Кинетическая теория газов максвелла кратко

Обновлено: 03.07.2024

Итак, Клаузиус строит кинетическую теорию газов на основе классической механики, привлекая молекулярные представления и статистику. В формуле давления у него фигурирует средний квадрат квадратов скоростей отдельных молекул. Он вычисляет среднее число столкновений и среднюю длину свободного пробега молекулы, оперируя понятиями теории вероятностей. Эти результаты и методы подсчета Клаузиуса ныне вошли в учебники физики.

В резюме Максвелла обращает; на себя внимание тот факт, что он ни слова не говорит об открытом им законе распределения скоростей, зато подроб но говорит об объяснении закона Авогадро. Заметим, что об этом объяснении он всегда упоминал в своих популярных статьях и выступлениях. Между тем мы сейчас видим главную заслугу Максвелла в открытом им законе скоростей и забыли о том, что сам Максвелл считал наиболее важным. Теорию равномерного распределения энергии по степеням свободы мы связываем с Больцманом. Она охватывает открытие Максвеллом равенства средних энергий молекул независимо от их массы при одной и той же температуре и объясняет неудачу его попытки истолковать соотношение теплоемко стей.




Квантовая физика нашла ключ к разрешению загадки, перед которой остановился Максвелл. Но величие Максвелла в том и проявляется, что он понял, что это загадка, непосильная для классической физики.

Итак, Клаузиус строит кинетическую теорию газов на основе классической механики, привлекая молекулярные представления и статистику. В формуле давления у него фигурирует средний квадрат квадратов скоростей отдельных молекул. Он вычисляет среднее число столкновений и среднюю длину свободного пробега молекулы, оперируя понятиями теории вероятностей. Эти результаты и методы подсчета Клаузиуса ныне вошли в учебники физики.

В резюме Максвелла обращает; на себя внимание тот факт, что он ни слова не говорит об открытом им законе распределения скоростей, зато подроб но говорит об объяснении закона Авогадро. Заметим, что об этом объяснении он всегда упоминал в своих популярных статьях и выступлениях. Между тем мы сейчас видим главную заслугу Максвелла в открытом им законе скоростей и забыли о том, что сам Максвелл считал наиболее важным. Теорию равномерного распределения энергии по степеням свободы мы связываем с Больцманом. Она охватывает открытие Максвеллом равенства средних энергий молекул независимо от их массы при одной и той же температуре и объясняет неудачу его попытки истолковать соотношение теплоемко стей.

Квантовая физика нашла ключ к разрешению загадки, перед которой остановился Максвелл. Но величие Максвелла в том и проявляется, что он понял, что это загадка, непосильная для классической физики.

Настало теперь время пояснить, почему Фарадей, стоя наверху лестницы, весело крикнул Максвеллу, проталкивающемуся локтями через толпу:

— Послушайте, Максвелл! Уж вам-то, специалисту по движению молекул, сам бог велел легко пробираться в толпе!

Действительно, и в конце абердинского периода, и в начале лондонского у Максвелла появилось наряду с оптикой и электричеством новое научное увлечение — кинетическая теория газов. На занятия ею его натолкнули две статьи Клаузиуса 1857 и 1859 годов. В статьях рассматривалась роль, которую могла бы играть вращательная энергия молекул в теплосодержании вещества, и была сделана попытка определить физический смысл понятия свободного пробега молекулы.

Эти статьи давали новое развитие взглядам Даниила Бернулли, члена Петербургской академии наук.

Бернулли первым указал на то, что теплота есть внешнее проявление колебательного движения отдельных молекул. Молекулы, следовательно, обладали скоростью. Все — одинаковой. Клаузиус первый высказал мысль о том, что эти скорости могут быть разными.


Если известен путь и время равномерного прямолинейного движения, можно однозначно определить скорость, причем не с какой-либо степенью вероятности, а совершенно точно.

А один из выводов новой теории, не совпадавший со старыми, выведенными из предположения о равенстве скоростей молекул, был просто физически абсурден. И что самое смешное — сам докладчик тоже не верил в него, но так это получалось из теории. Молодой Максвелл предлагал кому угодно проверить его выкладки и найти в них ошибку, если она есть. И похоже, что он сам этого страстно желал — ошибки, поскольку ему самому вывод казался парадоксальным, физически неочевидным: получалось, что вязкость газа не зависела от его давления!

— Этот вывод из математической теории является крайне поразительным, — говорил молодой докладчик, — и единственный опыт, с которым я встретился в этой области, как будто его не подтверждает.

Максвелл и не заметил, как попал в самую горячую точку философских битв. Но здесь ему нечего было бояться — его крепкая философская позиция спасала его как от Сциллы идеализма, так и от Харибды механицизма.

Максвеллу удалось подчинить строгим законам хаотическое движение молекул газа. Именно полная беспорядочность движения молекул позволила ему извлечь из хаоса порядок. Статистический, вероятный подход позволял точно указать, например, число частиц, обладающих удвоенной или утроенной средней кинетической энергией. И эти цифры, как оказалось, подчинились универсальному закону, который не зависит от природы частиц и сил, с которыми они действуют друг на друга. В каком-то смысле закон распределения молекул по скоростям, данный Максвеллом, оказался новым фундаментальным свойством материи, находящейся в равновесии, свойством, не известным ранее никому. Максвелл подошел к самым границам механического понимания материи. И переступил их.

Да, Максвелл попал на линию огня, лучше сказать — на ничейную землю, обильно осыпаемую градом снарядов обеих враждующих сторон, двух групп философов. Вывод Максвелла о господстве в мире молекул законов теории вероятностей затрагивал самые фундаментальные основы мировоззрения, и противники, найдя наконец общего врага, объединились в атаках на него.

Одни полагали, что все в природе может быть объяснено на основе механических представлений. Некогда ценное, но возведенное в XIX веке в абсолют, такое мнение привело в конце концов к грубому механицизму, убеждению в том, что движущей силой мира являются законы механики, с помощью которых можно объяснить любые явления.

Нет, не прост был молодой Максвелл, слишком искушен он был уже в математической физике, чтобы попасть в объятия механицистов. Да, он использует законы соударения упругих шариков, которыми он представляет молекулы, но считает ли он молекулы только упругими шариками? С другой стороны, Максвелл выступает против фетишизации субъективных ощущений, но разве не он же считает опыт высшим критерием правильности любой физической теории?

Обвиняли Максвелла в механицизме — мол, слишком увлекается средствами классической механики, механическими моделями. Обвиняли на этот раз несправедливо — Максвелл всегда считал, что механическая модель лишь в самых общих и простых чертах отражает исследуемые процессы и явления природы. Любой механический образ, по Максвеллу, отражает природу отнюдь не тождественно, а с определенной степенью приближения, отражает лишь одну сторону ее свойств. Механические модели, механические представления играли у Максвелла роль рабочих гипотез, конструкций, помогающих изобразить сложные предметы и явления гораздо проще и наглядней. Механические модели были строительными лесами его теорий.

Нельзя было ограничиваться чисто феноменологическим описанием. С другой стороны — невозможно было абсолютизировать и гипотетическое описание. Избрав середину, Максвелл пришел к методу аналогий, при котором можно было привлекать физические отношения в уже изученных явлениях и впервые учитывать данные, характеризующие новые явления. И поскольку из старых отраслей науки именно механика была наиболее разработанной, то механические аналогии, как самые наглядные, самые ясные и понятные, были вполне уместны и закономерны. И тут — главное. Механические модели были для Максвелла правомерны лишь до тех пор, пока они подтверждали то, что наблюдалось в экспериментах. Он был готов отказаться от своего вывода о независимости коэффициента внутреннего трения газов от давления, вывода математически безупречного, ввиду казавшегося тогда очевидным несовпадения этого вывода с экспериментом.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

ТЕОРИЯ ПОДВОДИТ

ТЕОРИЯ ПОДВОДИТ В тот же день советская психологическая теория чуть меня не подвела.Я шел один и услышал резкий оклик:– Эй, послушайте! Что вы по лагерю разгуливаете?Я обернулся и увидел того самого старичка с колючими усами, начальника санитарной части лагеря, который

ТЕОРИЯ СКЛОКИ

ТЕОРИЯ СКЛОКИ Мы шли домой молча и в весьма невеселом настроении. Становилось более или менее очевидным, что мы уже влипли в нехорошую историю. С проектом санитарного городка получается ерунда. Мы оказались помимо всего прочего запутанными в какую-то внутрипартийную

Теория и практика

Теория и практика Я пришла домой с известием, что следователь предъявил О. М. стихи о Сталине и О. М. признал авторство и то, что человек десять из ближайшего окружения их слышали. Я сердилась, что он не отрицал всего, как подобает конспиратору. Но представить себе О. М. в роли

Теория и практика

Теория и практика В переписке и мемуарах, касающихся Бенкендорфа, один из эпитетов к его имени оказывается, пожалуй, наиболее распространённым. Удивительным образом самые разные люди — и по положению, и по отношению к высшей полиции, и по самой судьбе — не сговариваясь,

ТЕОРИЯ И ОПЫТ

Теория и практика

Теория и практика Необходимо остановиться. Передохнуть. Не Утесову, а автору. Чтобы не упустить за быстро развивающимися событиями нечто важное.Однажды у нас с Леонидом Осиповичем случился разговор, что можно назвать теоретическим. Не склонный к теориям и

Вредная теория

33. Теория относительности

33. Теория относительности Третья работа молодого учёного – его знаменитая специальная теория относительности. И опять Эйнштейн идёт от частного к общему. Он отвергает существование эфира – загадочного вещества, которое, по мнению учёных того времени, заполняет всю

Теория капиллярности

Теория капиллярности В этот же период Лаплас уделял много времени вопросам теоретической физики, в частности, теории капиллярности или волосности.Поднятие жидкости на большую высоту в капиллярных (волосных) трубках, играющее большую роль в физике и обусловливающее

Теория Вирхова

Теория Вирхова Расчудесный писатель Клубков мучился деснами. Явился ко мне и начал сдержанно мучиться.- Лечи печенку, - говорю. - Это же все от нее.Оно и вправду так, особенно в китайской трактовке. Глаза, например, тоже зеркало печени: слезятся с бодуна и желтеют при желтухе.

Теория событий

67. Теория эфира

Теория и еще раз теория

Теория и еще раз теория В своих книгах, многочисленных статьях и захватывающих по интересу публичных выступлениях А. М. Бутлеров впервые в России раскрыл особенности рационального пчеловодства, заложил его теоретические основы. Он придавал исключительное значение

1. Теория

1. Теория Гражданское законодательство в своем Постановлении и решение Архиерейского Собора 1961 года признают за религиозной общиной право избрания исполнительного и религиозного органа. Следовательно, единственным источником прав исполоргана признается воля




Ошибка создания миниатюры: По видимому, отсутствует файл C:\xampp\htdocs\wt/images/d/d6/Рисунок8.jpg


Далее Максвелл уточнил численный коэффициент в выражении для средней длины свободного пробега, а также доказал равенство средних кинетических энергий в равновесной смеси двух газов. Рассмотрев проблему внутреннего трения (вязкости), Максвелл смог впервые оценить значение средней длины пробега, получив правильный порядок величины. Другим следствием теории был казавшийся парадоксальным вывод о независимости коэффициента внутреннего трения газа от его плотности, что было впоследствии подтверждено экспериментально. Кроме того, из теории непосредственно следовало объяснение закона Авогадро. Таким образом, в работе 1860 года Максвелл фактически построил первую в истории физики статистическую модель микропроцессов, которая легла в основу развития статистической механики. [46]

Во второй части статьи Максвелл, в добавление к внутреннему трению, рассмотрел с тех же позиций другие процессы переноса — диффузию и теплопроводность. В третьей части он обратился к вопросу о вращательном движении сталкивающихся частиц и впервые получил закон равнораспределения кинетической энергии по поступательным и вращательным степеням свободы. О результатах применения своей теории к явлениям переноса учёный доложил на очередном съезде Британской ассоциации в Оксфорде в июне 1860 года.

Первая цветная фотография


Читайте также: