Каковы достоинства и недостатки прямой перегонки нефти кратко

Обновлено: 07.07.2024


Все мы пользуемся нефтепродуктами, и прежде всего – различными видами топлива (бензинами и дизельным), которые нам дает переработка нефти. Однако каким образом эти продукты получаются из сырой нефти – известно далеко не всем.

Такой процесс называется крекинг нефтепродуктов. С помощью этого процесса на нефтеперерабатывающих заводах производят не только топливо, но и массу других необходимых нефтепродуктов. Общему описанию крекинга и посвящена эта статья.

История возникновения

Считается, что крекинг нефтепродуктов, а также первая установка для него, были изобретены русскими учеными Шуховым и Гавриловым в 1891-ом году.

Английский химик Бартон Дерек

Они собрали и запатентовали экспериментальную установку для термического непрерывного крекинга, принцип которой позволял использовать её в промышленных масштабах. Это была первая подобная установка в мире. Спустя почти четверть века разработанные российскими инженерами технические решения стали основой промышленной установки, которую построили в США. В СССР первые установки такого типа промышленного масштаба стали делать с 1934-го года на бакинском .

Значительный вклад в разработку такой переработки нефти также внес английский химик Бартон.

В самом начале двадцатого столетия он нашел практически идеальный метод (крекинг) извлечения из нефти большого количества легких бензиновых фракций. Решив эту проблему, Бартон запатентовал собственный метод перегонки бензина, и уже в 1916-ом году этот метод стали применять в промышленном производстве. К 1920-му году уже работало больше 800 установок Бартона.

Используя свои знания о зависимости температуры закипания от давления на вещество, этому ученому удалось добиться наилучшей температуры для этого процесса, поскольку он проводил его под высоким давлением, ведь чем оно выше – тем выше и температура закипания. При кипении нефть испаряется, а работать с её парами – весьма непростая задача. Поэтому установки Бартона были призваны не допустить такого кипения, а, следовательно, испарения.

Технологическая схема



Двухпоточная установка термического крекинга с выносом реакционной камеры
Рис 1. Схема двухпоточной установки термического крекинга с выносом реакционной камеры: 1 – печь тяжелого сырья (легкого крекинга); 2 – печь легкого сырья (глубокого крекинга); 3 – выносная реакционная камера; 4 – испаритель высокого давления; 5 – колонна ректификации; 6 – испаритель низкого давления; 7 – теплообменник; 8 – холодильник; 9 – газосепаратор низкого давления; 10,11 – конденсатор-холодильник; 12 – газосепаратор высокого давления.

Кстати, прочтите эту статью тоже: Гидрирование бензола

Колонна ректификации и испаритель низкого давления

Сырье после нагрева в теплообменнике 7 теплом отходящего крекинг-остатка подается в нижнюю часть ректификационной колонны 5 и в верхнюю часть испарителя низкого давления 6. Деление сырья на два потока позволяет более полно использовать избыточное тепло паров в этих аппаратах. Из верхней части испарителя 6 сырье, разбавленное газойлевыми фракциями, направляются в нижнюю часть колонны 5.

Печь легкого крекинга и выносная реакционная камера

Объединенный поток сырья и ректификата с низа колонны 5 направляется в печь 1 легкого крекинга (тяжелого сырья).

Далее поток поступает на верх выносной реакционной камеры 3.

Печь глубокого крекинга

Газойлевые фракции со сборной тарелки верхней части колонны 5 направляются на печь 2 глубокого крекинга (легкого сырья) и далее на верх реакционной камеры 3.

Испарители высокого и низкого давления

Из реакционной камеры 3 продукты крекинга поступают через редукционный вентиль в испаритель высокого давления 4. После отделения 14 паров газойля с низа испарителя 4 крекинг-остаток поступает в испаритель низкого давления, в котором отделяются пары газойлевых фракций.

Тяжелую часть этих паров в испарителе 6 конденсируют и возвращают с его сборной тарелки в низ колонны 5 и далее в смеси с сырьем направляют на крекинг в печь 1. С низа колонны 6 через теплообменники 7 и холодильник 8 выводят крекинг-остаток. Легкую часть паров выводят с верха испарителя 6 через конденсатор 10 и газосепаратор низкого давления 9 как крекинговый газойль.

Пары из испарителя 4 направляют на разделение в колонну 5, с верха которой через конденсатор 11 выводят бензин и газ, которые поступают в газосепаратор высокого давления 12. В дальнейшем бензин поступает на стабилизацию, а газ на ГФУ.

Режим крекинга: выход печи тяжелого сырья–температура 470-490 °С, давление 2,2-2,7 МПа, для печи легкого сырья соответственно 530-540 °С и 2,2-2,8 МПа.

Суть крекингового процесса

Такими фракциями являются моторное топливо, нефтяные масла и многое другое. Кроме общеизвестного топлива и масел, этот процесс дает и другие продукты, необходимые для нефтехимической и химической промышленности.

Крекинг нефти – это несколько процессов, таких, как, например, полимеризация и конденсация, а также синтез, изомеризация, циклизация и так далее. В результате всех этих процессов, после получения более легких фракций, образуется крекинг-остаток, чья температура кипения – больше 350-ти градусов.

Сам крекинг-процесс в первых установках протекал таким образом. В котел заливали нефтепродукт (чаще всего – мазут) и начинали его нагревать. Когда температура достигала 130-ти градусов, из котла испарялась вода, которая проходила по трубе и охлаждалась. Затем она попадала в резервуар-сборник, из которого снова уходила вниз по трубе. Одновременно процесс в котле продолжался, из мазута начинали исчезать другие его компоненты – воздух и газы.

Как осуществляется газлифтная эксплуатация нефтяных скважин?


Как осуществляется газлифтная эксплуатация нефтяных скважин?

Эти компоненты проходили по тому же пути, что и вода. После удаления из мазута газов и воды, начинался следующий этап. Печь начинали топить еще сильнее, пока температура котла не доходила до 345-ти градусов. Начиналось испарение облегченных углеводородных фракций. Они, в отличие от водных паров, они даже в охладителе оставались в газообразном состоянии. Попадая в ёмкость для сбора, такие углеводороды, вместо сливной канавы, далее попадали в трубопровод, поскольку закрывался выпускной вентиль.

Они повторяли свой путь вновь и вновь, не имея путей выхода. Со временем их количество увеличивалось, что приводило к нарастанию в системе давления. Когда его показатель достигал пяти атмосфер – легкие фракции углеводородов прекращали испаряться из котла, и, сжимаясь, держали одинаковое давление во всех частях установки – в трубопроводе, котле, холодильнике и емкости для сбора. Одновременно с этим под действием высоких температур происходило тяжелых фракций, которые постепенно превращались в бензин.

Он начинал образовываться при 250-ти градусах, когда легкие фракции испарялись и конденсировались в охладителе, собираясь потом в сборной емкости. Затем полученный бензин через трубопровод сливали в заранее подготовленные резервуары с пониженным давлением, значение которого позволяло удалять газообразные компоненты. После удаления газов полученное топливо переливали в баки или бочки.

Чем больше испарялось легких фракций, тем больше возрастала упругость и термическая стойкость мазута, вследствие чего после того, как половина содержимого превращалась в бензин, работу останавливали. Количество вырабатываемого топлива определяли по счетчику, который ставился в установку. Печку гасили, перекрывали трубопровод, а вентиль, соединяющий его с компрессором, наоборот, открывали, и нефтяные пары уходили в компрессор, поскольку в нем давление было ниже. Параллельно перекрывали трубу, которая вела к полученному топливу, с целью обрыва его связи с установкой.


Далее ждали, пока котел остынет, и сливали с него остатки. Перед повторным использованием котел чистили от коксового налета, и весь процесс повторяли заново.

Какие продукты удается получить с использованием крекинга?

Если такая процедура проводится лишь путем нагревания исходного сырья, то в этом случае удается получить низкооктановые компоненты горючих типов топлива, газойли и газойлевые фракции, а также ароматические соединения нефтяного сырья. Кроме того, этот способ крекинга используют при производстве нефтяного кокса, дизельного горючего, пропилена и этилена.

Также крекинг нефти может проводиться с применением нагрева до высокой температуры и использованием катализаторов (химических веществ, способствующих повышению скорости протекания химической реакции) одновременно. В этом случае удается добиться повышения основных составляющих для производства высокооктанового бензина, углеводородного газа, различных типов газойлей, дизельного и реактивного топлива.

В процессе проведения расщепления нефти продукта таким способом можно получать нефтяные масла, а также сырье для риформинга (в первую очередь лигроиновые и бензиновые фракции нефти).

Этапы нефтепереработки и вклад Бартона

Справедливости ради стоит сказать, что крекинг алканов был известен ученым и до Бартона и Шухова. Однако при обычной перегонке его не применяли, поскольку расщепление в тех условиях было нежелательным. Поскольку в процессе в те времена применяли перегретый пар, происходило не расщепление нефти, а её испарение.

Начиная с шестидесятых годов девятнадцатого столетия и до начала двадцатого века переработка нефти давала только керосин, который использовался для освещения в темное время суток. Интересен тот факт, что в процессе получения керосина получаемые легкие углеводороды считали… отходами! Их сливали в канаву и утилизировали (либо – сжиганием, либо другим методом).

Как достигается автоматизация нефтедобычи?


Как достигается автоматизация нефтедобычи?

Установка Бартона ознаменовала новый этап нефтепереработки. Именно способ, открытый английским химиком, позволил увеличить выход бензина и прочих ароматических углеводородов в разы.

В самом начале двадцатого столетия бензин, по большому счету, был не нужен. Автомобильного транспорта было еще очень мало, и спроса на бензин в промышленном масштабе не было. Однако, время шло, автопарк постоянно рос и, разумеется, возрастала потребность в топливе. За первые двенадцать лет прошлого века такая потребность выросла в 115 раз.

Бензин, который получали простой перегонкой, вернее, его количество, не могли удовлетворить растущий спрос, вследствие сего решили применять крекинг. Темпы производства бензина сразу выросли, и проблема дефицита топлива была решена.

Со временем стало понятно, что крекинг нефтепродуктов возможен не только при использовании солярки или мазута. Исходным сырьём вполне могла быть сырая нефть. Кроме того, выяснилось, что полученный крекингом бензин обладает лучшим качеством по сравнению с прямогонным.

Автотранспорт на нем работал дольше и меньше ломался, поскольку в таком топливе сохранялись некоторые виды углеводородов, которые при обычной перегонке просто сгорали.




В чем заключаются преимущества применения кислорода?

Стоит отметить, что в наши дни одним из наиболее распространенных способов получения бензина является крекинг нефти. Этот метод применяется наравне с другой популярной технологией, предполагающей простую перегонку нефтепродукта. Многие производители горючего топлива для автомобильного транспорта и бензиновой техники отдают предпочтение именно методу крекинга, так как последний обладает более высокой эффективностью и позволяет получить готовый продукт повышенного качества.

Но для достижения желаемого результата в процессе расщепления нефтепродукта большое значение имеет и участие окислителя. Так, при создании определенных температурных условий окислитель способствует эффективному окислению нефти, а также ее деметилированию и дегидрированию. Оптимальным вариантом при выборе такого компонента считается технический кислород. Этот газ широко применяется в качестве окислителя при переработке нефтепродуктов.

Суть применения кислорода в процессе крекинга нефти заключается в том, что этот газ подается в специальную установку, в которой происходит расщепление исходного сырья. Это позволяет обогатить кислородом находящиеся в ней воздух и обеспечить регенерацию ключевого катализатора. В целом добавление кислорода обеспечивает:

  • повышение мощности установки для расщепления нефти без ущерба для производственного процесса;
  • увеличение скорости регенерации катализаторов крекинга;
  • получение фракции с оптимальной температурой кипения и образованием достаточного количества нефтяного кокса – материала, используемого при производстве электродов и аппаратуры, обладающей стойкостью к коррозии;
  • повышение качества конверсии;
  • снижение процента выработки побочных материалов и увеличение количества полезного сырья.

башни для каталитического крекинга нефти

Виды крекинга

Крекинг бывает каталитическим и термическим. Во втором случае он осуществляется с помощью простой термообработки нефтепродуктов, а в первом – кроме высокой температуры еще используются специальные вещества – катализаторы.

Каталитический крекинг

Этим способом получают бензин с высоким октановым числом. Специалисты считают, что именно такой процесс позволяет обеспечить большую глубину повышенное качество нефтепереработки.

Первые установки каталитического крекинга стали появляться в промышленности в 30-х годах двадцатого столетия, и сразу доказали несомненные преимущества такой переработки.

К ним относятся:

  • эксплуатационная гибкость;
  • относительная простота совмещения с другими процессами, такими как алкирование, гидроочистка, деасфальтизация и так далее;
  • высокая универсальность.

Сырьём при каталитическом крекинге является вакуумный газойль, температура кипения которого варьируется в пределах 350-ти – 500 градусов. Окончательная точка кипения может быть разной и зависит от концентрации в сырье металлов. Влияет на это значение и такой параметр, как коксуемость исходного продукта. Она не должна быть больше, чем 0,3 процента.

Перед таким процессом должна осуществляться гидроочистка сырья, для удаления из него нежелательных соединений серы и понижения показателя коксуемости.

Какова себестоимость добычи нефти в разных странах?


Какова себестоимость добычи нефти в разных странах?

Иногда в качестве исходного продукта используют тяжелые нефтяные фракции (например, мазут с коксуемостью шесть-восемь процентов), или остатки, полученные в процессе гидрокрекинга. Однако такое сырье требует предварительной подготовки. Используют и прямогонный мазут, но это все-таки – экзотика.

В качестве каталитического вещества до недавнего времени использовался аморфный катализатор в виде шариков диаметром от трех до пяти миллиметров. В настоящее время его заменили катализаторы размерами не более 60–80 микрометров, которые называются микросферические цеолитсодержащие катализаторы. Их основа – цеолитный элемент, расположенный на их алюмосиликата.





Что представляет собой процесс крекинга нефти?

Крекинг — это достаточно сложный технологический процесс, суть которого заключается в том, что сырая нефть перерабатывается в более легкие (на уровне молекул) виды нефтепродуктов. Происходит это при воздействии высокой температуры и специальных химических элементов, выступающих в качестве катализаторов. В результате удается получить разные виды топлива для двигателей, моторные масла, а также компоненты для последующего применения в сфере химической промышленности.

схема процесса крекинга нефти

Одной из особенностей крекинга является то, что такой процесс протекает с появлением карбанионов – анионов, содержащих четное число электронов со свободной электронной парой на четырехвалентном атоме углерода, а также свободных радикалов. Неотъемлемыми этапами крекинга являются процессы дегидрирования, полимеризации, изомеризации, а также конденсации как первоначального сырья, так и полученных с применением технологии нефтепродуктов.

Одним из распространенных методов переработки нефти является ее перегонка (физический метод).

Прямая перегонка нефти представляет собой процесс разделения ее на отдельные фракции, отличающиеся между собой в первую очередь температурой кипения.

перегонка нефти

Для этого нефть нагревают, а образующиеся пары отбирают и конденсируют по частям. В результате перегонки получают топливные дистилляты и остаток (мазут), который в дальнейшем может быть использован для химической переработки или получения смазочных масел.

Процесс прямой перегонки нефти проводят на установках непрерывного действия, позволяющих в едином технологическом процессе осуществить испарение и фракционирование дистиллятов.

Пары нефти поднимаются в верхнюю часть колонны, разделенной металлическими тарелками с отверстиями, прикрытыми колпачками. Поднимающаяся смесь паров нефти охлаждается и конденсируется на соответствующих тарелках.

Сверху колонны производится орошение; в качестве оросителя используется часть легкокипящей фракции. Из колонны выводятся пары бензина, которые сначала охлаждаются нефтью в теплообменнике, а затем водой в холодильнике. При охлаждении пары бензина конденсируются, превращаются в жидкий бензин, который частично идет в хранилище, а частично подается на орошение колонны. Выход бензина при перегонке нефти составляет от 3 до 15% от веса перерабатываемой нефти.

Остальные продукты переработки нефти – лигроин, керосин, соляровое масло – выводятся из колонны, охлаждаются в холодильниках и перекачиваются в хранилище. В остатке (снизу колонны) получают мазут, который далее используют для производства масляных дистиллятов по аналогичной схеме, только мазут нагревают до температуры +420…430 °С.

гудрон

После отгона из мазута масляных дистиллятов в остатке получают гудрон или полугудрон. Применяя глубокую обработку гудронов и полугудронов серной кислотой, получают высоковязкие остаточные смазочные масла (в основном авиационные).

Нефть – основное сырье для получения топлива и смазочных масел. Нефть - это природная жидкая смесь разнообразных углеводородов с небольшим количеством других органических соединений; ценное полезное ископаемое, залегающее часто вместе с газообразными углеводородами (попутные газы, природный газ)

Прямая перегонка. Прямая перегонка нефти представляет собой процесс разделения ее на отдельные фракции, отличающиеся между собой в первую очередь температурой кипения. Для этого нефть нагревают, а образующиеся пары отбирают и конденсируют по частям. В результате перегонки получают топливные дистилляты и остаток, называемый мазутом, который в дальнейшем может быть использован для химической переработки или получения смазочных масел. Процесс прямо перегонки нефти проводят на установках непрерывного действия, позволяющих в едином технологическом процессе осуществить испарение и фракционирование дистиллятов. Процесс разделения нефти на топливные дистилляты и затем мазута на масляные дистилляты происходит следующим образом. Подаваемая насосом 2 нефть под давлением около 1 МПа поступает в небольшую испаритель-ную колонну 3, откуда легкокипящая часть идет в ректификационную колонну 5, а основная масса поступает в трубчатую печь 4. Нефть, проходя по змеевику, плавно нагревается поточными газами, до температуры 330 … 350 °C, а затем частично испаряется. Смесь паров нефти и неиспарившейся ее части из змеевика трубчатой печи поступает в ректификационную колонну 5.

Пары нефти поднимаются в верхнюю часть колонны, которая разделена металлическими тарелка- ми с отверстиями 6, прикрытыми колпачками. Поднимающаяся вверх в колонне смесь паров нефти ох-лаждается и конденсируется на соответствующих тарелках. Сверху колонны подается орошение; в ка-честве оросителя используется часть легкокипящей фракции.

В результате первой перегонки получают топливные дистилляты при соответствующих темпера- турах нагрева: бензиновый – 40 … 200 °С; керосиновый – 140 … 300 °С; газойлевый – 250 … 350 °С. В остатке получают мазут, который далее используют для получения масляных дистиллятов по ана- логичной схеме, только мазут нагревают до температуры 420 … 430 °С.

После отгона из мазута масляных дистиллятов в остатке получают гудрон или полугудрон. При- меняя глубокую обработку гудронов и полугудронов серной кислотой получают высоковязкие оста- точные смазочные масла (в основном авиационные).

Кренинг-процесс. Основные виды.

Крекинг - процесс переработки нефти и ее фракций, основанный на разложении (расщеплении) молекул сложных углеводородов в условиях высоких температур и давлений. Процесс крекинга происходит с разрывом углеродных цепей и образованием более простых предельных и непредельных углеводородов. Образовавшиеся вещества могут разлагаться далее. Выделившийся в процессе крекинга этилен широко используется для производства полиэтилена и этилового спирта. Различают два основных вида крекинга - термический и каталитический. Термический крекинг - процесс, при котором расщепление молекул углеводородов протекает при сравнительно высокой температуре (470-550°С), протекающий медленно, в результате образуются углеводороды с неразветвленной цепью атомов углерода.

Основные движения при формообразовании поверхности резанием.

Для осуществления процессов резания необходимо наличие относительных движений между заготовкой и режущим инструментом. Движения рабочих органов станков подразделяют на движение резания, движения установочные и вспомогательные. Движения, при которых с обрабатываемой заготовки срезается слой металла и изменяется состояние обрабатываемой поверхности, называется движения резания К ним относятся главное движение и движение подачи. Движение, определяющее скорость отделения стружки, принимают за главное движение - скорость резания.Движение, обеспечивающее непрерывность врезания режущего лезвия инструмента в новые слои материала, принимают за движение подачи .Главное движение может быть непрерывным или прерывистым, а по своему характеру вращательным, поступательным, возвратно-поступательным и т.д. Движение подачи может быть непрерывным или прерывистым, а по характеру вращательным, поступательным и т.д. При обработке резанием главное движение имеет заготовка (точение) или инструмент (фрезерование); движение подачи имеет инструмент (точение) или заготовка (фрезерование). Движение рабочих органов станка, обеспечивающих определенное положение инструмента относительно заготовки; называется установочными движениями.

В настоящее время перегонку нефти в промышленности произ­водят на непрерывно действующих так называемых трубчатых установках (рис. 1), отвечающих требованиям современного про­изводства. Установка состоит из двух сооружений — трубчатой печи для нагрева нефти и ректификационной колонны для разде­ления нефти на отдельные продукты.

Трубчатая печь представляет собой помещение, выложенное внутри огнеупорным кирпичом. Внутри печи расположен много­кратно изогнутый стальной трубопровод. Печь обогревается горя­щим мазутом, подаваемым в неё при помощи форсунок. По трубо­проводу непрерывно, с помощью насоса, подаётся нефть. В нём она быстро нагревается до 300—325° и в виде смеси жидкости и пара поступает далее в ректификационную колонну.

Ректификационная колонна имеет внутри ряд горизонтальных перегородок с отверстиями — так называемых тарелок. Пары нефти, поступая в колонну, поднимаются вверх и проходят через отверстия в тарелках. Постепенно охлаждаясь, они сжижаются на тех или иных тарелках в зависимости от температур кипения. Углеводороды, менее летучие, сжижаются уже на первых тарелках, образуя соляровое масло; более летучие углеводороды собираются выше и образуют керосин; ещё выше собирается лигроин; наиболее летучие углеводороды выходят в виде паров из колонны и образуют бензин. Часть бензина подаётся в колонну в виде орошения для охлаждения и конденсации поднимающихся паров. Жидкая часть нефти, поступающей в колонну, стекает по тарелкам вниз, обра­зуя мазут. Чтобы облегчить испарение летучих углеводородов, задерживающихся в мазуте, снизу навстречу стекающему мазуту подают перегретый пар.

Рисунок 1. Схема трубчатой установки для непрерывной перегонки нефти.

Устройство тарелок .

Отверстия в тарелках, через которые проходят поднимающиеся кверху пары, имеют небольшие патрубки, покрытые сверху кол­пачками с зубчатыми краями. Через зазоры, образующиеся в месте соприкосновения колпачка с тарелкой, и проходят вверх пары углеводородов. Пробулькивая через жидкость на тарелке, пары охлаждаются, вследствие чего наименее летучие составные части их сжижаются, а более летучие увлекаются на следующие тарелки. Жидкость, находящаяся на тарелке, нагревается проходящими парами, вследствие чего летучие углеводороды из неё испаряются и поднимаются кверху. Избыток жидкости, собирающейся на та­релке, стекает по переточной трубке на нижерасположенную тарелку, где проходят аналогичные явления. Процессы испарения и конденсации, многократно повторяясь на ряде тарелок, приво­дят к разделению нефти на нужные продукты.

Классификация методов переработки нефти.

Термический крекинг

1. Термический крекинг жидкого нефтяного сырья под высоким давлением (от 20 до 70 ат).

2. Термический крекинг нефтяных остатков при низком давле­нии (коксование, деструктивная перегонка).

3. Пиролиз жидкого и газообразного нефтяного сырья.

Вся эта группа процессов характеризуется применением в зоне реакции высоких температур — примерно от 450 до 1200° С. Под действием высокой температуры нефтяное сырье разлагается (соб­ственно крекинг). Этот процесс сопровождается вторичными реак­циями уплотнения вновь образовавшихся углеводородных молекул.

Термический крекингпод высоким давлением применяют для переработки относительно легких видов сырья (от лигроина до мазу­та включительно) с целью получения автомобильного бензина. Процесс ведут при 470—540° С. При переработке нефтяных остат­ков — полугудронов и гудронов — целевым продуктом обычно является котельное топливо, получаемое в результате снижения вязкости исходного остатка. Такой процесс неглубокого разложения сырья носит название легкого крекинга, или висбрекинга. Вис-брекинг проводят под давлением около 20 ат.

Разновидность термического крекинга нефтяных остатков при низком давлении — так называемая деструктивная перегонка, направлена на получение максимального выхода соляровых фракций при минимальном количестве тяжелого жидкого остатка*.

Коксование и деструктивную перегонку проводят при давлении, близком к атмосферному, и температуре 450—550° С.

Пиролиз — наиболее жесткая форма термического крекинга. Сырье пиролиза весьма разнообразно. Температура процесса 670 — 800° С и выше, давление близко к атмосферному. Цель процесса — получение газообразных непредельных углеводородов, в основном этилена; в качестве побочных продуктов образуются ароматические углеводороды (бензол, толуол, нафталин).

Существуют и промежуточные формы термического крекинга, например парофазный крекинг, осуществляемый при низком давле­нии и температуре около 600° С. Парофазный крекинг предназначен для производства бензина; одновременно получаются и большие выходы газа, богатого непредельными углеводородами. В настоящее время промышленных установок парофазного крекинга не соору­жают.

Предложен также вариант процесса коксования остаточного сырья при жестком режиме (около 600° С) с целью повышенного газообразования и ароматизации жидких продуктов. Продукты крекинга могут быть использованы как сырье для нефтехимических синтезов.

Читайте также: