поиск порога продолжается.

У Роджера Пенроуза была собственная версия теории коллапса, в которой чем выше масса объекта в суперпозиции, тем быстрее он коллапсирует до одного состояния или другого из-за гравитационных нестабильностей. И снова, эта теория не требует наблюдателя и какого-либо сознания. Дирк Боумеестер из Калифорнийского университета в Санта-Барбаре проверяет идею Пенроуза с помощью одной из версий эксперимента с двойной щелью.

Концептуально идея заключается в том, чтобы не просто поместить фотон в суперпозицию прохождения через две щели одновременно, но и поставить одну из щелей в суперпозицию и заставить находиться в двух местах одновременно. По мнению Пенроуза, замещенная щель будет либо оставаться в суперпозиции, либо коллапсирует с фотоном на лету, что приведет к разным картинам интерференции. Этот коллапс будет зависеть от массы щелей. Боумеестер работает над этим экспериментом десять лет и, возможно, вскоре подтвердит или опровергнет заявления Пенроуза.

В любом случае, эти эксперименты показывают, что мы пока не можем делать никаких утверждений о природе реальности, даже если эти заявления хорошо подкреплены математически или философски. И учитывая то, что нейробиологи и философы разума не могут договориться о природе сознания, утверждение, что оно приводит к коллапсу волновых функций, будет преждевременным в лучшем случае и ошибочным — в худшем.

А какого мнения придерживаетесь вы? Расскажите в нашем чате в Телеграме.

Читайте также: