Керамика в медицине кратко

Обновлено: 02.07.2024

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

керамика в медицине

Мухтарова Мунира Набиевна, кандидат физико-математических наук, и.о. доцента Нурмуханова Альфия Зейнулловна, кандидат технических наук, преподаватель, Нурсейтова Алия Кадырбековна, преподаватель.

Кафедра теплофизики и технической физики,

КазНУ им. аль-Фараби г. Алматы

Высокотемпературная сверхпроводимость дала надежду создать сквиды из керамики. Сверхпроводящий ток, как и всякий ток, связан с магнитным полем. Поэтому квантование тока означает, что и индукция магнитного поля также квантуется и может принимать только ряд дискретных значений. Экспериментально квант магнитного потока определен с весьма высокой степенью точности на основе опыта Джозефсона.

Сквиды сложная аппаратура, в нее входят дорогие и капризные криостаты с жидким гелием. Высокотемпературная сверхпроводимость дала надежду создать сквиды из керамики, охлаждаемые жидким азотом и способные работать не только в научных центрах, но и в поликлиниках, геологических партиях, заводских лабораториях. Если у металлических сверхпроводников эффект Джозефсона четко проявляется в контактах размером в тысячи ангстрем, то в керамических этот размер не должен превышать десятков ангстрем (несколько расстояний между атомами).

Сверхпроводящая керамика состоит из отдельных зерен, контакты между которыми гораздо меньше, чем сами зерна. Подбирая условия изготовления керамики, получены микронные зерна с контактами нужного размера. Так впервые в мире удалось изготовить магнитные детекторы, с достаточной точностью работающие при температуре жидкого азота, и снять с их помощью магнитограмму человека.

Измеряя сквидами поля текущих в Земле токов, геофизики пытаются определять проводимость пород и искать полезные ископаемые или предсказывать землетрясения. В технике на эффекте Джозефсона создают амперметры и вольтметры или квантовые эталоны вольта, точность которых задана самой природой.

Сквиды в медицине открыли новое направление диагностики. Снимая карту на грудной клетке пациента распределения магнитного поля токов сердца, можно отличить здоровых людей от человека, на сердце которого после инфаркта образовался рубец.

В. Л. Гинзбург, Е. А. Андрюшин. Сверхпроводимость, Альфа-М, 2006 г.

Корнев В.К. Эффект Джозефсона и его применение в сверхпроводящей электронике //Соровский образовательный журнал, 2001, № 8, с.88

Владимир Комлев

Материаловед Владимир Комлев о том, почему керамика используется в медицине, как на ее основе создаются имплантаты и какие перспективы у биоинженерии

Над материалом работали

Владимир Комлев

доктор технических наук, ведущий научный сотрудник лаборатории керамических композиционных материалов Института металлургии и материаловедения им. А. А. Байкова РАН

Измеритель диаметра, измеритель эксцентриситета, автоматизация, ГИС, моделирование, разработка программного обеспечения и электроники, БИМ

ТЕХНОЛОГИИ, ИНЖИНИРИНГ, ИННОВАЦИИ


Керамика применяется в различных областях медицины, связанных с реконструктивно-восстановительными новыми хирургическими операциями: в стоматологии, травматологии, ортопедии, челюстно-лицевой хирургии, нейрохирургии и так далее. Она необходима для восстановления костных дефектов тканей человека при травмах или онкологических заболеваниях. Существует несколько видов керамики для различных медицинских применений. Так, для нагруженных имплантатов используется в основном оксидная керамика, для остеопластики костных дефектов — керамика на основе фосфатов кальция, для тканевой инженерии с использованием различных остеогенных факторов — матрикс, или скэффолд. Первые упоминания об использовании керамики в медицине можно отнести к XVIII веку: ее применяли для изготовления искусственных зубов и протезов. Оксид алюминия и диоксид циркония использовались в качестве имплантатов широкого спектра действий с 1960-х годов.


Кальций-фосфатная керамика для реконструкции костных дефектов нашла свое применение в середине 1970-х годов и широко используется по настоящее время.

Современные керамические изделия для реконструктивно-восстановительной хирургии можно условно разделить на несколько групп по критерию отклика организма на материал: биоинертную, биосовместимую и остеокондуктивную керамику.

К биоинертной керамике можно отнести изделия на основе оксида циркония или алюминия для нагруженных имплантатов. Биосовместимой и остеокондуктивной керамикой являются кальций-фосфатные материалы. При их использовании материал является остеокондуктором, то есть вокруг него по поверхности образуется костная ткань, а сам материал не капсулируется, как в случае биоинертной керамики. В идеале спустя определенное время на его месте образуется нативная, то есть собственная, ткань пациента.


Допустим, что у человека есть дефект костных тканей, в него помещают кальций-фосфатную керамику, которая является строительным материалом. Проще говоря, биосовместимый материал остеоинтегрируется (срастается) с окружающими тканями, ускоряет естественную регенерацию и постепенно биодеградирует (растворяется) без следа, с образованием собственной ткани пациента. В этом ее отличие от биоинертной керамики, которая биостабильна и не вызывает интеграционного отклика от организма, и он ее в конечном счете может отторгнуть.

Используемый материал не должен быть токсичным, вызывать отмирание окружающих тканей, должен иметь нейтральное значение рН и растворяться с образованием новой ткани. Перспективным для этих целей является использование кальций-фосфатной керамики, поскольку минеральная составляющая костной ткани представлена в основном биологическим апатитом кальция (Ca,Na,Mg)10(PO4,HPO4,CO3)6(OH,F,Cl)2. Важное преимущество кальций-фосфатных материалов — это отсутствие побочных эффектов. Во многом это связано со сложными биохимическими процессами локального связывания и высвобождения ионов кальция и фосфора с участием межтканевых жидкостей и ферментов.

Выбор, какую именно керамику использовать, всегда зависит от конкретного пациента и конкретного дефекта, то есть выбор всегда персонализирован.

Синтетический гидроксиапатит (Са10(РО4)6(ОН)2) — наименее растворимый при физиологических условиях фосфат кальция. Среди других фосфатов кальция, которые обладают относительно высокими остеокондуктивными потенциями, регулируемой кинетикой биодеградации — растворимостью, наибольшее внимание привлекают трехкальциевый фосфат, материалы на основе октакальциевого фосфата и другие, которые характеризуются относительно высокой интеграцией с костной тканью и скоростью растворения, достаточной для образования нативной ткани. Так, растворение трехкальциевого фосфата в жидкости организма способствует процессу минерализации. Выбор октакальциевого фосфата связан с тем, что образование стабильной в организме фазы — биологического апатита — происходит через стадию образования промежуточной метастабильной фазы — октакальциевого фосфата.

Применение кальций-фосфатной керамики в качестве материала для имплантатов, несущих механические нагрузки, часто невозможно из-за недостаточных прочностных характеристик. Естественная костная ткань является композиционным материалом, состоящим из биологического апатита, коллагена и других белков. Поэтому принцип формирования композиционных структур имеет значительные перспективы для повышения механических свойств керамики, предназначенной для изготовления костных имплантатов. Введением соответствующих добавок в керамику можно улучшить механические характеристики, но при этом должны сохраняться ее биологические свойства и в первую очередь биосовместимость с тканью живого организма.

В целом подход в тканевой инженерии базируется на двух составляющих: сам материал и остеогенные факторы, к которым относятся, например, клетки, гены и морфогенетические протеины. Чтобы создать тканеинженерную конструкцию, которая могла бы заместить какой-то определенный дефект в организме, ученые пытаются объединить эти составляющие.

Керамику применяют в случае серьезных заболеваний или травм, например, в результате патологических заболеваний, таких как остеомиелит, остеосаркома или остеопороз. Если дефект небольшой, а регенеративный потенциал организма высокий, то он справится сам. Существуют дефекты критические и даже сверхкритические. В таких случаях требуется использовать медицинские изделия или тканеинженерные конструкции на основе керамики для замещения или регенерации дефектов костной ткани.

Это может понадобиться, например, при остеосаркоме, когда хирургу приходится удалять большие объемы костной ткани, которую позже надо заместить, то есть сделать так, чтобы кость образовалась у пациента заново. Но важно помнить, что при каждом случае необходим индивидуальный, персонализированный подход.

Наиболее часто кальций-фосфатную керамику используют в стоматологии при синус-лифтинге. Синус-лифтинг — это постановка титанового имплантата в случае, когда в челюсти недостаточно объема костной ткани. Для того чтобы нарастить определенный объем, хирургу-стоматологу необходимо сделать двухступенчатый синус-лифтинг, то есть имплантировать остеопластический материал, например собственную ткань пациента или кальций-фосфатную керамику, приблизительно на 3–5 месяцев — именно за этот период образуется определенный объем ткани в челюстно-лицевой зоне. После этого хирург может установить имплантат с уверенностью, что он будет качественно зафиксирован.

Производство керамики

Традиционный способ получения керамики включает в себя несколько этапов. Первый — это химический синтез исходного порошка. Второй — формирование сырой заготовки. Обычно формируют при помощи шликерного литья, то есть литья исходного материала в заранее изготовленную форму. Третий этап — это термическая обработка, когда материал спекают в печи при высокой температуре, и это, собственно, и является получением керамического материала. Эти подходы очень похожи на способы изготовления гончарных изделий: смешивают керамический порошок со связующим материалом, придают ему форму, обжигают в печи и получают готовое изделие. Отличие, конечно, в температуре обжига, способе синтеза, исходных реагентах и многих других технологических параметрах.

Основным недостатком этих методов является их время- и энергозатратность, а также недостаточно высокая воспроизводимость пространственных параметров (особенно внутренней микро- и макроструктуры) создаваемых изделий. Наряду с этим при замещении дефекта или реконструкции костной ткани часто возникает необходимость создания индивидуальной имплантируемой конструкции заданной структуры и пористости с соблюдением необходимой точности ее геометрических размеров. Важную роль также может играть и оперативность изготовления имплантатов по индивидуальным томографическим данным конкретного пациента.

В последнее время наибольших успехов в решении этих проблем удалось достичь с помощью передовых технологий 3D-печати. Они позволяют оперативно и с высокой точностью (вплоть до нескольких десятков микронов), существенно превышающей точность обычных медицинских рентгеновских или ЯМР-томографов, изготавливать из порошковых композиций объемные структуры практически любой сложности на основе их CAD/CAM (Computer-AidedDesign / Computer-AidedManufacturing) данных. Следует отметить, что наука не стоит на месте, развиваются и новые подходы получения тканевых эквивалентов. Например, мы разрабатываем способ формирования изделий с воспроизводством пространственных параметров в целом объеме — биофабрикацию. Наши партнеры создали оборудование, которое позволяет частицам керамики левитировать. То есть мы, грубо говоря, поднимаем в воздух частицы порошка керамики и соединяем их в определенный геометрический объект, допустим трубочку или шарик. После этого мы отпускаем левитационное поле, и у нас получается экспериментальный образец. В аддитивном производстве при создании образца необходимо наращивать слой за слоем, а в случае биофабрикации у нас есть возможность собирать не по слоям, а сразу формировать структуру в целом объеме.

Керамика хоть и прочный, но одновременно хрупкий материал, и это ее основной минус, поэтому ее не используют при нагруженных имплантатах.

А большой плюс керамики в том, что она является наиболее близким аналогом костной ткани человека. То есть ученые научились синтезировать такой материал, который не будет отторгнут человеческим организмом. Грубо говоря, мы научились обманывать организм. Несмотря на указанные недостатки, есть области медицины, где керамическим материалам нет альтернативы. Например, протезы тазобедренных суставов изготавливают из керамики на основе оксида алюминия или циркония.

Основной конкурент керамики — это, конечно, титан. Во-первых, он биоинертный, во-вторых, он применяется достаточно давно и хорошо себя зарекомендовал, поэтому медикам очень сложно от него отказаться. В-третьих, по прочности титан не уступает нагруженным элементам костных тканей, поэтому он широко используется как для различных протезов, так и для остеосинтеза в качестве крепежных элементов. Если у человека сложный перелом и нужна определенная фиксация, то применяют как раз титановые пластины для остеосинтеза.

Если говорить о полимерах (полилактиды, поликапролактоны, полиэтилены, полисахариды, коллаген и так далее), они тоже обладают плюсами и минусами. Они более эластичны в сравнении с керамикой и металлами, им также присущи биосовместимость и биодеградируемость. Основными недостатками полимерных материалов являются прочностные характеристики, ограничивающие их использование в качестве костных имплантатов. Также стоит отметить сравнительно высокую скорость резорбции по сравнению с керамическими материалами, что тоже сужает спектр применения.

Будущее керамики

Существуют интересные разработки в области композиционных материалов, когда создаются материалы, сравнимые по прочности с костной тканью. Новые разработки в основном направлены на усовершенствование уже имеющихся, то есть на более эффективное применение таких материалов в медицине. Эффективность оценивается тем, образовывается ли качественная собственная ткань в конечном счете или нет.

Также разрабатываются подходы для получения различных форм керамики, например кальций-фосфатных цементов. Это когда жидкость смешивается с порошком и при комнатной температуре происходит реакция твердения. Применение цементных материалов, в свою очередь, открывает для нас свойства неинвазивности, то есть позволяет инъектировать в дефекты системы, не подвергая операциям пациента. Такие подходы используют, например, в вертебропластике.

Определенно можно сказать, что будущее медицины за материалами и заменить керамику в ближайшее время вряд ли будет возможно, так как керамические материалы на основе фосфатов кальция широко применяются в области тканевой инженерии при замещении небольших и критических дефектов тканей. Современные исследования связаны с созданием новых композиционных материалов и дальнейшим усовершенствованием способов их производства: аддитивные технологии, биофабрикация и другие.

Понравилась статья? Тогда поддержите нас, поделитесь с друзьями и заглядывайте по рекламным ссылкам!

Керамика показания и противопоказания, преимущества и недостатки

Керамика широко используется в ортопедической стоматологии. У нее есть четкие показания к применению, а также ряд противопоказаний. Материал привлекает многочисленными преимуществами, но имеет и недостатки.

Показания

Керамика применяется для изготовления эстетичных зубных протезов с металлическим каркасом или без него. С ее помощью можно изготавливать:

  • тонкие виниры толщиной менее 0,6 мм и обычные виниры (только из стеклокерамики);
  • окклюзионные виниры;
  • вкладки и коронки;
  • эндокоронки;
  • корневые штифты (из оксидной керамики);
  • культевые штифтовые вкладки (со штифтом из оксидной керамики);
  • мостовидные протезы с опорой на вкладки (с каркасом из оксидной керамики);
  • трехзвеньевые мостовидные зубные протезы, а также мостовидные протезы большой протяженности;
  • дентальные имплантаты (из оксидной керамики);
  • абатменты;
  • искусственные зубы съемных протезов (из стеклокерамики);
  • десневую часть условно съемных и несъемных протезов (стеклокерамика).

Противопоказания к применению керамики

  • Низкопрочную керамику нельзя использовать при повышенных окклюзионных нагрузках, в том числе у пациентов с бруксизмом.
  • Запрещено изготавливать мостовидные зубные керамические протезы, если их прочность на изгиб составляет менее 350 МПа.
  • Дисиликатлитиевая керамика не подходит для изготовления мостовидных протезов протяженностью более трех единиц.
  • Материал также не применяют при глубоком поддесневом препарировании, если необходима адгезивная фиксация.
  • Он противопоказан при недостаточной глубине препарирования.
  • Его не используют, если есть необходимость в последующем неразрушающем снятии конструкции, за исключением винтовых.

Преимущества и недостатки керамики в стоматологии

Керамика показания и противопоказания, преимущества и недостатки

Керамика позволяет изготавливать протезы, которые практически невозможно отличить от настоящих зубов. По этому показателю она выигрывает у амальгамов и сплавов металла, в отличие от которых, также обладает низкой теплопроводностью. С ее помощью можно изготавливать протезы на витальные зубы. Такие конструкции не имеют недостатков металлических зубных протезов, однако цены на безметалловые коронки всегда выше. Кроме того, керамика более хрупкая, чем металл, поэтому требует аккуратного отношения при препарировании и не приемлет острых переходов.

Композитные материалы нисколько не уступают керамике, но у нее есть неоспоримое преимущество. Она более прочная и отличается повышенной биосовместимостью, поскольку не имеет в составе органических компонентов. Керамические материалы имеют рекордную цвето- и износостойкость, а также прочность на изгиб, но они более хрупкие, чем композиты. Поэтому некоторые авторы рекомендуют выбирать для протезов с опорой на имплантаты композитные материалы.

Среди очевидных недостатков керамики – низкая ремонтопригодность, особенно в полости рта.

Параметры выбора керамического материала

Существует несколько ключевых параметров выбора. Идеального материала, который бы подходил на все случаи жизни, нет: руководствоваться необходимо индивидуальным клиническим случаем.

По показателю эстетичности керамика ранжируется так:

  • стеклокерамика методом наслоения;
  • методом редуцирования;
  • методом окрашивания;
  • оксидная с наслоением;
  • металлокерамика;
  • оксидная с дисиликатлитиевой облицовкой;
  • оксидная полноанатомическая.

По прочности керамику выбирают, исходя из такой градации:

  • полноанатомическая оксидная;
  • оксидная с дисиликатлитиевой облицовкой;
  • монолитная дисиликатлитиевая стеклокерамика;
  • аналогичная, полученная не путем окрашивания, а методом редуцирования;
  • облицовка из наслоения на различные каркасы;
  • наслоение огнеупорной модели полевошпатной керамикой.

По показателю инвазивности стоматологи при выборе ориентируются на такие характеристики коронок (в порядке повышения инвазивности):

  • протезы с каркасом из оксидной керамики;
  • низкопрочная стеклокерамика;
  • металлокерамика;
  • высокопрочная стеклокерамика;
  • полноанатомическая оксидная керамика.

По показателю нетребовательности к цементовке при условии ретенционного препарирования керамика классифицируется в таком порядке:

  • металлокерамика;
  • оксидная;
  • дисиликатлитиевая.

Остальные материалы требуют адгезионной фиксации, включая случаи неретенционного препарирования.

Стоматологические статьи

Первое и, пожалуй, главное, на мой взгляд, качество это биологическая совместимость с тканями полости рта.Второе это лёгкость изменения своей геометрической и объёмной формы.Третье это экономичность, т.е. работа с этим материалом должна быть выгодна всем трём заинтересованным сторонам: врачу, зубному технику и пациенту.

Четвёртое это безукоризненная механическая прочность в пределах переменных и разновекторных нагрузок, возникающих в полости рта.Это нагрузки на сдвиг, слом, разрыв, растяжение и скручивание. Пятое качество это эстетика, другими словами максимальное приближение в цвете и форме к естественному зубу.

Из известных мне материалов, выделим три основные группы: металлы, полимеры и керамика и проследим за их достоинствами и недостатками.

МЕТАЛЛЫ – старейший стоматологический материал, применяющийся с 3-4 века до нашей эры. Металлы, применяемые в стоматологии, позволяют создавать точные и одновременно сложные конфигурации, обладающие большим запасом прочности при переменных нагрузках, что позволяет удлинять вантовую часть, как съёмных, так и несъёмных конструкций, без деформации и поломок под давлением. Недостатками применения металлов, является их полная не эстетичность и аллергические реакции на некоторых из них.

Под влиянием физических, а главное химических процессов протекающих в полости рта, полимерные материалы разрушаются, что приводит иногда к разрушению всей конструкции. Поэтому применение полимерных материалов в полости рта ограничено во времени и нагрузках. С другой стороны, способность соединения друг с другом на химическом уровне и приемлемое, химико-механическое соединение со всеми тканями зуба выводит эту группу материалов далеко вперёд и с большими преимуществами перед группами неорганических материалов.

За прошедших 40 лет композиционные материалы претерпели существенные изменения в основном за счёт стеклянных и керамических наполнителей. За счёт наполнителей получались композиты легко полируемые и более долговечны. В конце 1970-х к аэрозоль-кварцу (размер частицы 0,04 микрона) были добавлены элементы стекла и керамики с более крупными частицами.

Так родились ГИБРИДНЫЕ материалы. Все технологии изготовления гибридных материалов имели огромное влияние на технологии получения современной керамики.

КЕРАМИКА

Третья группа материалов для восстановления зубных рядов, на которой хочу остановиться более подробно.Керамика, также как и металлы один из старейших материалов применяемых в стоматологической практике.

ФАРФОР:

  • Каолин – 4%
  • Силикат (кварц) – 15%
  • Полевой шпат (фельцпар) – всё остальное.

Формула базового рецепта фарфора: K2O, AL2O3, 6SIO2
Всё, что происходило и происходит с фарфором до сегодняшнего дня это добавления различных элементов в базовую рецептуру для придания конечному продукту новых КАЧЕСТВ и СВОЙСТВ.

КЕРАМИКА

  • ГРУБУЮ (от5 до зо% пор)
  • ВЫСОКОПОРИСТУЮ (более 30% пор
  • ТОНКУЮ (менее 5% пор)

Грубая керамика – строительные материалы, огнеупоры.
Высокопористая – теплоизоляционные материалы.
Тонкая керамика –художественная (фарфор,фаянс),функциональная
(пьезо-, сегнето-, магнитная, термоэлектрическая сверхпроводящая, изоляционная, оптическая и С Т О М А Т О Л О Г И Ч Е С К А Я !

Свойства керамики

  • размером и формой (анизотропией),
  • кристаллитов,
  • природой связи между кристаллитами,
  • присутствием пор, жидких фаз и пр.
  • относительно простые и экономически выгодные технологии спекания порошков
  • уникальные свойства керамики и керамических композитных материалов.

Стоматологическая керамика это материал идеальной НЕЙТРАЛЬНОСТИ и БИОСОВМЕСТИМОСТИ с тканями полости рта. Это материал, который наиболее соответствует ЭМАЛИ ЗУБОВ, как по КОСМЕТИЧЕСКИМ, так и по ФИЗИЧЕСКИМ свойствам.

ЦЕЛЬНОКЕРАМИЧЕСКИЕ КОНСТРУКЦИИ

Как мы писали выше, современные металлические сплавы позволяют идеально выполнить каркас и облицевать его фарфором. Химическое соединение между металлом и фарфором позволяет создать почти идеальную (в большинстве случаев) работу в эстетическом аспекте.

После наложения непрозрачного (опакового) слоя следуют прозрачные и полупрозрачные (транспорентные) слои, затем идёт общий обжиг, обработка и глазурирование, воспроизведя при этом эстетику живого зуба.

Ведь к успеху протезирования цельнокерамическими конструкциями, ведёт высокая точность внутренней и внешней поверхности керамики (примерно в диапазоне 45 микрон и меньше). Цемент ведь не только уплотняет внутреннею поверхность, но и переносит внешнюю нагрузку через керамику, на расположенный под ней зуб без концентрации напряжения на внутренней поверхности.

Следующая цель-уменьшение твёрдости керамики в её поверхностном слое и её АБРАЗИВНОГО воздействия на естественные зубы. Керамика более мягкая - желательна. Разработки высокофтористого стекла (начатые ещё Дикором 1980) могут дать впечатляющие результаты, хотя клинические испытания полностью не закончены.

СПЕЧЕННЫЕ СТЕКЛОКРИСТАЛЛЫ

Вакуумное спечение стеклокристалов на платиновой фольге или на площади из рефракторных материалов дают удивительные результаты. При настоящей технологии использования рефракторных масс, состоящих из фосфатных соединений выдерживающих высокие температуры, позволяют производить очень точные конструкции, при относительно небольшой затрате времени, без использования платиновой фольги, что в свою очередь резко удешевляет сам процесс.

Эта технология была впервые использована для производства так называемых ВИНИРОВ– ЛАМИНЕЙТОВ (облицовок), что сразу установило ВЫСОКИЕ ЭСТЕТИЧЕСКИЕ СТАНДАРТЫ, которые сохранили своё влияние до сегодняшнего дня. Преднося различные химические элементы, в основном нерастворимые оксиды в стеклокристалы, производители добились так называемого ОПАЛОВОГО (опалисцентного) эффекта, который в свою очередь при спекании рассеивает свет, повторяя внешний вид естественного зуба.

ЛИТАЯ КЕРАМИКА

ПРЕССОВАННАЯ КЕРАМИКА

Одна из разновидностей литой, стеклокристаллической керамики выпускается под маркой IFS EMPRESS (ivoclar).Способ изготовления напоминает изготовление съёмных протезов из акрила. Восковая заготовка пакуется в ретракторно - фосфатную форму и после выплавления воска, пустота заполняется вязко-текучим стеклокристаллическим материалом (выпускаемым в виде толстых таблеток, соответствующих цветов) в вакууме, под большим давлением и высокой температурой. Высокая температура плавления стеклокерамики позволяет делать повторный обжиг без нарушения конфигурации и объёмных размеров, т.е. деформации в целом. Прочность такой стеклокерамики уступает только протезам выполненных по технологии IN-CERAM.

Одной из разновидностей прессованной керамики, является система CERPRESS – SL. Это низкотемпературная керамика, с усиленной структурой люцитов и предназначена в основном для изготовления одиночных коронок с высокой степенью опалисцентности, что в свою очередь является уникальностью в послойном построении, наличия оттенков в заготовках для прессования, также, как и специальных порошков Sensation SL

Стеклокерамика и механическая обработка

Выигрыш идёт по многим параметрам:

Другой, менее технологичный, но так же разумный подход к использованию механически обрабатываемой стеклокерамики -
система CELAY, созданная фирмой Vident.

ЦЕМЕНТИРОВАНИЕ как процесс и его усовершенствование.

Всё, что МЫ раньше знали про процесс фиксации конструкций, на естественных зубах, было очень ПРОСТО! Заполнение опорных коронок фиксационным цементом с целью удержания протеза на естественных зубах.

Химико-механическая связь высоко модульного полимерного цемента, как с протравленным фарфором, так и с протравленным зубом, позволяет перенести напряжение на естественный зуб без концентрации этого напряжения на внутренней поверхности конструкции. Исследования, проведенные в ряде университетов показали очень высокие показатели при испытаниях на СДВИГ и на РАЗРЫВ. При использовании этих технологий проявляется значительное сопротивление поломкам полностью керамических конструкций.

А, ЧТО ДАЛЬШЕ .

Современное обращение к керамике, не случайно. Биологическая
совместимость ставит этот материал на первое место, особенно для тех, кто заинтересован в уменьшении использования металлов в ортопедической стоматологии. Могут быть использованы любые технологии позволяющие создание очень сложных форм с очень точным соответствием прилегания. НО! Эстетика современного протезирования предъявляет огромные требования к самой, что ни есть ЕСТЕСТВЕННОСТИ и достичь этого можно только с помощью керамики которая как и естественный зуб имеет опаловый (опалисцентный) эффект за счёт своей поликристаллической структуры с различными включениями которые рассеивают свет.
НО!

Читайте также: