Криптографические средства это кратко

Обновлено: 05.07.2024

Криптографические средства — это специальные математические и алгоритмические средства защиты информации, передаваемой по системам и сетям связи, хранимой и обрабатываемой на ЭВМ с использованием разнообразных методов шифрования.
Техническая защита информации путем ее преобразования, исключающего ее прочтение посторонними лицами, волновала человека с давних времен. Криптография должна обеспечивать такой уровень секретности, чтобы можно было надежно защитить критическую информацию от расшифровки крупными организациями — такими, как мафия, транснациональные корпорации и крупные государства. Криптография в прошлом использовалась лишь в военных целях. Однако сейчас, со становлением информационного общества, она становится инструментом для обеспечения конфиденциальности, доверия, авторизации, электронных платежей, корпоративной безопасности и бесчисленного множества других важных вещей. Почему проблема использования криптографических методов стала в настоящий момент особо актуальна?
С одной стороны, расширилось использование компьютерных сетей, в частности глобальной сети Интернет, по которым передаются большие объемы информации государственного, военного, коммерческого и частного характера, не допускающего возможность доступа к ней посторонних лиц.
С другой стороны, появление новых мощных компьютеров, технологий сетевых и нейронных вычислений сделало возможным дискредитацию криптографических систем, еще недавно считавшихся практически не раскрываемыми.
Проблемой защиты информации путем ее преобразования занимается криптология (kryptos — тайный, logos — наука). Криптология разделяется на два направления — криптографию и криптоанализ. Цели этих направлений прямо противоположны.
Криптография занимается поиском и исследованием математических методов преобразования информации.
Сфера интересов криптоанализа — исследование возможности расшифровывания информации без знания ключей.
Современная криптография включает в себя 4 крупных раздела.

· Криптосистемы с открытым ключом.

· Системы электронной подписи.

· невозможность раскрытия или осмысленной модификации информации на основе анализа ее структуры;

· совершенство используемых протоколов защиты;

· минимальный объем применяемой ключевой информации;

· минимальная сложность реализации (в количестве машинных операций), ее стоимость;

Часто более эффективным при выборе и оценке криптографической системы является применение экспертных оценок и имитационное моделирование.
В любом случае выбранный комплекс криптографических методов должен сочетать как удобство, гибкость и оперативность использования, так и надежную защиту от злоумышленников циркулирующей в ИС информации.

Такое деление средств защиты информации (техническая защита информации), достаточно условно, так как на практике очень часто они взаимодействуют и реализуются в комплексе в виде программно — аппаратных модулей с широким использованием алгоритмов закрытия информации.

Заключение

В данной курсовой работе, я рассмотрел локально вычислительную сеть Администрации, и сделал выводы, что для полной защиты информации необходимо применять все средства защиты, что бы минимизировать потерю той или иной информации.

В результате проделанной организации работы: компьютеризация рабочих мест с объединением их в локальную вычислительную сеть, с наличием сервера и доступом к сети Интернет. Выполнение данной работы обеспечит наиболее скоростную и производительную работу рабочего персонала.

Задачи, которые ставились при получении задачи, на мой взгляд, достигнуты. Схема локальной вычислительной сети Администрации приведена в Приложении Б.

Список литературы.

2. Организационная защита информации: учебное пособие для вузов Аверченков В.И., Рытов М.Ю. 2011 год

3. Халяпин Д.Б., Ярочкин В.И. Основы защиты информации.-М.:ИПКИР,1994

4. Хорошко В.А., Чекатков А.А. Методы и средства защиты информации(под редакцией Ковтанюка) К.: Издательство Юниор, 2003г.-504с.

5. Аппаратные средства и сети ЭВМ Илюхин Б.В. 2005

6. Ярочкин В.И. Информационная безопасность: Учебник для студентов вузов.-М.:Академический Проект. Фонд "Мир",2003.-640с.

Задачи , решаемые криптографией , крутятся вокруг защиты данных пользователей и нацелены на повышение информационной безопасности в сети. Решение таких задач тесно связан о с криптографическими методами защиты информации и с криптографие й к ак наукой. Невозможно в двух словах все это описать, поэтому будем разбираться по порядку.

Что такое криптография

  • вопрос конфиденциальности информации;

  • вопрос целостности информации.

Методы криптографической защиты информации

  • шифрование;

  • стенография;

  • кодирование;

  • сжатие.

Шифрование

  • алгоритм шифрования;

  • ключ шифрования.

  • обладает стойкостью к криптоанализу и подбору ключей;

  • обеспечивает высокий уровень конфиденциальности ключа, без которого невозможно расшифровать информацию;

  • зашифрованная информация не сильно увеличивается в размерах;

  • исключено искажение информации при ее расшифровк е ;

  • алгоритмы шифрования и расшифровки не требуют много времени на сам процесс.

Стенография

  • текстовые файлы;

  • изображения;

  • аудио;

  • цифровую подпись;

  • и др.

Кодирование

Сжатие

Задачи, решаемые криптографией

Заключение

Мы будем очень благодарны

если под понравившемся материалом Вы нажмёте одну из кнопок социальных сетей и поделитесь с друзьями.

Мы ежедневно сталкиваемся с криптографией — когда хотим что-то оплатить в интернете, авторизоваться на сайте или подписать электронные документы. Криптографические методы помогают защитить персональные данные и обеспечивают безопасную передачу информации в сети.

Без криптографии современную жизнь нельзя было бы представить в том виде, который нам известен. Перестали бы выполняться банковские транзакции, остановилась бы передача интернет-трафика, а сотовые телефоны не смогли бы работать. Все конфиденциальные сведения оказались бы общедоступными и могли бы попасть к злоумышленникам.

Криптография предотвращает подобные угрозы и поддерживает безопасность. Разбираем, как устроены её методы и можно ли им доверять. Перечисляем сферы, где она применяется и как регулируется государством.

Что такое криптография

К основным принципам работы криптографической системы относят:

Для продолжения изучения криптографии важно разобраться с её основными терминами:

Символ — любой знак, который используется для кодирования информации.

Алфавит — множество символов.

Зашифрование — преобразование открытого текста в криптограмму.

Как работает шифрование

Как работает шифрование

Зачем нужна криптография

Цель криптографии — защита информационной системы от атак злоумышленников.

Криптография решает несколько задач:

Где используется криптография

Почти все важные аспекты нашей жизни зависят от информационных технологий и гаджетов, поэтому криптография используется повсеместно.

Вот сферы, где она применяется наиболее активно:

  • банки — для обслуживания карт и счетов;
  • веб-сайты с аутентификацией — для хранения и обработки паролей в сети;
  • бухучёт — для сдачи бухгалтерских и иных отчётов через удалённые каналы связи;
  • информационная безопасность — для защиты от несанкционированного доступа к данным;
  • онлайн-продажи — для шифрования данных, номера карты или телефона, адреса, email при передаче по открытым каналам.

То есть, криптография есть везде, где фигурируют информационные технологии и присутствует цифровизация. Это довольно перспективное направление для обучения.

Примеры использования криптографии

Если вы рядовой пользователь , криптография помогает обеспечить приватность. Зная, как работает определённый шифр или протокол, в чем его плюсы и минусы, вы сможете осознанно выбирать инструменты для работы и общения в сети, избежать утечки данных.

Если вы программист или специалист по информационной безопасности , криптография помогает в создании крупных проектов. Неважно, что конкретно вы разрабатываете: контентный сервер, мессенджер или мобильное приложение, везде есть данные, которые нужно защищать от перехвата. Криптография защищает каждую операцию специальными протоколами и исключает попадание информации к злоумышленникам.

Также криптографические методы используют при проведении электронных голосований, жеребьёвках, разделении секретов, когда конфиденциальная информация делится между несколькими субъектами, чтобы они могли воспользоваться ею только вместе.

Виды криптографических методов

Есть разные способы классификации криптографических методов, но наиболее распространённый вариант деления — по количеству ключей.

Выделяют следующие виды:

  • бесключевые методы , в которых не используются ключи;
  • одноключевые или симметричные методы , в который используется дополнительный ключевой параметр — секретный ключ;
  • двухключевые или асимметричные методы , в которых используется два ключа — секретный и открытый.

Классификация криптографических методов

Классификация криптографических методов

Разберём наиболее часто используемые криптографические методы: симметричное шифрование, асимметричное шифрование и хэширование.

Симметричное шифрование

Симметричное шифрование подразумевает, что при передаче зашифрованной информации адресат должен заранее получить ключ для расшифровки информации.

  • единственная схема шифровки, обладающая абсолютной теоретической стойкостью, — все попытки расшифровать её бесполезны.
  • в случае утечки информации невозможно доказать, от кого она произошла;
  • помимо секретного ключа нужен открытый канал для его передачи.

У асимметричного шифрования таких проблем нет, поскольку открытый ключ можно свободно передавать по сети. Обычно асимметричное и симметричное шифрование используют в паре, чтобы передать ключ симметричного шифрования, на котором шифруется основной объем данных.

Асимметричное шифрование

Основы асимметричного шифрования были выдвинуты американскими криптографами Уитфилдом Диффи и Мартином Хеллманом. Они предположили, что ключи можно использовать парами — ключ шифрования и ключ дешифрования. При этом один ключ нельзя получить из другого. Поэтому суть метода заключается в том, что зашифрованная при помощи секретного ключа информация может быть расшифрована только при помощи открытого и наоборот. Ключи создаются парами и соответствуют друг другу.

Основная особенность асимметричного шифрования — секретный ключ известен лишь одному человеку. При симметричном шифровании он должен быть известен двоим.

  • не нужно создавать защищённый канал для передачи секретного ключа — все взаимодействия происходят в открытом канале;
  • наличие единственной копии ключа уменьшает шансы его утраты и позволяет установить персональную ответственность за сохранение тайны;
  • наличие двух ключей позволяет использовать шифрование в двух режимах — секретной связи и цифровой подписи.
  • возможность подмены открытого ключа,
  • медленная скорость шифрования.

Большинство безопасных алгоритмов с открытыми ключами построены на необратимых функциях. Простейший пример — алгоритм RSA. Он используется для защиты программного обеспечения и в схемах цифровой подписи.

Хэширование

Всякий раз алгоритм будет преобразовывать текст в один и тот же хэш. Например, такой.

Всякий раз алгоритм будет преобразовывать текст в один и тот же хэш. Например, такой.

Но если в исходном тексте потеряется хотя бы одна запятая, хэш полностью изменится.

Но если в исходном тексте потеряется хотя бы одна запятая, хэш полностью изменится.

Единственный доступный способ расшифровать хэш — перебор. Чтобы найти верный вариант, нужно перебрать тысячи комбинаций.

  • для криптоустойчивой хэш-функции нельзя вычислить по хэшу исходные данные или подобрать другие данные с таким же хэшем;
  • по значению ключа можно расшифровать данные за одну операцию;
  • после вычисления хэш может передаваться и существовать отдельно от данных, его можно вычислить повторно.
  • нельзя провести операцию, обратную хэшированию, и восстановить исходные данные;
  • вас могут взломать с помощью перебора, если хэш-функция не криптоустойчива.

К хэшированию обращаются для хранения паролей. Когда пользователь регистрируется в системе, его данные хранятся не в чистом виде, а в виде хэша. И всякий раз, когда он вводит пароль, тот хэшируется снова и только потом сравнивается с имеющимся в базе. То есть, даже если база будет украдена, никто не сможет узнать реальные пароли. Благодаря этому свойству хэширование активно применяют в блокчейне

Как криптография используется в блокчейне

Криптография используется в блокчейне как средство защиты пользователей. Она помогает обеспечить безопасность транзакций сохранить личную информацию.

Блок — единица кода, которая выполняет функцию хранилища данных обо всех действиях.

Сформированный блок проверяется участниками сети и, если все согласны, то его присоединяют к цепочке, из-за чего изменить информацию в нем невозможно. Особенность каждого блока в том, что он не только захэширован, но и хранит информацию о предыдущем блоке.

Блокчейн — постоянно увеличивающаяся цепочка таких блоков.

Если мы внесём изменения во вторую запись, её хэш станет совсем другим и перестанет совпадать с тем, что был записан в третью. То есть блокчейн позволяет создавать записи, которые невозможно изменить незаметно.

Блокчейн активно используется в криптовалюте, например, BitCoin. Если кто-то захочет украсть её, ему придётся одновременно изменять блоки на всех компьютерах. Также блокчейн используют при хранении ставок, при проведении выборов, чтобы избежать фальсификации и при заверении документов

Важно понимать, что система не надёжна на 100%. В программном обеспечении могут возникать ошибки, позволяющие воровать данные до того, как они будут захэшированы.

Как криптография регулируется государством

Деятельность, связанная с криптографическим шифрованием, ограничена на территории России. Основной уполномоченный орган — Федеральная служба безопасности. ФСБ вправе осуществлять государственный контроль за организацией и функционированием криптографической безопасности. За органами ФСБ закреплена функция регулирования разработки, производства, реализации, эксплуатации, ввоза и вывоза шифровальных средств.

Также есть нормативные правовые акты, регулирующие криптографию в России:

  • запрещает госорганам и предприятиям использовать несертифицированные средства шифрования
  • запрещает банкам применять несертифицированные средства шифрования и обязует Банк России следить за соблюдением этого запрета
  • запрещает разрабатывать и эксплуатировать шифровальные средства без лицензии
  • определяет общую схему электронной цифровой подписи
  • определяет разрешенные функции хэширования с длинами хэш-кода 256 и 512 бит
  • регулирует отношения при разработке, производстве, реализации и эксплуатации шифровальных средств
  • регулирует использование электронных подписей при оформлении сделок, оказании государственных и муниципальных услуг
  • определяет, какие органы власти, отвечают за лицензирование
  • утверждает порядок предоставления документов
  • утверждает типовые формы лицензии
  • контролирует лицензирование
  • определяет разработку, производство, модернизацию, монтаж, установку, ремонт и сервисное обслуживание шифровальных средств

Заключение

Это только малая часть того, что можно узнать по теме криптографии. Если вы просто хотели понять, что это такое, надеемся, вы удовлетворили интерес. Если хотите изучить тему глубже, советуем пройти онлайн-курсы из нашей подборки. На них вы подробно разберёте тему кибербезопасности и сможете освоить востребованную профессию.


Средства криптографической защиты информации, или сокращенно СКЗИ, используются для обеспечения всесторонней защиты данных, которые передаются по линиям связи. Для этого необходимо соблюсти авторизацию и защиту электронной подписи, аутентификацию сообщающихся сторон с использованием протоколов TLS и IPSec, а также защиту самого канала связи при необходимости.

В России использование криптографических средств защиты информации по большей части засекречено, поэтому общедоступной информации касательно этой темы мало.

Методы, применяемые в СКЗИ

  • Авторизация данных и обеспечение сохранности их юридической значимости при передаче или хранении. Для этого применяют алгоритмы создания электронной подписи и ее проверки в соответствии с установленным регламентом RFC 4357 и используют сертификаты по стандарту X.509.
  • Защита конфиденциальности данных и контроль их целостности. Используется асимметричное шифрование и имитозащита, то есть противодействие подмене данных. Соблюдается ГОСТ Р 34.12-2015.
  • Защита системного и прикладного ПО. Отслеживание несанкционированных изменений или неверного функционирования.
  • Управление наиболее важными элементами системы в строгом соответствии с принятым регламентом.
  • Аутентификация сторон, обменивающихся данными.
  • Защита соединения с использованием протокола TLS.
  • Защита IP-соединений при помощи протоколов IKE, ESP, AH.

Подробным образом методы описаны в следующих документах: RFC 4357, RFC 4490, RFC 4491.

Защита цифровой информации

Механизмы СКЗИ для информационной защиты

  1. Защита конфиденциальности хранимой или передаваемой информации происходит применением алгоритмов шифрования.
  2. При установлении связи идентификация обеспечивается средствами электронной подписи при их использовании во время аутентификации (по рекомендации X.509).
  3. Цифровой документооборот также защищается средствами электронной подписи совместно с защитой от навязывания или повтора, при этом осуществляется контроль достоверности ключей, используемых для проверки электронных подписей.
  4. Целостность информации обеспечивается средствами цифровой подписи.
  5. Использование функций асимметричного шифрования позволяет защитить данные. Помимо этого для проверки целостности данных могут быть использованы функции хеширования или алгоритмы имитозащиты. Однако эти способы не поддерживают определения авторства документа.
  6. Защита от повторов происходит криптографическими функциями электронной подписи для шифрования или имитозащиты. При этом к каждой сетевой сессии добавляется уникальный идентификатор, достаточно длинный, чтобы исключить его случайное совпадение, и реализуется проверка принимающей стороной.
  7. Защита от навязывания, то есть от проникновения в связь со стороны, обеспечивается средствами электронной подписи.
  8. Прочая защита - против закладок, вирусов, модификаций операционной системы и т. д. - обеспечивается с помощью различных криптографических средств, протоколов безопасности, антивирусных ПО и организационных мероприятий.

Механизмы СКЗИ

Как можно заметить, алгоритмы электронной подписи являются основополагающей частью средства криптографической защиты информации. Они будут рассмотрены ниже.

Требования при использовании СКЗИ

СКЗИ нацелено на защиту (проверкой электронной подписи) открытых данных в различных информационных системах общего использования и обеспечения их конфиденциальности (проверкой электронной подписи, имитозащитой, шифрованием, проверкой хеша) в корпоративных сетях.

Персональное средство криптографической защиты информации используется для охраны персональных данных пользователя. Однако следует особо выделить информацию, касающуюся государственной тайны. По закону СКЗИ не может быть использовано для работы с ней.

Важно: перед установкой СКЗИ первым делом следует проверить сам пакет обеспечения СКЗИ. Это первый шаг. Как правило, целостность пакета установки проверяется путем сравнения контрольных сумм, полученных от производителя.

После установки следует определиться с уровнем угрозы, исходя из чего можно определить необходимые для применения виды СКЗИ: программные, аппаратные и аппаратно-программные. Также следует учитывать, что при организации некоторых СКЗИ необходимо учитывать размещение системы.

Классы защиты

Согласно приказу ФСБ России от 10.07.14 под номером 378, регламентирующему применение криптографических средств защиты информации и персональных данных, определены шесть классов: КС1, КС2, КС3, КВ1, КВ2, КА1. Класс защиты для той или иной системы определяется из анализа данных о модели нарушителя, то есть из оценки возможных способов взлома системы. Защита при этом строится из программных и аппаратных средств криптографической защиты информации.

Классы защиты СКЗИ

АУ (актуальные угрозы), как видно из таблицы, бывают 3 типов:

  1. Угрозы первого типа связаны с недокументированными возможностями в системном ПО, используемом в информационной системе.
  2. Угрозы второго типа связаны с недокументированными возможностями в прикладном ПО, используемом в информационной системе.
  3. Угрозой третьего типа называются все остальные.

Недокументированные возможности - это функции и свойства программного обеспечения, которые не описаны в официальной документации или не соответствуют ей. То есть их использование может повышать риск нарушения конфиденциальности или целостности информации.

Для ясности рассмотрим модели нарушителей, для перехвата которых нужен тот или иной класс средств криптографической защиты информации:

  • КС1 - нарушитель действует извне, без помощников внутри системы.
  • КС2 - внутренний нарушитель, но не имеющий доступа к СКЗИ.
  • КС3 - внутренний нарушитель, который является пользователем СКЗИ.
  • КВ1 - нарушитель, который привлекает сторонние ресурсы, например специалистов по СКЗИ.
  • КВ2 - нарушитель, за действиями которого стоит институт или лаборатория, работающая в области изучения и разработки СКЗИ.
  • КА1 - специальные службы государств.

Таким образом, КС1 можно назвать базовым классом защиты. Соответственно, чем выше класс защиты, тем меньше специалистов, способных его обеспечивать. Например, в России, по данным за 2013 год, существовало всего 6 организаций, имеющих сертификат от ФСБ и способных обеспечивать защиту класса КА1.

Схема выбора СКЗИ

Используемые алгоритмы

Рассмотрим основные алгоритмы, используемые в средствах криптографической защиты информации:

  • ГОСТ Р 34.10-2001 и обновленный ГОСТ Р 34.10-2012 - алгоритмы создания и проверки электронной подписи.
  • ГОСТ Р 34.11-94 и последний ГОСТ Р 34.11-2012 - алгоритмы создания хеш-функций.
  • ГОСТ 28147-89 и более новый ГОСТ Р 34.12-2015 - реализация алгоритмов шифрования и имитозащиты данных.
  • Дополнительные криптографические алгоритмы находятся в документе RFC 4357.

Алгоритмы СКЗИ

Электронная подпись

Применение средства криптографической защиты информации невозможно представить без использования алгоритмов электронной подписи, которые набирают все большую популярность.

Электронная подпись - это специальная часть документа, созданная криптографическими преобразованиями. Ее основной задачей являются выявление несанкционированного изменения и определение авторства.

Сертификат электронной подписи - это отдельный документ, который доказывает подлинность и принадлежность электронной подписи своему владельцу по открытому ключу. Выдача сертификата происходит удостоверяющими центрами.

Владелец сертификата электронной подписи - это лицо, на имя которого регистрируется сертификат. Он связан с двумя ключами: открытым и закрытым. Закрытый ключ позволяет создать электронную подпись. Открытый ключ предназначен для проверки подлинности подписи благодаря криптографической связи с закрытым ключом.

Виды электронной подписи

По Федеральному закону № 63 электронная подпись делится на 3 вида:

  • обычная электронная подпись;
  • неквалифицированная электронная подпись;
  • квалифицированная электронная подпись.

Простая ЭП создается за счет паролей, наложенных на открытие и просмотр данных, или подобных средств, косвенно подтверждающих владельца.

Неквалифицированная ЭП создается с помощью криптографических преобразований данных при помощи закрытого ключа. Благодаря этому можно подтвердить лицо, подписавшее документ, и установить факт внесения в данные несанкционированных изменений.

Квалифицированная и неквалифицированная подписи отличаются только тем, что в первом случае сертификат на ЭП должен быть выдан сертифицированным ФСБ удостоверяющим центром.

Область использования электронной подписи

В таблице ниже рассмотрены сферы применения ЭП.

Использование электронной подписи

Активнее всего технологии ЭП применяются в обмене документами. Во внутреннем документообороте ЭП выступает в роли утверждения документов, то есть как личная подпись или печать. В случае внешнего документооборота наличие ЭП критично, так как является юридическим подтверждением. Стоит также отметить, что документы, подписанные ЭП, способны храниться бесконечно долго и не утрачивать своей юридической значимости из-за таких факторов, как стирающиеся подписи, испорченная бумага и т. д.

Отчетность перед контролирующими органами - это еще одна сфера, в которой наращивается электронный документооборот. Многие компании и организации уже оценили удобство работы в таком формате.

По закону Российской Федерации каждый гражданин вправе пользоваться ЭП при использовании госуслуг (например, подписание электронного заявления для органов власти).

Онлайн-торги - еще одна интересная сфера, в которой активно применяется электронная подпись. Она является подтверждением того факта, что в торгах участвует реальный человек и его предложения могут рассматриваться как достоверные. Также важным является то, что любой заключенный контракт при помощи ЭП приобретает юридическую силу.

Алгоритмы электронной подписи

  • Full Domain Hash (FDH) и Public Key Cryptography Standards (PKCS). Последнее представляет собой целую группу стандартных алгоритмов для различных ситуаций.
  • DSA и ECDSA - стандарты создания электронной подписи в США.
  • ГОСТ Р 34.10-2012 - стандарт создания ЭП в РФ. Данный стандарт заменил собой ГОСТ Р 34.10-2001, действие которого официально прекратилось после 31 декабря 2017 года.
  • Евразийский союз пользуется стандартами, полностью аналогичными российским.
  • СТБ 34.101.45-2013 - белорусский стандарт для цифровой электронной подписи.
  • ДСТУ 4145-2002 - стандарт создания электронной подписи в Украине и множество других.

Электронная цифровая подпись

Стоит также отметить, что алгоритмы создания ЭП имеют различные назначения и цели:

Читайте также: