История открытия стали кратко

Обновлено: 02.07.2024

Древнейшие изделия из металлов были найдены на месте поселений, существовавших около восьми тысяч лет назад! Сначала человек просто нашел некоторые металлы, которые встречаются в природе в естественном, или самородном состоянии, - золото, серебро, медь. Они загадочно блестели, радовали глаз, и потому их использовали для изготовления украшений. Однако вскоре самородную медь человек применять и как материал для различных орудий: рыболовных крючков, наконечников стрел и копий.

А как же человек начал добывать металл из камня? Как впервые возникла добыча руды? О, это случилось не сразу, и не без помощи божественных сил, которые в данном случае представлял огонь. Древние божества защищали людей, но и сами нуждались в защите. Чтобы огонь не погас, его обставляли камнями, а среди этих камней попадались и куски медной руды. Под воздействием магических сил огня руда расплавлялась и превращалась в медь. Долго не замечал этих волшебных превращений древний человек, но наконец заметил и стал специально загружать медную руду в костер, чтобы получить металл. Медь, выплавленная из руды, оказалась более крепкой, чем самородная, правда, все еще уступала по крепости камню – слишком она была мягкая. Гораздо прочнее оказался сплав меди с оловом – бронза. Орудия из бронзы постепенно вытеснили аналогичные медные.

Долгое время железо ценилось наравне с золотом, потому что его было так же мало. Но в конце концов человек открыл относительно дешевое производство железа – выплавку его из руды в металлургических печах. На земле наступил железный век, который продолжается до сих пор.

А теперь обратимся к другой тайне: когда человек узнал, почему получаются металлы. Да, человек сначала узнал, как получаются металлы, но еще долго после этого не мог понять, почему. Человек не мог понять всех трансформаций железа: иногда оно получалось твердым, но хрупким, а иногда, напротив, слишком мягким, но орудия из него гнутся, сплющиваются и быстро тупятся. Таким образом, история добычи руды – это история различных опытов, которые проводились с металлами и продолжались до последней четверти XIX века. Именно тогда русский ученый П.П. Аносов научно обосновал производство стали. Ему на это потребовалось 10 лет.

А как получали сталь тогда, когда не было всего этого арсенала умных машин? На Востоке, как, впрочем, и в Египте, и на Британских островах, и в Древней Элладе, и в Древней Руси , выплавляли сталь из тщательно подготовленной железной руды в небольших сосудах из глины (тиглях). Железную руду предварительно дробили на мелкие кусочки, потом обжигали эти кусочки на костре. В процессе выгорали сера, фосфор и другие вещества, которые, встречаясь в руде, ухудшают свойства металла. Древние мастера об существовании всех этих веществ и их воздействии на металл, конечно, не догадывались, просто, на основании опыта они знали, что из измельченной и обожженной руды получается сталь лучше.

После завершения обжига руду засыпали в тигель, причем, засыпали послойно с порошком из древесного угля; слоев, как правило, делали 10-12 (слой угля - слой руды – слой угля). Уголь в том случае играл роль теплового носителя, так как он горел и расплавлял руду. Для того чтобы горение было более интенсивным, в основании тигля существовало отверстие, куда нагнетали воздух посредством больших кожаных мехов. Таким образом в тигле создавалась высочайшая температура, под воздействием которой расплавлялась руда, а углерод, который и составляет уголь, изымал из руды кислород, и она превращалась в железо. Металл-СК и этим занимается.

В дальнейшем глиняные тигли сменились небольшими печами-домницами, которые давали уже больше металла. Однако на Востоке хранили очень долго верность именно тому способу создания стали, который нуждался в использовании тигля. Может быть, потому для восточного мастера получение железа – еще не конечный результат. Конечным результатом была булатная сталь, известная и почитаемая во всем мире, ибо никакая другая не могла сравниться с ней в твердости и вместе с тем гибкости. Секрет изготовления булатной стали передавался от отца к сыну и доподлинно не сохранился. Но известно, что после получения железа мастер доставал из укромных уголков чудодейственные растения (древние мастера были уверены, что соки растений, обладая прочностью, гибкостью, вязкостью, передают эти свойства металлу) и бросал из в отверстие тигля, но главное – в той пропорции, которая была известна только ему. И вот, растения сгорали, действительно передавая свою волшебные свойства железу, превращая его в сталь. Наверняка удалось установить, что вместе с корешками и листьями мастера добавляли в металл графитовый порошок, конечно, только в определенных пропорциях. И не знали мудрые мастера, что именно графит, который они считали материалом скорее вспомогательным, превращал железо в сталь. Дело в том, что графит – это чистый углерод, играющий одну из основных ролей в производстве металла. Первое важнейшее правило металлургии – только тот сплав считается сталью, в котором количество углеродов не превышает двух процентов. Второе важнейшее правило - чем больше углерода, тем сталь более крепка, но менее пластична, и наоборот.

Вот так, вплоть до середины прошлого столетия, путем подбора точного количества углерода и решалась сложнейшая задача совмещения в металле двух противоположностей – крепости и пластичности. Итак, решающая польза графита доказана. А как же быть с цветочками, корешочками? Их-то польза в чем? В том, что они содержат огромное количество разных неорганических веществ: железо, молибден, ванадий. Вот эти вещества по-разному и влияли на сталь, придавая ей особые уникальные свойства. Говоря о древнем производстве стали, нельзя не коснуться такого важного момента, как ее закалка. Это самый таинственный, самый волнующий момент изготовления особого рода стали. Закалка была изобретена в Древнем Египте, где мастера, желая быстро охладить откованное изделие, погружали его в очень холодную воду, и в результате отметили, что после этой процедуры металл становится много крепче.

Ошибочно полагали древние люди, что закалка напрямую зависит от качеств жидкости, в которые погружали раскаленный металл. Но эта ошибочность породила множество фантастических, изощереннейших экспериментов. Так, в Багдаде охлаждали металл, вонзая его в мускулистое тело раба, который должен был передать свою силу оружию. В Средневековье был известен рецепт закалки стали, главным ингредиентом в котором была моча рыжего мальчика. Скажите, темные суеверия? И будете правы. Просто, клинки действительно лучше закаляются в крови или моче, чем в простой колодезной воде, ибо этот процесс в идеале должен проходить медленно, что и получается в растворах солей. Или если клинок охлаждается на ветру, как закаляли сталь в древнем Дамаске.

BTS - До Того Как Стали Известны! (История создания группы и биография участников) (Март 2022).

Краткая история стали 2022

Как сталелитейное производство эволюционировало от своих корней в производстве железа? Давайте посмотрим на историю стали.

Эра железа

При очень высоких температурах железо начинает поглощать углерод, что снижает температуру плавления металла, что приводит к получению чугуна (от 2 до 5% углерода). Развитие доменных печей, впервые использованных китайцами в VI веке до нашей эры, но более широко используемых в Европе в средние века, увеличило производство чугуна.

Свиной чугун

Расплавленное железо, которое вышло из доменных печей и охладилось в основном канале и прилегающих формах, стало упоминаться как чугун, потому что крупные, центральные и прилегающие меньшие слитки напоминали свиноматок и поросенок.

Чугун

Чугун сильный, но из-за его содержания углерода он обладает хрупкостью, что делает его менее идеальным для работы и формирования. Поскольку металлургам стало известно, что высокое содержание углерода в железе занимает центральное место в проблеме хрупкости, они экспериментировали с новыми методами снижения содержания углерода, чтобы сделать железо более работоспособным.

Кованое железо

К концу 18 века производители чугуна научились превращать чугун в низкоуглеродистый кованый железо с использованием пудлинговых печей (разработанный Генри Кортом в 1784 году). Печи нагревали расплавленное железо, которое должно было перемешиваться пучками с использованием длинного инструмента в форме весла, позволяя кислороду объединять и медленно удалять углерод.

С уменьшением содержания углерода температура плавления железа увеличивается, поэтому массы железа будут агломерироваться в печи. Эти массы будут удалены и обработаны кузнечным молотом пудлером перед тем, как их перевернуть в листы или рельсы. К 1860 году в Великобритании было более 3000 пеллетных печей, но этот процесс по-прежнему затруднялся его интенсивностью труда и топливом.

Блистерная сталь

Одна из самых ранних форм стали, блистерная сталь, начала производство в Германии и Англии в 17 веке и была произведена путем увеличения содержания углерода в расплавленном чугуне с использованием процесса известный как цементация. В этом процессе стержни из кованого железа наносились порошкообразным древесным углем в каменных коробках и нагревались.

Примерно через неделю железо поглотит углерод в древесном угле. Повторный нагрев будет распределять углерод более равномерно, и результат после охлаждения будет блистерной. Более высокое содержание углерода делало блистерную сталь намного более работоспособной, чем чугун, позволяя ее прессовать или прокатывать.

Производство блистерной стали продвигалось в 1740-х годах, когда английский часовой генерал Бенджамин Хантсман, пытаясь развить высококачественную сталь для своих часовых пружин, обнаружил, что металл может быть расплавлен в глиняных тиглях и очищен специальным флюсом для удаления шлака, процесс цементации остался позади.Результатом стал тигель или литьевая сталь. Но из-за стоимости производства как блистерная, так и литая сталь использовалась только в специальных приложениях.

В результате чугун, сделанный в лужковых печах, оставался основным структурным металлом в индустриализации Британии в течение большей части XIX века.

Бессемерский процесс и современное сталелитейное производство

Рост железных дорог в XIX веке как в Европе, так и в Америке оказал сильное давление на железную промышленность, которая все еще боролась с неэффективными производственными процессами. Сталь по-прежнему была недоказана как структурный металл, а производство было медленным и дорогостоящим. Это было до 1856 года, когда Генри Бессемер придумал более эффективный способ введения кислорода в жидкое железо для снижения содержания углерода.

Процесс был быстрым и недорогим, удаляя углерод и кремний из железа за считанные минуты, но он был слишком успешным.

Слишком много углерода было удалено, и в конечном продукте оставалось слишком много кислорода. Бессемер в конечном итоге должен был вернуть своих инвесторов, пока не найдет способ увеличить содержание углерода и удалить нежелательный кислород.

Примерно в то же время британский металлург Роберт Мушет приобрел и начал испытывать соединение железа, углерода и марганца, известное как spiegeleisen . Известно, что марганец удаляет кислород из расплавленного железа, а содержание углерода в spiegeleisen, если оно добавлено в правильных количествах, обеспечит решение проблем Бессемера. Бессемер начал с большим успехом добавлять его в свой процесс конверсии.

Осталась одна проблема. Бессемер не смог найти способ удалить фосфор - вредную примесь, которая делает сталь хрупкой - от его конечного продукта. Следовательно, можно использовать только руды без фосфора из Швеции и Уэльса.

В 1876 году валлиец Сидни Гилхрист Томас придумал решение, добавив химический основной флюс-известняк к процессу Бессемер. Известняк извлек фосфор из чугуна в шлак, что позволило удалить нежелательный элемент.

Это нововведение означало, что, наконец, железная руда из любой точки мира могла бы использоваться для производства стали. Неудивительно, что издержки производства стали стали значительно снижаться. Цены на стальной прокат упали более чем на 80% в период с 1867 по 1884 год, в результате применения новых технологий производства стали, что привело к росту мировой металлургической промышленности.

Процесс открытого очага:

В 1860-х годах немецкий инженер Карл Вильгельм Сименс еще больше увеличил производство стали благодаря созданию процесса открытого очага. В режиме открытых очагов из чугуна в больших мелководных печах производится сталь.

Используя высокие температуры для сжигания избыточного углерода и других примесей, этот процесс основывался на нагретых кирпичных камерах ниже очага.Регенеративные печи позже использовали отработанные газы из печи для поддержания высоких температур в кирпичных камерах ниже.

Этот метод позволил производить намного большие количества (50-100 метрических тонн можно было производить в одной печи), периодическое испытание расплавленной стали, чтобы оно могло быть выполнено в соответствии с конкретными спецификациями и использованием металлолома как сырье. Хотя сам процесс был намного медленнее, к 1900 году процесс открытого очага в значительной степени заменил процесс Бессемер.

Рождение сталелитейной промышленности:

Революция в производстве стали, которая обеспечивала более дешевый и качественный материал, была признана многими бизнесменами дня в качестве инвестиционной возможности. Капиталисты конца 19-го века, в том числе Эндрю Карнеги и Чарльз Шваб, инвестировали и зарабатывали миллионы (миллиарды в случае Карнеги) в сталелитейной промышленности. Американская сталелитейная корпорация Carnegie, основанная в 1901 году, стала первой корпорацией, когда-либо созданной на сумму более миллиарда долларов.

Сталеплавильное производство электродуговой печи:

Сразу же после рубежа веков произошло еще одно развитие, которое оказало бы сильное влияние на эволюцию производства стали. Электрическая дуговая печь (ЭПР) Пола Эрута была спроектирована так, чтобы пропускать электрический ток через заряженный материал, что приводит к экзотермическому окислению и температуре до 3272 ° F (1800 ° C), больше, чем достаточным для производства стали.

Первоначально использовавшиеся для специальных сталей, использовались EAF, а во Второй мировой войне использовались для производства стальных сплавов. Низкие инвестиционные затраты, связанные с созданием мельниц EAF, позволили им конкурировать с крупными американскими производителями, такими как US Steel Corp. и Bethlehem Steel, особенно в углеродистых сталях или длинных продуктах.

Поскольку ЭДП могут производить сталь из 100% лома или холодной черной фракции, требуется меньше энергии на единицу продукции. В отличие от базовых кислородных очагов, операции также можно остановить и начать с незначительной стоимости. По этим причинам производство через EAF неуклонно растет уже более 50 лет и в настоящее время составляет около 33% мирового производства стали.

Кислородная металлургия:

Большая часть мирового производства стали - около 66% - теперь производится в базовых установках для кислорода. Разработка метода разделения кислорода из азота в промышленном масштабе в 1960-х годах позволила добиться значительных успехов в разработке основных кислородных печей.

Основные кислородные печи выдувают кислород в большие количества расплавленного чугуна и металлолома и могут выполнять заряд намного быстрее, чем методы открытого очага. Крупные суда, содержащие до 350 тонн железа, могут завершить конверсию в сталь менее чем за час.

Экономическая эффективность производства кислородной стали сделала мартеновские заводы неконкурентоспособными, и после появления кислородной стали в 1960-х годах начались мартеновские операции. Последний март-март в США закрылся в 1992 году и в Китае в 2001 году.

Spoerl, Joseph S. Краткая история производства чугуна и стали . Колледж Святого Ансельма.

Улица, Артур. & Alexander, W. O. 1944. Металлы на службе человека . 11-е издание (1998).

Краткая история кражи личных данных

Краткая история кражи личных данных

История кражи личных данных возвращается довольно давно; он продолжает развиваться с использованием новых технологий и влияет на многие аспекты вашей жизни

Краткая история политической рекламы в США

Краткая история политической рекламы в США

, Чтобы сказать, что политические объявления бомбардируют телевидение, Интернет и рекламные щиты были бы огромным преуменьшением. Но откуда это произошло и как оно изменилось?

Краткая история модного моделирования

Краткая история модного моделирования

Моделирование за многие годы изменилось. От его скромных начал до цифровой эры, будучи моделью, никогда не было более захватывающим.

Сталь — это всегда железо с содержанием углерода до 2,14 % и плюс какая-либо легирующая добавка, которая, по сути, и превращает мягкую и быстро ржавеющую железяку в сталь с тем или иным уникальным свойством. Если температуру плавления Fe (1535 °C) ещё можно достичь мощным наддувом кислорода под древесные угли, собственная температура горения которых не превышает 700 °C , то как можно было без антрацита и мощного кислородного наддува растворить в расплаве железа бор с температурой плавления в 2300 °C, хром (1857 °C), молибден (2622 °C), ванадий (1910 °C) или вольфрам (3422 °C)? И откуда те легирующие добавки появились, кстати?

Но как всё начиналось? Внятного ответа мне не встретилось нигде.

И вот мой синопсис научно-популярного фильма о первой в истории планеты выплавке сначала железа, а вскорости и стали из худого качеством болотного железа. А другого что в Древней Руси, что в ином каком месте и не было, ибо копать землю в поисках железной руды было ещё нечем, да и людям было неведомо зачем надо копать, что копать и почему именно здесь.

«Вот сидят древние бабёнки и скручивают из шерсти мамонта нити для сетки невода. Вот в кадре идёт пара мужиков по болоту с неводом, в котором собираются бурые хлопья окисла железа. При этом мужики точно знают, зачем они это делают, хотя и затеяли эту забаву первый раз в своей жизни, и непонятно кто их на это действо заправил.

К этому времени у костра собралась дюжина мужиков с тростниковыми (или камышовыми?) полыми палками, которые они понавтыкали под прогоревший, но ещё тлеющий углями костёр, и начали в те палки дуть что есть мочи, повышая жар огнища до температуры плавления железа.

Меж делом какой-то дигер натаскал металлургам легирующие добавки: аж чистой слезы Mn, Cr, Ni, Si, Mo, W, Co и прочая. Все они, надо полагать, были рассыпаны как ягоды в непонятно откуда известных ему урочищах.

Тут нежданчиком появляется ещё один персонаж, которого потом все начнут называть кузнецом . Он явился с комплектом каменных молотов и наковален, на первый из которых ещё горячий плод коллективного труда и взгромоздили.

И вот наконец народу были предъявлены результаты — перво-наперво это могли быть исключительно инструменты и др. средства труда и производства, без которых вся дальнейшая судьбина кузнеца и всей планетарной металлообработки оказалась бы под вопросом: появились стальные молот, наковальня, ножницы по металлу, напильник ( сложнейшая технология! ), а также была отстроены печь (домна? или конвертер?) выплавки стали, целая куча изложниц, а также сковорода-црен, но не для выпарки соли (как в Средневековой Руси), а для получения в доисторическую эпоху окатышей железа.

Из содержимого уже следующего невода металлурги выдали кузнецу слитки уже оружейной стали , и тот без труда отковал качественным инструментом стальные меч и кольчугу для местного смотрящего, который финансировал инновационный проект филейными частями мамонта.

А если не так, то как? Но только конкретно, с жёсткой привязкой ко времени, природному окоёму, уровню цивилизации, к древним месторождениям ископаемых и с подтверждением расчётами и экспериментами, пожалуйста. И очень прошу посоветоваться со специалистами в области экономической географии, археологами, геологами и металлургами.

А когда эра качественного железа и стали накрыла Россию? — Это попутный вопрос. С формулировкой ответа советую быть осторожней, так как, например, разработкой первых на Руси рудников железа и первых залежей цветных металлов впервые занялся только Пётр I, а до него ни энергичные усилия Великого князя Ивана III , ни царя Ивана IV с привлечением иностранных спецов не закончились ничем путным , а в период построения теократического государства первыми двумя Романовыми эти вопросы вообще не стояли на повестке дня.

История производства стали

История производства стали берет начало с тех времен, когда на земле появилось человечество. За все это время сделано огромное множество замечательных открытий и изобретений. Но способы добычи стали по праву можно назвать главным среди всех изобретений, среди всех открытий. Автор фото: Сергей Богомяко

Это благодаря стали человек стал могущественным, способным сдвигать горы и поворачивать реки, смог покорить океаны и небесные выси. Тысячелетия отделяют нас от того времени, когда впервые был получен этот поистине чудесный материал.

Изготовление некоторых видов стали долгое время было в секрете. Так на протяжении столетий существовала тайна булата, которую смогли разгадать только в XIX столетии, (подробнее: Изготовление булата). В наши дни мощь и богатство любой страны определяются в первую очередь тем, сколько стали выплавляют ее заводы.

Добыча руды

Карьер для добычи железной руды

Для производства стали прежде добывают руду и топливо. Но, даже имея в достаточном количестве железную руду и каменный уголь, (подробнее: Природные энергоносители) нельзя еще приступать к изготовлению стали. И руду и уголь необходимо по-особому приготовить. Руду обогатить, из каменного угля сделать кокс.

Обогащение руды

Долгий и сложный путь проделывает руда, прежде чем превратится в сталь. И первый этап на этом пути – обогащение руды на обогатительная фабрика. Сначала руду дробят с помощью машин, которые так и называются дробилками. Первая, самая мощная, раскалывает крупные глыбы на куски. Затем вторая превращает эти куски в щебень и так далее.

До тех пор, пока из руды не получится крупа. Но и этого еще не полное обогащение. Далее отправляют руду на мельницу и превращают ее в порошок. И только теперь начинается то, что металлурги называют обогащением, – отделение руды от сопутствующей породы, с которой она вместе лежала в земле. Происходит это так. Порошок смешивают с водой и пропускают между магнитами.

Магниты и выбирают из мутного потока частицы магнитного железняка. А то, что не нужно, – это уже не трудно догадаться, – уносится водой. Но даже такая отобранная руда еще не пригодна для дальнейшей переработки. Содержание железа в ней значительно повысилось. Однако и это еще не все. Руду снова надо превратить из порошка в куски. Для этого порошок смешивают с коксом, известью и сильно нагревают.

Для выплавки стали главным топливом служит каменный уголь. Но не в том виде, который добывают шахтеры. Добытый уголь содержит много примесей, которые могут вредно повлиять на будущий металл. И поэтому их необходимо удалить. Уголь, как и руду, для этого сначала размалывают в тончайший порошок. Потом этот порошок в специальной камере нагревают без доступа воздуха.

Из угля выделяются газ и смола. Вместе с ними уходят и другие ненужные примеси. А сам угольный порошок спекается в плотную пористую массу. Пышущую жаром массу выталкивают из камеры на металлическую платформу и охлаждают водой. От резкого охлаждения масса разваливается на куски. Эти куски и есть кокс. Вот теперь и руда и топливо подготовлены.

Можно приступать к плавке. Но пока еще не к плавке стали. Прежде чем железная руда превратится в сталь, ей еще предстоит стать чугуном. Этот процесс происходит в домне. Домна – это печь-гигант. Даже десятиэтажный дом не кажется очень большим рядом с такой печью. Горит эта печь непрерывно в течение десятков лет.

Металлурги время от времени загружают в нее руду, кокс и известь – она тоже во время плавки необходима, – и выпускают готовый чугун. Какие процессы происходят в домне, как руда превращаться в чугун? Чтобы разобраться в этом, надо снова вернуться к железной руде.

Чугун

Железная руда – это окисленный металл, т.е. соединение железа с кислородом. Для получения чистого металла необходимо вести борьбу с кислородом. Эта борьба начинается, когда металлурги загружают в домну руду и кокс.

Чугунная мостовая

При высокой температуре кислород соединяется с углеродом кокса и расстается с железом. Получается углекислый газ. А оставшийся углерод тут же занимает место кислорода и соединяется с железом. Железо плюс углерод – это и есть чугун. Чтобы ускорить плавку, в металлурги стали использовать кислород против кислорода. Для того чтобы жарче горело пламя, в домну накачивают не просто воздух, а чистый кислород. Современные домны работают на природном газе. А это не только ускоряет плавку, но и значительно сокращает расход кокса. Что дает возможность получать более дешевый чугун.

Путь удешевления металла

Металлургия прошла еще один путь удешевления металла. Путь этот – замена дорогого человеческого труда трудом машин. Если раньше все работы по обслуживанию домны в основном выполнялись вручную, теперь в помощь металлургам пришли транспортеры, погрузочные механизмы, подъемные краны. Многие операции вообще выполняются без участия человека.

К желобу, по которому из печи выпускают металл, подъедет железнодорожная платформа с ковшами. Специальная бурильная машина рассверливает отверстие для слива металла, оно называется леткой. А закрывают леточное отверстие с помощью специальной пушки.

Посредством поршневого механизма подается огнеупорная масса, которой и закрывается канал после слива чугуна. Сразу же после слива металла начинается загрузка шихтового материала через колошник – верхнюю часть печи, ведь плавка в домне идет непрерывно.

Сталь

Речь идет о том, как руда превращается в сталь. Ведь чугун, первая ступень на пути этого превращения. Но чем отличается чугун от стали, ведь это тоже металл? Чугун нельзя ковать, трудно обрабатывать на металлорежущих станках. И это потому, что в нем очень много углерода. А углерод – вещество хотя и очень твердое, но хрупкое.

Вот и железо, соединившись с ним в доменной печи, стало очень хрупким. Другое дело – сталь. Она и ковке поддается – ее можно штамповать, придавать стальным листам разную форму. Ее и на станках обрабатывают, вытачивают всевозможные детали.

Чугун так же необходим в производстве. Из него отливают те изделия, которые потом не требуют тщательной обработки. Например, станины, на которых станки стоят, маховики для моторов, трубы. Но основная часть чугуна, идет в дальнейшую переработку – на изготовление стали.

Мартеновские печи

Один за другим наполнились ковши – чугуновозы, и состав отправляется в цех, где выстроились в ряд мартеновские печи. Что такое мартеновские печи? Здесь уже знакомый нам чугун снова попадает в пламень. Правда, не сразу. Такое количество чугуна, которое прислала сюда домна, мартены переработать сразу не могут. Их в цехе много, но они значительно меньше домны.

Поэтому чугун сначала попадает в термосы. Здесь, в мартеновском цехе, их называют миксерами. Их задача: не дать чугуну охладиться, сохранить его жидким. Отсюда по мере необходимости и берут его сталевары для заливки в мартены. Не просто сварить сталь. Тем, кто это делает, не только многое уметь надо, но и очень многое знать.

Ведь это от них зависит, какая сталь выйдет из мартена – прочная ли и упругая, из которой потом изготовят рельсы для поездов и самые ответственные детали машин, или мягкая, которая пойдет, к примеру, на изготовление листов для крыши. Каждую марку стали варят в мартенах по особой технологии. Тут и металлолом, и цветная руда, и марганец, и никель, и хром и многое-многое другое требуется.

А главное, конечно, чугун. Началась загрузка печи. Подъемные краны одну за другой подхватывают многотонные коробки – мульды, заносят в печь и высыпают содержимое. Называется эта операция завалкой печи. Но вот опрокинут последний короб. Все сильней бушует в печи пламя. Бригадир смотрит на приборы.

Мартеновская печь

Металлолом, известь и руда достаточно прогрелись. Настал момент заливать чугун. Его уже привезли из миксеров, он стоит тут и нестерпимо пышет жаром. Стальная рука крана подхватывает ковш и выливает расплавленный чугун в огнедышащую пасть мартена. Варка стали началась. Теперь все зависит от сталевара, от его умения, опыта. Автор фото: Сергей Богомяко

Конечно, современному сталевару верно служит техника. Она вооружила его разными приборами. Они подробно сообщают ему о том, что делается в печи, но нет-нет да и опустит бригадир на глаза защитные очки, заглянет через специальное отверстие в клокочущее нутро мартена. Время от времени посылают сталевары пробы металла в специальную лабораторию.

Словно солнце вспыхивает в цехе. Поток металла устремляется в изложницы. Но что же произошло в мартене? Почему чугун превратился в сталь? Чтобы это понять, вспомним, что произошло с рудой в домне. Там, железо рассталось с кислородом. Его место занял углерод. В мартене из чугуна удаляют часть углерода. Он сгорает в кислороде воздуха, который непрерывно подают в печь автоматы.

И чем больше выгорает углерода, тем более вязкой, более мягкой выходит из печи сталь. А если от нее требуются какие-то основные качества, их придадут ей специальные добавки – марганец, хром, кремний. Словом, то, что положено по технологии для данной марки стали. Технике нужна разная сталь. И сталевары выполняют все ее запросы. Сталь сварена.

Выпущенная из мартена, она попала в изложницы. Здесь она постепенно охладилась и застыла. Но изложницы – это огромные ванны. И когда сталь вынимают из них, получаются слитки металла в несколько тонн весом. Поэтому сталь сначала превращают в бруски, удобные для работы. Делают это на специальных обжимных станах. Их называют блюмингами.

Выплавка стали

Современный блюминг – очень большая и сложная машина. Она похожа на длинную роликовую дорогу. Заранее разогретые огромные слитки металла с большой скоростью проносятся по ней. По пути они попадают в стальные валки. Эти валки со всех сторон обжимают слитки и превращают их в бруски нужных размеров. Автор фото: Сергей Богомяко

И только после этого бруски отправляют на прокатные станы, где из них делают рельсы, балки, трубы, стальные листы или толстые и тонкие прутки. Все, что необходимо.

Кислородно-конвертерный способ

Кроме мартеновского способа производства стали на современном этапе существует кислородно-конвертерный способ с комбинированной продувкой. Процесс получения стали из чугуна этим способом происходит без затрат топлива. В конвертере происходит продувка чугуна чистым кислородом.

Чугун окисляется, происходит выделение тепла, сгорают ненужные примеси и, как результат, происходит раскисление металла. История производства стали непростая. Чтобы выйти на современный уровень, было пройдено много этапов. От слитка металла полученного на костре и поковки в кузне, до современных сталеплавильных заводов с прокатными и механическими цехами.

Читайте также: