Измерения и построения в геодезии кратко

Обновлено: 05.07.2024

Измерением называется процесс сравнения некоторой физической величины с другой одноименной величиной, принятой за единицу меры.

Единица меры - значение физической величины, принятой для количественной оценки величины того же рода.

Результат измерений - это число, равное отношению измеряемой величины единицы меры.

Различают следующие виды геодезических измерений

1. Линейные, в результате, котоҏыҳ получают наклонные иррациональные расстояния между заданными точками. Для этой цели применяют ленты, рулетки, проволоки, оптические свето- и радиодальномеры.

2. Угловые, определяющие величины горизонтальных углов. Для выполнения таких измерений применяют теодолит, буссоли, эклиметры.

3. Высотные, в результате, котоҏыҳ получают разности высот отдельных точек. Для этой цели применяют нивелиры, теодолиты-тахеометры, барометры.

Различают два метода геодезических измерений: непосредственные и посредственные (косвенные).

Непосредственные - измерения, при котоҏыҳ определяемые величины получают в результате непосредственного сравнения с единицей измерения.

Косвенные - измерения, при котоҏыҳ определяемые величины получаются как функции других непосредственно измеренных величин.

Процесс измерения включает:

· Объект - свойства которого, например, размер характеризуют результат измерения.

· Техническое средство - получать результат в заданных единицах.

· Метод измерений - обусловлен теорией практических действий и приёмов технических средств.

· Исполнитель измерений - регистрирующее устройство

· Внешняя среда, в которой происходит процесс измерений.

Измерения различают равноточные и неравноточные. Равноточные - это результаты измерений однородных величин, выполняемые с помощью приборов одного класса, одним и тем же методом, одним исполнителем при одних и тех же условиях. Если хотя бы один из элементов, составляющий совокупность, меняется, то результат измерений неравноточный.

Лекция 6-7. Геодезические приборы

Измерение расстояний

Самая простая геодезическая задача — это измерение длины линии. Ленты и рулетки, длинномеры и геометрического типа дальномеры — это приборы, с помощью которых измеряют короткие линии со сравнительно невысокой точностью. А вот если речь идёт об измерениях высокоточных или базисных, а также о значительных расстояниях, понадобится уже дальномер — световой, электромагнитный, радиоволновый или лазерный. Особенно распространены такие приборы в космической и морской геодезии.

Измерение превышений

Для измерения высот и их разницы используются нивелиры и профилографы. Нивелиры используют вместе со специальными нивелирными рейками. Существуют оптические, цифровые и лазерные нивелиры. Причём последние нельзя путать с просто лазерными уровнями, которые отличаются не коструктивно, а по обеспечению точности.

Измерение углов

Измерение углов очень долго обеспечивалось с помощью довольно простых инструментов

-Тахеометр.


Понятное дело, измерять углы, длины и высоты разными приборами — не слишком удобно и довольно долго к тому же. Поэтому для тех случаев, когда нужно проводить несколько типов измерений, существуют приборы комбинированные, такие как тахеометр. Это наиболее современный электронно-оптический прибор, который позволяет измерять любые длины, разницы высот и горизонтальные углы.

В большинстве случаев этого прибора достаточно для фиксации всех необходимых измерений на объекте, при условии, что точность прибора соответствует виду работ. Именно

GPS приемников) составляет 0,5-2 сантиметра относительно ближайшего пункта Государственной Геодезической Сети (ГГС). В то время подобные приборы в большинстве своем Вы можете видеть на стройплощадках и вдоль дорог нашей страны.

-Нивелир


Во многих случаях нет необходимости в более громоздких и намного более дорогих и сложных в использовании тахеометрах. В строительстве зданий, дорог и других сооружений после планового определения местоположения объекта нужно лишь контролировать высоту, уровень и вертикальность поверхностей. С этими функциями легко справляется нивелир. Его основная задача — измерять превышения между объектами. Бывают нивелиры электронные, оптические, лазерные, с автоустановкой и проч. Во многих случаях нивелиры использовать удобнее и целесообразнее -например, при наблюдении за осадками зданий и сооружений используются высокоточные нивелиры с автоустановкой, нежели тахеометры- опять же из-за дороговизны последних. Больше информации об этом приборе можно узнать, пройдя по ссылке.




-GPS оборудование


GPS модули или приемники сопутствуют нам в повседневной жизни в наших телефонах, навигаторах, планшетах и т.д. Они призваны помочь нам сориентироваться на местности и не потеряться в городских джунглях. Однако они имеют мало общего с геодезическим GPS оборудованием.

Геодезистам эти приборы тоже нужны, чтобы сориентироваться на местности, однако точность определения положения тарелки (обычно такой формы придерживаются производители , как обычные навигаторы дают ошибку местоположения около 10-20 метров, что в работе геодезиста недопустимо.

-Штатив


Очень простой инструмент геодезиста. Многие сталкивались с ним при съемках фотографий или фильмов в хорошем

качестве. От фотоштативов геодезические отличаются в основном простотой конструкции и неприхотливостью в использовании. Основная задача геодезического штатива- неподвижно зафиксировать прибор, который на него ставится над определенной точкой/пунктом на земле. На штатив сначала ставится трегер- специальное устройство для центрования над точкой и горизонтирования прибора. Потом уже ставится прибор-тахеометр, нивелир и т.д. Различают деревянные, металлические и штативы из композитных материалов.

-Вешка


Тоже достаточно простой геодезический инструмент. Выглядит как круглая палка высотой около 1.8м. Однако многие вешки раздвигаются и могут иметь высоту до 6 метров. Наверху находится отражатель. Он может быть разной формы и конструкции. Главная его задача- отражать сигнал, посланный дальномером. Его особенностью является то, что луч/сигнал, приходящий с прибора-измерителя отражается точно обратно.

В конечном итоге-туда где находится геодезическая вешка происходит измерение.

-Лазерная рулетка


Появилась относительно недавно в геодезических бригадах, так как раньше была довольно дорога. Было проще измерять расстояния стальными рулетками длиной до 50м. Но приходилось это делать вдвоем, да и провис ленты мог доставить некоторую ошибку в измерения. Расстояния более 50 метров тоже являлись источниками ошибок. Сейчас лазерные рулетки используются повсеместно кадастровыми инженерами и геодезистами. Единственный существенный минус многих моделей без оптического визираплохая видимость лазерной точки на ярко освещенных поверхностях.

-Трубо-кабелеискатель


Прибор, сопутствующий инженерно-геодезическим изысканиям для нанесения подземных коммуникаций на план. Часто в комплект входит генератор, который устанавливается на коммуникацию в ее видимой части. Он генерирует вибрации, которые фиксирует приемник. После обнаружения поворотных точек коммуникации- их наносят на геоподоснову. Кабелеискатель также может измерить глубину залегания коммуникации с точностью до 0.05м.

Измерением называется процесс сравнения некоторой физической величины с другой одноименной величиной, принятой за единицу меры.

Единица меры - значение физической величины, принятой для количественной оценки величины того же рода.

Результат измерений - это число, равное отношению измеряемой величины единицы меры.

Различают следующие виды геодезических измерений

1. Линейные, в результате, котоҏыҳ получают наклонные иррациональные расстояния между заданными точками. Для этой цели применяют ленты, рулетки, проволоки, оптические свето- и радиодальномеры.

2. Угловые, определяющие величины горизонтальных углов. Для выполнения таких измерений применяют теодолит, буссоли, эклиметры.

3. Высотные, в результате, котоҏыҳ получают разности высот отдельных точек. Для этой цели применяют нивелиры, теодолиты-тахеометры, барометры.

Различают два метода геодезических измерений: непосредственные и посредственные (косвенные).

Непосредственные - измерения, при котоҏыҳ определяемые величины получают в результате непосредственного сравнения с единицей измерения.

Косвенные - измерения, при котоҏыҳ определяемые величины получаются как функции других непосредственно измеренных величин.

Процесс измерения включает:

· Объект - свойства которого, например, размер характеризуют результат измерения.

· Техническое средство - получать результат в заданных единицах.

· Метод измерений - обусловлен теорией практических действий и приёмов технических средств.

· Исполнитель измерений - регистрирующее устройство

· Внешняя среда, в которой происходит процесс измерений.

Измерения различают равноточные и неравноточные. Равноточные - это результаты измерений однородных величин, выполняемые с помощью приборов одного класса, одним и тем же методом, одним исполнителем при одних и тех же условиях. Если хотя бы один из элементов, составляющий совокупность, меняется, то результат измерений неравноточный.

Лекция 6-7. Геодезические приборы

Измерение расстояний

Самая простая геодезическая задача — это измерение длины линии. Ленты и рулетки, длинномеры и геометрического типа дальномеры — это приборы, с помощью которых измеряют короткие линии со сравнительно невысокой точностью. А вот если речь идёт об измерениях высокоточных или базисных, а также о значительных расстояниях, понадобится уже дальномер — световой, электромагнитный, радиоволновый или лазерный. Особенно распространены такие приборы в космической и морской геодезии.

Измерение превышений

Для измерения высот и их разницы используются нивелиры и профилографы. Нивелиры используют вместе со специальными нивелирными рейками. Существуют оптические, цифровые и лазерные нивелиры. Причём последние нельзя путать с просто лазерными уровнями, которые отличаются не коструктивно, а по обеспечению точности.

Измерение углов

Измерение углов очень долго обеспечивалось с помощью довольно простых инструментов

-Тахеометр.


Понятное дело, измерять углы, длины и высоты разными приборами — не слишком удобно и довольно долго к тому же. Поэтому для тех случаев, когда нужно проводить несколько типов измерений, существуют приборы комбинированные, такие как тахеометр. Это наиболее современный электронно-оптический прибор, который позволяет измерять любые длины, разницы высот и горизонтальные углы.

В большинстве случаев этого прибора достаточно для фиксации всех необходимых измерений на объекте, при условии, что точность прибора соответствует виду работ. Именно

GPS приемников) составляет 0,5-2 сантиметра относительно ближайшего пункта Государственной Геодезической Сети (ГГС). В то время подобные приборы в большинстве своем Вы можете видеть на стройплощадках и вдоль дорог нашей страны.

-Нивелир


Во многих случаях нет необходимости в более громоздких и намного более дорогих и сложных в использовании тахеометрах. В строительстве зданий, дорог и других сооружений после планового определения местоположения объекта нужно лишь контролировать высоту, уровень и вертикальность поверхностей. С этими функциями легко справляется нивелир. Его основная задача — измерять превышения между объектами. Бывают нивелиры электронные, оптические, лазерные, с автоустановкой и проч. Во многих случаях нивелиры использовать удобнее и целесообразнее -например, при наблюдении за осадками зданий и сооружений используются высокоточные нивелиры с автоустановкой, нежели тахеометры- опять же из-за дороговизны последних. Больше информации об этом приборе можно узнать, пройдя по ссылке.

-GPS оборудование


GPS модули или приемники сопутствуют нам в повседневной жизни в наших телефонах, навигаторах, планшетах и т.д. Они призваны помочь нам сориентироваться на местности и не потеряться в городских джунглях. Однако они имеют мало общего с геодезическим GPS оборудованием.

Геодезистам эти приборы тоже нужны, чтобы сориентироваться на местности, однако точность определения положения тарелки (обычно такой формы придерживаются производители , как обычные навигаторы дают ошибку местоположения около 10-20 метров, что в работе геодезиста недопустимо.

-Штатив


Очень простой инструмент геодезиста. Многие сталкивались с ним при съемках фотографий или фильмов в хорошем

качестве. От фотоштативов геодезические отличаются в основном простотой конструкции и неприхотливостью в использовании. Основная задача геодезического штатива- неподвижно зафиксировать прибор, который на него ставится над определенной точкой/пунктом на земле. На штатив сначала ставится трегер- специальное устройство для центрования над точкой и горизонтирования прибора. Потом уже ставится прибор-тахеометр, нивелир и т.д. Различают деревянные, металлические и штативы из композитных материалов.

-Вешка


Тоже достаточно простой геодезический инструмент. Выглядит как круглая палка высотой около 1.8м. Однако многие вешки раздвигаются и могут иметь высоту до 6 метров. Наверху находится отражатель. Он может быть разной формы и конструкции. Главная его задача- отражать сигнал, посланный дальномером. Его особенностью является то, что луч/сигнал, приходящий с прибора-измерителя отражается точно обратно.

В конечном итоге-туда где находится геодезическая вешка происходит измерение.

-Лазерная рулетка


Появилась относительно недавно в геодезических бригадах, так как раньше была довольно дорога. Было проще измерять расстояния стальными рулетками длиной до 50м. Но приходилось это делать вдвоем, да и провис ленты мог доставить некоторую ошибку в измерения. Расстояния более 50 метров тоже являлись источниками ошибок. Сейчас лазерные рулетки используются повсеместно кадастровыми инженерами и геодезистами. Единственный существенный минус многих моделей без оптического визираплохая видимость лазерной точки на ярко освещенных поверхностях.

-Трубо-кабелеискатель


Прибор, сопутствующий инженерно-геодезическим изысканиям для нанесения подземных коммуникаций на план. Часто в комплект входит генератор, который устанавливается на коммуникацию в ее видимой части. Он генерирует вибрации, которые фиксирует приемник. После обнаружения поворотных точек коммуникации- их наносят на геоподоснову. Кабелеискатель также может измерить глубину залегания коммуникации с точностью до 0.05м.

Под измерениями понимают процесс сравнения какой-либо ве­личины с другой однородной величиной, принимаемой за единицу. При всем многообразии геодезических измерений все они сводятся в основном к.трем видам:

линейные, в результате которых на местности определяются рас­стояния между заданными точками;

угловые, когда определяются значения горизонтальных и верти­кальных углов между направлениями на заданные точки;

высотные (нивелирование), в результате которых определяются разности высот отдельных точек.

За единицу линейных и высотных измерений (расстояний, высот и превыше­ний) в геодезии принят метр, представляющий длину жезла — эталона, изготов­ленного из платино-иридиевого сплава в 1889 г., и хранящийся в Международ­ном бюро мер и весов в Париже. Копия № 28 этого жезла хранится во Всесоюз­ном научно-исследовательском институте метрологии им. Д. И. Менделеева в Ленинграде. В качестве эталона более высокой точности сейчас принят метр, определенный как 1650763,73 длины волны отраженной линии излучения изотопа криптона 86.

Единицей для измерения углов (горизонтальных и вертикальных) служит градус, представляющий '/эо прямого угла или '/зео окружности. Градус содер­жит 60 угл. мин, минута делится на 60 угл. с. В некоторых странах, например в ГДР, применяется и градовая система, в которой 1 град составляет 1/400 окружности, градовая минута — 4 /юо града, а градовая секунда — '/то градовой минуты.

Измерения называют прямыми, если их выполняют с помощью приборов, позволяющих непосредственно сравнить измеряемую ве-

личину с величиной, принятой за единицу, и косвенными, когда ис­комую величину получают путем вычислений на основе результатов прямых измерений. Так, угол в треугольнике можно непосредствен­но измерить угломерным прибором (прямое измерение) или вычис­лить по результатам измерения трех сторон треугольника (косвен­ное измерение).










Рис. 6. Схемы е) к способам определения положения точ­ки в плане

Необходимые условия любого измерения: объект измерения; субъект измерения — лицо, производящее измерение; мерный прибор, которым выполняют измерения; метод измерения — совокупность правил и действий, определяющих процесс измерения; внешняя среда, в которой протекают измерения.

Обозначенные на местности точки, от которых выполняются гео­дезические измерения, называются исходными. Точки, положение которых на местности необходимо определить, называются опре­деляемыми.

Исходные и определяемые точки могут располагаться в горизон­тальной плоскости, в плане (плановые точки) и в вертикальной, по высоте (высотные точки).

Рассмотрим основные геодезические построения, применяемые для определения положения точки в плане.

Требуется определить положения точки С относительно обозна­ченных на местности исходных точек А и В.

Первый способ (рис. 6, а). Положение точки С можно определить, если опустить из этой точки перпендикуляр на прямую АВ, а затем измерить расстояние / от точки А до основания перпендикуляра и длину перпендикуля­ра Л. Отрезки / и и будут координатами точки С. Такое построение называют способом перпендикуляров.

Если прямую АВ принять за ось абсцисс прямоугольной системы координат, то перпендикуляр и будет ординатой определяемой точки, а расстояние / — ее абсциссой. Поэтому способ называют также способом, ординат.

Второй способ (рис. 6, б). Положение точки С определяется, если измерить из точки А угол а и длину АС—г. Такой способ называется способом.

полярных координат: полярные координаты точки С—а и г; угол а — полярный, точка А — полюс, прямая АВ — полярная ось, отрезок г — радиус-вектор.

Третий способ (рис. 6, в). Для определения положения точки С отно­сительно прямой АВ достаточно измерить углы а и (3 из точек А к В. Этот спо­соб называется прямой угловой засечкой (прямая АВ — базис засечки).

Четвертый способ (рис. 6, г). Положение точки С определится, если измерить угол а из точки А и угол •у из определяемой точки С (способ боковой засечки).

Пятый способ (рис. 6, д). Для определения положения точки С можно измерить длину линий АВ=Ь и ВС=а (способ линейной засечки).

Шестой способ (рис. 6, е). Точка С находится на линии АВ (в ство­ре АВ) и на расстоянии / от точки А (способ створной засечки).




Рис. 7. Схема к способу опре­деления положения точки по высоте

Эти построения выполняют, если расстояния между точками сравнительно невелики и есть непосредственная видимость между исходными и определяемыми точками. Когда расстояния между исходными точками значительны или требуется найти положение нескольких точек, пользуются более сложными построениями.

Положение определяемой точки С по высоте (рис. 7) нахо­дят, измерив ее превышение Н над исходной точкой А или угол на­клона v линии АС к горизонту и горизонтальное проложение Л (проекцию линии Л С на горизонтальную плоскость).

Получения результатов значений физических величин, путем выполнения непосредственных действий при помощи специальных геодезических приборов и технологий принято называть - геодезические измерения.

В геодезии, в каком бы направлении не работали специалисты, в большинстве случаев окончательной целью работы считается определение координат точек, других параметров измерений в математической форме, их отображение в графических материалах и определения фактического положения относительно исходных данных. Для этого необходимо проводить прямые и косвенные измерения. То есть, если значение величины можно получить с помощью приборов непосредственным контактом при измерении, это считается прямыми измерениями. При невозможности получить требуемую величину непосредственным путем их определяют через функциональную зависимость такой величины и инструментально измеряемой. Такие измерения считаются косвенными.

Геодезические измерения – виды и области

Классифицировать геодезические измерения можно также по области применения, признакам измерения и назначению измеряемых величин. В результате чего следует выделить целый список:

  • угловые;
  • линейные;
  • высотные;
  • координатные; ;
  • астрономо-геодезические;
  • геодинамические;
  • базисные;
  • гироскопические;
  • створные.

Угловые геодезические измерения сводятся к измерениям горизонтальных углов между точками наблюдений и вертикальных углов, которые необходимы для вычислений значений таких величин как горизонтальные проложения (длина линии на горизонтальной плоскости).

Линейные геодезические измерения представляют собой непосредственные определения расстояний между теми же точками наблюдений, которые участвовали при угловых измерениях, возможны измерения только длин сторон между точками съемки.

Высотные измерения выполняются с целью определения разности высот между точками и получения их высотных координат (абсолютных отметок).

Координатные измерения используются с помощью технологий, позволяющих определять положение точек наблюдений в исходной системе отсчета (координат). К таким геодезическим измерениям относятся тахеометрическая съемка, спутниковые наблюдения, определение координат точки стояния, с использованием опций предусмотренных в современных электронных тахеометрах по решению обратной геодезической засечки непосредственно в полевых условиях.

Астрономо-геодезические измерения позволяют определять геодезические координаты пунктов.

Геодинамические измерения заключаются в определение положения геодезических пунктов относительно исходных точек с учетом временного фактора.

Базисные измерения сводятся к определению длины опорной базисной стороны с помощью специального мерного базисного прибора.

Гироскопические измерения имеют своей целью определение дирекционных углов сторон, с помощью предназначенных для этого специальных приборов гироскопов. Применяется такой способ измерений, например, для повышения точности измерений в подземной опорной маркшейдерской сети методом вставки стороны полигонометрического хода с дополнительным высокоточным измеренным дирекционным углом.

Створные измерения связаны с определением отклонений местоположения точек от прямой (створной) линии. Использоваться такой способ можно, например, для определения фактического положения линии очистного забоя при маркшейдерском обслуживании в угольных шахтах.

Составляющие факторы геодезических измерений

Геодезический процесс измерений возможен при наличии нескольких факторов, а именно:

  • объекта съемки, имеется в виду, что именно измеряется,
  • субъекта измерений, то есть - кто производит измерения, его квалификация и навыки,
  • средств измерений, а именно геодезических приборов и инструментов,
  • методов съемок, имеется в виду набора правил и приемов с использованием средств измерений,
  • соответствующих условий окружающей внешней среды в момент исполнения съемки.

Характеристики и дальнейшая классификация измерений

В рамках геодезических измерений следует отметить, что любое из них выражается:

  • количественной характеристикой, в виде собственно измеренных величин горизонтального угла, длины, высоты или других параметров,
  • и качественной характеристикой, которая дает оценку точности полученных результатов

Геодезические измерения, выполненные специалистами одинаковой квалификации (в идеале одним и тем же физическим лицом), приборами одной и той же точности, с применением такого же метода исполнения, в тех же условиях окружающей среды (сезон, время суток, температура, давление и некоторых других) называют равноточными. Если хотя бы одно из перечисленных условий не соблюдено, то измерения считаются неравноточными.

Многие измерения производят геодезическими приборами, которые конструктивно предназначены выполнять измерения с задекларированными техническими характеристиками. Отсюда следует, что их можно классифицировать, как собственно и сами средства измерений по следующей шкале:

  • технической точности;
  • точные;
  • высокоточные.

Интересно отметить, что для получения результата какого-либо измерения требуется померить его всего один раз. То есть это считается необходимым измерением. В геодезической и маркшейдерской практике, согласно разным методам выполнения измерений, для исключения грубых погрешностей и соблюдения требуемой точности работ предусматривают разное количество измерений. Так длины сторон полигонометрического хода меряют рулетками по два раза со смещениями по шкале рулетки. Горизонтальные и вертикальные углы также измеряются двумя повторениями. При измерении расстояний электронными тахеометрами можно выставить опцию однократного или многократного измерений. Выполняя измерения превышений нивелиром между точками, в определенных случаях меряют его два раза с изменением горизонта инструмента. Все эти измерения считаются достаточными или избыточными. Таким образом, заключительная классификация геодезических измерений включает в себя:

Геодезия и маркшейдерия относятся к таким областям техники, где измерения являются необходимым элементом производственной деятельности. И не только необходимым, но таким массовым в своем исполнении, что и вообразить себе невозможно. Достаточно сказать, например, что для съёмки местности площадью всего в 1 га в масштабе 1:500 (для сравнительно средней сложности местности) понадобится около 200 точек, для каждой из которых определяются три координаты: две плановые (х, у) и высота (Н).

Измерения в геодезии являются количественной и качественной основой для изучения Земли, отдельных ее фрагментов, для получения исходной информации при решении всех инженерно-геодезических задач и выполнения топографических работ. Любое измерение выражается количественной характеристикой (величиной угла, длиной линии, превышением, площадью участка местности и т.п.) и имеет качественную сторону, которая характеризует точность полученного результата.

Величины, которые получают в процессе производства геодезических работ, можно классифицировать на измеренные и вычисленные. В первом случае величину получают обычно непосредственно, путем сравнения её с единицей средства измерения, или косвенно, как функцию двух или нескольких непосредственно измеренных величин. Например, площадь прямоугольника может быть получена как произведение его сторон, измеренных непосредственно.

Результаты геодезических измерений

Под результатом геодезического измерения подразумевается конечный результат, который получается в процессе всех произведённых измерений и вычислений. Например, конечным результатом может быть высота точки, её плановые координаты, площадь участка и т.п.

Равноточные и неравноточные измерения

Результаты геодезических измерений в своей группе могут быть равноточными и неравноточными.

Если измерения выполнены прибором одного и того же класса точности, по одной и той же методике (программе), в одинаковых внешних условиях, одним и тем же наблюдателем (либо наблюдателями одной квалификации), то такие измерения относят к равноточным. При несоблюдении хотя бы одного из перечисленных выше условий результаты измерений классифицируют как неравноточные.

Примером равноточных измерений могут являться результаты измерений длины одной и той же линии либо линий, примерно равных друг другу, полученные при неизменных условиях внешней среды, одним и тем же измерительным средством (прибором), одними и теми же исполнителями работ, по общей для всех результатов измерений программе.

Если в процессе измерений длины линии, например, светодальномером, изменится температура окружающего воздуха, влажность, давление, то это может привести к получению части неравноточных результатов в общей группе результатов измерений, поскольку при изменении внешних условий может произойти и изменение характеристик измерительного прибора, характеристик прохождения светового луча в атмосфере.

Необходимые и избыточные числа измеренных величин и измерений

Число измеренных величин и число измерений может быть необходимым и избыточным.

При измерении, например, углов в треугольнике число необходимых измеренных величин равно двум, в семиугольнике – шести. Значение третьего (седьмого) угла можно вычислить по сумме двух (шести) измеренных углов. Если необходимо решить плоский треугольник, то дополнительно к измеренным двум углам обязательным является знание длины хотя бы одной из его сторон, в связи с чем число необходимых измеренных величин должно быть равно трём (одно измерение – линейное, два – угловые). Та же задача решается и при выполнении двух линейных измерений и одного угла, заключённого между измеренными сторонами треугольника.

Таким образом, числом необходимых измеренных величин является минимально необходимое их число, при котором обеспечивается решение поставленной задачи. Число же измеренных величин, превышающих число необходимых, называется числом избыточных величин. В геодезии, в маркшейдерии принято, но и не только принято, а является обязательным, получать и избыточные величины, что обеспечивает обнаружение грубых погрешностей и промахов, позволяет повысить точность результатов измерений. Поэтому в треугольнике, например, обязательно измеряют все три угла и сравнивают полученную сумму углов с теоретической.

Если сформулировать задачу с точки обеспечения заданной точности измерений, то необходимое число измерений должно обеспечивать заданную точность измерения одной величины или самого результата измерений. Так, в том же треугольнике, каждый из его углов может быть измерен несколько раз. Все избыточные измерения повышают надёжность результатов, а также их точность, но в то же время и увеличивают объём работ, и часто прирост увеличения точности становится экономически нецелесообразным из-за большого числа измерений. Иногда говорят, что числом необходимых измерений, например, горизонтального угла, является одно измерение, остальные – избыточные. Это не всегда так, поскольку, одно измерение не позволяет производить оценку точности и может содержать неконтролируемую грубую погрешность (промах).

Виды геодезических измерений

При геодезических работах основной объём информации получают с помощью геодезических измерений, которые классифици­руются следующим образом:

  • по назначению;
  • по точности;
  • по объёму;
  • по характеру получаемой информации;
  • по инструментальной природе получаемой информации;
  • по взаимозависимости результатов измерений.

Классификация по назначению

По своему назначению геодезические измерения бывают:

  • угловые;
  • линейные;
  • нивелирные (измеряются высоты или превышения);
  • координатные (измеряются координаты или их приращения);
  • гравиметрические (измеряют ускорения силы тяжести).

В связи с этим сформировались следующие технологические процессы топографо-геодезических работ:

  • топографическая съёмка
  • разбивочные работы
  • определение деформаций зданий, сооружений, земной коры
  • триангуляция
  • трилатерация
  • полигонометрия
  • спутниковые измерения
  • астрономические определения
  • гравиметрические работы
  • створные измерения

В зависимости от типов используемых средств геодезические измерения делят на три группы:

  • высокоточные
  • точные (средней точности)
  • технические (малой точности)

Процесс измерения в геодезии осуществляется при наличии пяти составляющих (факторов):

  1. объект — что измеряется
  2. субъект — кто измеряет
  3. средство — чем измеряется
  4. метод — как измеряется
  5. внешняя среда — в каких условиях и где измеряется.

Конкретное содержание и состояние факторов геодезического измерения определяются условиями, которые могут быть классифицированы по следующим признакам:

По физическому исполнению:

  • прямые измерения, в которых значение измеряемой величины получают непосредственным сравнением с однородной физической величиной (эталоном). Примером прямого измерения служит измерение длины линии рулеткой или мерной лентой;
  • косвенные измерения, в которых значение определяемой величины получают из вычислений, в которых в качестве исходных используют результаты измерений величин, связанных с определяемой. Например: измерение длины линии светодальномером. В этом случае измеряется непосредственно время прохождения светового сигнала от дальномера до отражателя и обратно, а затем вычисляется длина линии.

По роду:

  • однородные (измерения однородных физических величин)
  • разнородные (все прочие по отношению к однородным)

По количеству:

  • необходимые измерения дают только по одному значению каждой измеряемой величины
  • дополнительные или избыточные измерения производятся для получения нескольких значений измеряемой величины в целях контроля, исключения грубых погрешностей или повышения качества результатов измерений

По точности:

  • равноточные, которые выполняются в одинаковых условиях, т. е. объекты одного и того же рода измеряют исполнители одинаковой квалификации, приборами одного класса, по единой методике, в достаточно схожих по характеру условиях внешней среды
  • неравноточными считаются измерения, выполняемые в случаях, когда по крайней мере одна из составляющих процесса измерения существенно отличается от аналогичной составляющей других измерений

По физической природе носителей информации:

По взаимозависимоcти:

  • независимые
  • зависимые
  • коррелированные

Читайте также: