Конвекция физика 8 класс кратко

Обновлено: 07.07.2024

Теплопередача бывает трех видов: теплопроводность, конвекция и излучение. В прошлом уроке вы познакомились с теплопроводностью. При этом явлении внутренняя энергия передается от одной части тела к другой или от одного тела к другому. Это тесно связано со структурой рассматриваемого вещества и тепловым движением частиц в нем.

Когда мы будем говорить о конвекции, речь будет идти не о движении отдельных частиц, а о движении групп частиц. В данном уроке мы выясним определяющую разницу явления конвекции от теплопроводности и дадим ему определение. Далее рассмотрим конвекцию в жидкостях и газах, узнаем это явление в бытовых примерах и природе.

Определение конвекции

Возьмем пробирку и наполним ее водой. Начнем нагревать верхнюю часть пробирки пламенем спиртовки (рисунок 1, а).

Вода на поверхности пробирки закипит, тогда как у ее дна она останется просто теплой. Этот пример определяется теплопроводностью воды. Она у жидкостей невелика.

А теперь проделаем такой же опыт, но с небольшим изменением. Переместим пламя спиртовки в нижнюю часть пробирки (рисунок 1, б).

На этот раз вода в пробирке по всему объему достаточно быстро нагреется и закипит. Значит, здесь перенос энергии осуществляется не за счет теплопроводности жидкости, а на основании другого явления — конвекции.

Конвекция (от лат. конвекцио — перенесение) — это вид теплопередачи, при котором энергия переносится струями газа или жидкости.

Конвекция в жидкостях

Рассмотрим физику данного явления. Будем использовать самый банальный пример — что будет происходить с водой, которую мы нагреваем в кастрюле на плите (рисунок 2) .

Когда мы нагреваем жидкость снизу, в первую очередь нагревается самый нижний слой воды. Он становится теплее остальной жидкости. При нагревании вода расширяется и ее плотность уменьшается. Такой слой воды становится более легким. В итоге, нагретые слои вытесняются вверх более тяжелыми холодными слоями.

Холодные слои, опустившись вниз, нагреваются от источника тепла. Далее они тоже вытесняются менее нагретой водой.

Благодаря такому постоянному движению, вода равномерно нагревается.

Такое движение слоев объясняется действием архимедовой силы. При увеличении объема нагретого слоя, увеличивается действующая на него архимедова сила. Она становится больше силы тяжести, действующей на данный слой. Он поднимается наверх.

Наглядно это можно пронаблюдать на опыте, изображенном на рисунке 3.


Рисунок 3. Наглядное движение окрашенных слоев жидкости.

Здесь в жидкость добавляют марганцовку и начинают ее нагревать. Нагретая в пламени свечи вода начинает расширяться и поднимается наверх. Так как вода окрашена неравномерно, легко пронаблюдать циркуляцию.

Если мы поместим руку над горячей плитой, то почувствуем, как над ней поднимаются теплые струи воздуха. Это происходит конвекция в воздухе.

Пронаблюдаем это явление на опыте (рисунок 4). У нас есть вертушка и свечи, расположенные под ней.

После того как мы зажжем все свечи, мы увидим, что вертушка начала вращаться. Что же здесь происходит?

Воздух, соприкасающийся с пламенем свечей, нагревается, расширяется и становится менее плотным. На него со стороны холодного воздуха действует сила Архимеда снизу вверх. Эта сила становится больше силы тяжести, действующей на теплый воздух. В итоге, теплый воздух начинает подниматься вверх, а его место занимает холодный воздух.

Если мы будем постепенно тушить свечи, то увидим, что скорость вращения вертушки начинает снижаться. Это связано с уменьшением объема циркулирующего воздуха.

Свойства и виды конвекции

Мы выясняли (рисунок 1, а), что если подогревать жидкость не снизу, то конвекция не будет происходить. То же самое справедливо и для конвекции в газах. Нагретые слои не смогут опуститься ниже холодных, более тяжелых. Значит,

для осуществления конвекции в жидкостях и газах необходимо нагревать их снизу.

Может ли происходить конвекция в твердых тела? В твердых телах частицы совершают колебания около определенных положений. Их удерживает сильное взаимное притяжение. В такой ситуации невозможно образование потоков вещества, как в жидкостях или газах. Следовательно,

конвекция не может происходить в твердых телах.

Конвекция бывает двух видов (рисунок 5):

Примерами естественной конвекции являются все примеры, которые мы рассмотрели выше.

Вынужденная конвекция наблюдается, например, если мы используем вентилятор или перемешиваем жидкость ложкой.

Конвекция в быту и природе

Явление конвекции легко просматривается в наших квартирах. Когда в холодное время работает отопление, в комнатах постоянно происходит ощутимая циркуляция воздуха (рисунок 6).


Рисунок 6. Конвекция воздуха в комнате, обогреваемой батареей.

Отметьте для себя тот факт, что в явлении конвекции кроется причина того, что отопительные батареи размещают в нижней части стен, ближе к полу.

Иногда в одной комнате бывает теплее, чем в соседней. Например, стоит дополнительная батарея или работает печка в кухне. В дверном проеме между такими комнатами можно обнаружить потоки воздуха (рисунок 7).

Холодный воздух будет иметь большую плотность и находится внизу. Если мы подставим пламя зажигалки внизу дверного проема, то увидим, что холодный воздух двигается в более теплую комнату. Если же поместим горящую зажигалку в верхнюю часть проема, то пламя отклонится в другую сторону. Так теплый воздух движется в холодную комнату.

Яркий пример конвекции в природе — это ветер. Наша атмосфера по всей Земле прогревается неодинаково. Из-за разного нагрева воздуха в жарких тропиках и полярных областях возникает мощное конвекционное движение воздуха — образуются ветра.

Пассаты — ветра, дующие от субтропических областей с экватору — частично образуются из-за неравномерного нагревания земной поверхности. Из-за вращения Земли, потоки воздуха отклоняются от меридиана (рисунок 8). Поэтому в Северном полушарии пассаты движутся в северо-восточном направлении, а в Южном — в юго-восточном направлении.

Ветра способствуют образования течений. Верхние слои воды (поверхностное течение) движутся в направлении постоянно дующего ветра (рисунок 9). Так, теплые и холодные течения — пример вынужденной конвекции.

Ветер на берегах морей — бриз — также образуется за счет конвекции (рисунок 10).

В теплое время года суша днем прогревается сильнее, чем море. Нагретые слои воздуха поднимаются вверх. Их давление становится меньше давления более холодного воздуха. Так, днем воздух дует с моря (дневной бриз), потому что прохладный воздух замещает собой теплый. Ночью все происходит наоборот — вода в море остывает медленнее, чем поверхность суши. Ветер дует с суши на море — образуется ночной бриз.

Теплопередача – это способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы. Существуют следующие виды теплопередачи: теплопроводность, конвекция и излучение.

Теплопроводность

Теплопроводность – это процесс передачи энергии от одного тел а к другому или от одной части тела к дpугой благодаря тепловому движению частиц. Важно, что при теплопроводности не происходит перемещения вещества, от одного тела к другом у или от одной части телa к другой передается энергия.

Разные вещества обладают разной теплопроводностью. Если на дно пробирки, наполненной водой, положить кусочек льда и верхний её конец поместить над пламенем спиртовки, то через некоторое время вода в верхней части пробирки закипит, а лёд при этом не растает. Следовательно, вода, так же как и все жидкости, обладает плохой теплопроводностью.

Виды теплопередачи: теплопроводность, конвекция, излучение

Ещё более плохой теплопроводность ю обладают газы. Возьмём пробирку, в которой нет ничего, кроме воздуха, и расположим её над пламенем спиртовки. Палец, помещённый в пробирку, не почувствует тепла. Следовательно, воздух и другие газы обладает плохой теплопроводностью.

Хорошими проводниками теплоты являются металлы, самыми плохими — сильно разреженные газы. Это объясняется особенностями их строения. Молекулы газов находятся друг от друга на расстояниях, больших, чем молекулы твёрдых тел, и значительно реже сталкиваются. Поэтому и передача энергии от одних молекул к другим в газах происходит не столь интенсивно, как в твёрдых телах. Теплопроводность жидкости занимает промежуточное положение между теплопроводностью газов и твёрдых тел.

Конвекция

Как известно, газы и жидкости плохо проводят теплоту. В то же время от батарей парового отопления нагревается воздух. Это происходит благодаря такому виду теплопроводности, как конвекция.

Если вертушку, сделанную из бумаги, поместить над источником тепла, то вертушка начнёт вращаться. Это происходит потому, что нагретые менее плотные слои воздуха под действием выталкивающей силы поднимаются вверх, а более холодные движутся вниз и занимают их место, что и приводит к вращению вертушки.

Конвекция — вид теплопередачи, при котором энергия передаётся слоями жидкости или газа. Конвекция связана с переносом вещества, поэтому она может осуществляться только в жидкостях и газах; в твёрдых телах конвекция не происходит.

Излучение

Третий вид теплопередачи — излучение. Если поднести руку к спирали электроплитки, включённой в сеть, к горящей электрической лампочке, к нагретому утюгу, к батарее отопления и т.п., то можно явно ощутить тепло.

Опыты также показывают, что чёрные тела хорошо поглощают и излучают энергию, а белые или блестящие плохо испускают и плохо поглощают её. Они хорошо энергию отражают. Поэтому понятно, почему летом носят светлую одежду, почему дома на юге предпочитают красить в белый цвет.

Виды теплопередачи: теплопроводность, конвекция, излучение

Путём излучения энергия передаётся от Солнца к Земле. Поскольку пространство между Солнцем и Землёй представляет собой вакуум (высота атмосферы Земли много меньше расстояния от неё до Солнца), то энергия не может передаваться ни путём конвекции, ни путём теплопроводности. Таким образом, для передачи энергии путём излучения не требуется наличия какой-либо среды, эта теплопередача может осуществляться и в вакууме.

теплопередача виды

Конвекция

На уроке мы поговорим о таком виде теплопередачи, как конвекция. Сначала приведем пример опыта, подтверждающего принципиальное отличие этого вида теплопередачи от теплопроводности, изученной на предыдущем уроке. Потом особое внимание уделим опытам, демонстрирующим явление конвекции в газах, а затем в жидкостях и подробно опишем наблюдаемые явления. В конце урока упомянем виды конвекции: свободную и вынужденную.


Из курса физики 8 класса известно, что теплота — это внутренняя энергия вещества, представляющая собой энергию хаотичного движения молекул. Теплота способна передаваться от одного тела к другому, и происходить это может тремя способами: теплопередачей, излучением и конвекцией. Рассмотрим кратко, как происходит теплообмен путем конвекции, какие особенности есть у этого вида переноса тепла.

Перенос тепла в веществе

Поскольку теплота — это энергия хаотичного движения молекул, перенос тепла означает перенос энергии от одной точки среды к другой. Как это происходит?

Во-первых, энергия может переноситься путём соударения молекул. Но если вещество жидкое или газообразное, то существует и другая возможность. Молекулы жидкости или газа не связаны жёсткими кристаллическими связями и могут свободно перемещаться друг относительно друга. Следовательно, можно быстро двигающиеся (сильно нагретые) молекулы просто переместить в другую точку вещества, в результате температура этой точки возрастёт.

Перенос тепла в жидкости или газе возможен с помощью переноса самого вещества. Такой теплоперенос называется конвекцией. Говоря простыми словами, конвекция — это перемешивание.

Конвекция

Рис. 1. Конвекция.

Механизм естественной конвекции

Если на газ или жидкость не действует никаких сил, то организовать конвекцию в них возможно только путём приложения внешнего перемешивающего воздействия.

Однако если жидкость или газ в результате действия гравитации имеет вес, то появляется возможность организовать конвекцию без внешних воздействий — энергией движения самих молекул.

При нагревании все тела расширяются. То есть одна и та же жидкость (или газ) начинает занимать больший объём, и, следовательно, уменьшает плотность.

А теперь нужно вспомнить действие силы Архимеда. Эта сила действует не только на тело, помещённое в жидкость или газ, но и на отдельные слои вещества. И поскольку более нагретые части имеют меньшую плотность (она находится с помощью справочных таблиц и формул), в соответствии с законом Архимеда эти части начинают вытесняться вверх, уступая место более холодным и плотным частям.

Таким образом, при нагревании жидкости или газа в условиях существования веса появляется возможность создания конвекции только путём теплового воздействия. Появляющаяся сила Архимеда обеспечивает конвективное перемешивание. Такая конвекция называется естественной.

Чтобы организовать естественную конвекцию, необходимо нагревать жидкость или газ снизу. При нагреве сверху конвекции не происходит, и вещество будет нагреваться очень медленно и неравномерно. К примеру, вода в верхней части пробирки может кипеть, а в нижней её части будет нерастаявший лёд:

Нагрев верхней части пробирки со льдом

Рис. 2. Нагрев верхней части пробирки со льдом

Явление конвекции играет огромную роль в природе и технике. Для создания естественной конвекции нагревательные приборы всегда по возможности размещают внизу. Естественная конвекция атмосферы является основой погодных явлений.

Естественная конвекция возможна только благодаря силе Архимеда, которая является результатом существования у жидкости или газа веса. В состоянии невесомости (к примеру, на космической станции) естественная конвекция отсутствует, и жидкость можно нагреть только постоянно её перемешивая.

Сила Архимеда

Рис. 3. Сила Архимеда.

Что мы узнали?

Конвекция — это перенос тепла путём перемешивания в жидких или газообразных веществах. Если жидкость или газ имеет вес, в них возможна естественная конвекция, когда более нагретые слои вещества имеют меньшую плотность и поднимаются вверх благодаря возникающей силе Архимеда. В состоянии невесомости конвекция может быть только искусственной (с помощью внешних сил).

Читайте также: