История электронагревательных приборов кратко

Обновлено: 05.07.2024

Большинство бытовых электронагревательных приборов работает на основе теплового действия электрического тока, которое впервые было изучено русским академиком Э.Х. Ленцем и английским физиком Дж. Джоулем.

Электронагрев по сравнению с нагревом от открытого пламени имеет ряд неоспоримых преимуществ. Так, если сравнивать электронагрев с наиболее совершенным нагревом от газовой плиты, то для её разжигания требуются дополнительные источники открытого пламени. Кроме того, газ ядовит и взрывоопасен, при его горении расходуется кислород и выделяются вредные для жизни человека продукты. Открытое пламя чаще становится источником пожара.

По своему назначению электронагревательные приборы делятся на приборы для приготовления пищи, кипячения воды, дополнительного обогрева жилища, для личной гигиены и глажения, а также электронагревательные инструменты (паяльник, электроглянцеватель и др.).

Основной частью всех электронагревательных приборов является нагревательный элемент. Материал для его изготовления подбирается в зависимости от назначения электронагревательного прибора.

Нагревательные элементы в приборах для приготовления пищи, кипячения воды, во многих приборах для обогрева жилища работают при высоких температурах (800-850 °С), поэтому материал для их нагревателей должен иметь высокую температуру плавления (1000 °С и выше).

Лечебно-гигиенические приборы (электрогрелки, электробинты, электроодеяла), а также приборы для поддержания пищи в горячем состоянии (мармиты) работают при температурах, не превышающих нескольких десятков градусов, но предъявляют повышенные требования к качеству изоляционных материалов нагревателя.

Таблица 12.
Характеристики металлов и сплавов, применяемых в электронагревательных элементах


Это интересно

Первые электронагревательные приборы появились в конце XIX века и получили широкое распространение после создания в 1905 году сплава никеля, хрома и железа — нихрома, обладающего большим удельным сопротивлением и способного длительное время выдерживать высокую температуру, не расплавляясь и не окисляясь. Этим требованиям удовлетворяют также константан, фехраль и железо-хромалюминиевые сплавы, 500, 900 и 1400 °С соответственно.

Для изготовления нагревательных элементов используют проволоку или ленту из сплавов с высоким удельным сопротивлением, которая быстро нагревается при прохождении электрического тока. Для придания электронагревательному элементу компактности проволоку 00,3-0,6 мм свивают в спираль, а ленту наматывают на пластины из твёрдых диэлектриков.

Нагревательный элемент изолируют от корпуса прибора. Для этого используют материалы с высокими диэлектрическими свойствами — твёрдые и порошкообразные. К твёрдым диэлектрикам относят слюду, фарфор и шамот (огнеупорная глина), к порошкообразным — алунд (окись алюминия), кварцевый песок и окись магния.

Электронагревательные элементы бывают открытого и закрытого типа, а также герметизированные.

Электронагревательные элементы открытого типа

Нагревательные элементы открытого типа обычно имеют вид спирали, размещённой в канавках электроизоляционного материала или подвешенной на изоляторах (рис. 90).


Рис. 90. Нагревательный элемент открытого типа: 1 — керамическая основа, 2 — спираль, 3 — цоколь

Эти нагревательные элементы обладают как достоинствами (простотой конструкции, доступностью при ремонте, достаточной дешевизной), так и недостатками: спираль интенсивно окисляется кислородом воздуха, возможно замыкание её витков, при перегорании может произойти замыкание спирали на корпус прибора или соприкосновение с нагреваемым объектом, не исключено также случайное прикосновение человека к спирали. Таким образом, открытые нагревательные элементы существенно увеличивают реальную опасность поражения человека электрическим током.

Электронагревательные элементы закрытого типа

Закрытые нагревательные элементы имеют спираль, защищённую оболочкой из изоляционного материала. Такой защитной оболочкой могут служить керамические бусы, надетые на спираль (рис. 91). Бусы защищают спираль от механических повреждений, препятствуют замыканию на корпус при её перегорании, но не препятствуют доступу воздуха к спирали, а следовательно, и окислению.


Рис. 91. Закрытый нагревательный элемент: 1 — изоляционные бусы, 2 — спираль

Такие нагревательные элементы можно встретить в электроутюгах, электрочайниках, электроплитках. Эти элементы в случае неисправности не подлежат ремонту (замене).

Нагревательные элементы закрытого типа могут иметь и иное конструктивное исполнение. Например, спираль из проволоки с высоким удельным сопротивлением помещают в канавки, сделанные в чугунном корпусе. Пространство между корпусом и спиралью заполняют порошкообразным наполнителем и закрывают асбестовым листом и железной крышкой. Такие элементы более надежны в работе, но ремонту не подлежат. Иногда спираль размещают в кварцевой трубке, как, например, в электронагревателях для аквариумов.

Трубчатые электронагревательные элементы (ТЭН)

Герметизированные нагревательные элементы на сегодняшний день наиболее совершенны (см. рис. 92). Нагревательная спираль в них помещается в трубку и изолируется от её стенок кварцевым песком или порошком окиси алюминия. Трубка может быть изготовлена из латуни или нержавеющей стали. Для защиты спирали от воздействия воздуха концы трубки герметизируют электроизоляционными втулками, залитыми стекловидной температуростойкой эмалью.


Рис. 92. Герметизированный нагревательный элемент: а — трубчатый; б — вид трубчатого электронагревательного элемента со стороны цоколя (1 — выводы спирали, 2 — изолятор); в — чугунная конфорка в разрезе (1 — контакты спирали, 2 — спираль, 3 — изоляционный материал, 4 — корпус конфорки)

Нагревательные элементы этого типа долговечны и надёжны в работе. Трубчатые электронагревательные элементы (ТЭН) нашли широкое применение в различных современных бытовых электронагревательных приборах (см. рис. 93).


Рис. 93. Электрический чайник и электроплитка: 1 — корпус, 2 — ТЭН, 3 — соединительный шнур, 4 — ручка переключателя

В качестве примера рассмотрим устройство электроплитки и утюга.

Основным конструктивным элементом электроплитки является конфорка. Наиболее распространены чугунные и трубчатые конфорки.

Корпус чугунной конфорки достаточно массивен, что придаёт ему стойкость при резких колебаниях температуры и исключает возможность коробления поверхности конфорки (рис. 93). Такие конфорки имеют хороший тепловой контакт с посудой. В чугунных конфорках в пазы на внутренней поверхности укладывают 2-3 проволочных нагревательных элемента. Концы нагревательных элементов соединяют с переключателем, позволяющим включать элементы поочередно, последовательно или параллельно. При этом имеется возможность регулировать мощность конфорки и количество выделяемого ею тепла. Регулирование температуры нагрева возможно и при одном нагревательном элементе, если последовательно с ним включить терморегулятор. Максимальная температура на поверхности конфорки обычно составляет около 500 °С.

Трубчатые конфорки состоят из одного или двух ТЭНов, которым также придают форму спиралей. Для лучшего теплообмена с посудой рабочую поверхность ТЭНа делают плоской. С целью повышения КПД конфорки под ТЭН устанавливают отражатель из нержавеющей стали. Температура на поверхности трубчатой конфорки порядка 650-800 °С. Коэффициент полезного действия у чугунных конфорок 65 %, у трубчатых — 75 %.

Следует отметить, что достаточно высокие коэффициенты полезного действия электроплит с чугунными и трубчатыми конфорками реализуются при приготовлении пищи в высококачественной посуде. Такая посуда должна иметь ровное, плоское дно, по размеру несколько превосходящее диаметр конфорки. Наличие деформаций и изгибов создаёт зазор между дном посуды и поверхностью конфорки, что резко снижает коэффициент полезного действия до 35-50 % и приводит к перерасходу электроэнергии. Этот недостаток можно компенсировать, имея в квартирах с электроплитой другие электронагревательные приборы: для кипячения воды — электрочайник, электросамовар или водонагреватель погружного типа. Для приготовления жареных блюд полезно иметь электросковородку, электрогриль, электрошашлычницу, электротостер и др. Коэффициент полезного действия таких приборов достигает 95-97 %, поэтому их использование даёт значительную экономию электроэнергии по сравнению с кипячением воды на электроплите.

Биметаллический терморегулятор

Многие бытовые электронагревательные приборы снабжены устройством для регулирования температуры — терморегулятором. Наиболее распространённым является биметаллический терморегулятор.

В основе устройства биметаллического терморегулятора лежит биметаллическая пластина (рис. 94). Это небольшая пластина, спаянная или склёпанная из полосок двух видов металлов с различной теплопроводностью (обычно стали и меди). Тепловое расширение пластин из разных металлов неодинаково, у медной пластины оно больше, поэтому при нагревании медная часть удлиняется больше стальной, что приводит к изгибанию биметаллической пластины. Если на биметаллической пластине установить контакты, то при нагревании они будут замыкаться или размыкаться в зависимости от положения неподвижного контакта, расположенного вне пластины.


Рис. 94. Биметаллическая пластина

Принцип работы биметаллического регулятора показан на рисунке 95.


Рис. 95. Биметаллический терморегулятор: 1 — биметаллическая пластина, 2 — толкатель, 3 — упругая пластина с подвижным контактом, 4 — электроплита, 5 — проводник тепла в виде металлического предмета, 6 — амперметр

  • увеличить зазор между толкателем и подвижной пластиной;
  • изменить силу давления между контактами с помощью винта, как показано на рисунке 96.


Рис. 96. Регулировка силы давления между контактами терморегулятора: 1 — регулировочный винт, 2 — биметаллическая пластина, 3 — подвижный контакт, 4 — неподвижный контакт

Рассмотрим устройство современного электроутюга.

Наибольшее распространение в настоящее время получили утюги с терморегулятором, которые быстро нагреваются до рабочей температуры. Они обладают небольшой массой, удобны в эксплуатации, экономичны: сокращают расход электроэнергии при глажении на 10-15%. Такие утюги позволяют обрабатывать ткани в заданном тепловом режиме, что способствует их сохранению. На ручке терморегулятора отмечены положения, соответствующие температурам обработки различных видов тканей (рис. 97).


Рис. 97. Принципиальная электрическая схема утюга: Тр — терморегулятор, R — резистор, EL — сигнальная лампа

Практическая работа № 35

Практическая работа № 36

Задание 1. Изготовить биметаллическую пластину.

  1. Сложите пластины вместе.
  2. Разметьте и просверлите 4-5 отверстий ∅ 2,0-2,5 мм.
  3. Скрепите пластины заклёпками из алюминиевой проволоки.
  4. Одно отверстие оставьте свободным для подсоединения провода.

Задание 2. Собрать и испытать термореле — модель пожарной сигнализации.

  1. Соберите модель теплового реле, как на рисунке 98. Для этого биметаллическую пластину закрепите на стойке, предварительно повернув жестяной стороной к электролампе. Фиксация регулировочного винта обеспечивается гайками.


    Соберите электрическую цепь по схеме:

Новые слова и понятия

Герметизированные, открытые и закрытые нагревательные элементы; конфорка; терморегулятор; биметаллическая пластина.

Иногда история умалчивает, что и как создавалось, кому принадлежала гениальная идея. Немало первоисточников о тех и или иных открытиях стерли с лица земли многочисленные войны. Частично это коснулось изобретений и Жака Нуаро — электрических дел мастера. В 30-е годы прошлого столетия он разработал и произвел один из первых в мире электрических обогревателей. А ведь именно это открытие положило начало новому этапу индустриальной эпохи — электрическому отоплению.

Вторая мировая война нанесла немалый урон развитию этой эпохи. И скромная электромастерская будущего лидера в производстве электрических обогревателей, как и многие промышленные предприятия, не избежала материальных разрушений. Однако, считают современные последователи Жака Нуаро, в первой половине XX столетия мастер создал двигатель тепла, который невозможно было уничтожить. В послевоенное время, начиная с 1947 года, ежегодно из его мастерских выходили новаторские обогреватели разнообразного дизайна, размера, технических возможностей. Рекламу его продукции делали сами покупатели, и к 60-м годам имя Жака Нуаро стало национальным французским брендом, а сегодня крупнейшее в мире предприятие с гордостью носит его имя.

_?_

Основной частью любого электронагревательного прибора является нагревательный элемент. Со второй половины XX века и по настоящее время широко используются так называемые ТЭНы – трубчатые электронагреватели (см. фото). Они представляют собой нихромовую проволоку, свитую в виде спирали и помещённую внутрь металлической трубки, заполненной электроизолирующим теплопроводным порошком. ТЭНы применяют в большинстве водонагревательных приборов, в утюгах, электроплитах, электрокаминах и так далее. Такие ТЭНы имеют размеры до нескольких дециметров и мощность до нескольких тысяч ватт.

_?_

В обычных лампах накаливания в световую энергию превращается менее 10% потребляемой электроэнергии, а остальные 90% превращаются в теплоту. Поэтому лампы накаливания тоже можно считать электронагревательными приборами. И хотя их чаще всего используют именно для освещения, нередки случаи, когда их применяют и для обогрева, например, теплиц. Для подключения ламп к электросети используют специальный патрон (на рисунке показан в разрезе). Он имеет нижний контакт в виде упругой пластинки и кольцевой контакт, соприкасающийся с цоколем лампы.

Важно: теплота выделяется не только в нагревательном элементе, но и в проводах. Однако на единице длины нагревательного элемента теплоты выделяется гораздо больше, чем на единице длины провода. Другими словами, на каждом сантиметре спирали выделяется гораздо больше теплоты, чем на каждом сантиметре провода, подводящего к спирали ток. В чём причина этого?

Во-первых, нагревательный элемент и подводящие провода изготовлены из разных металлов: нихрома и меди. Между тем, если взять одинаковые по размерам проводники из нихрома и меди, то нихромовый проводник будет иметь в 50 раз большее сопротивление, чем медный. Это же можно сказать иначе: удельное сопротивление нихрома в 50 раз больше удельного сопротивления меди. Выясним, как это влияет на выделение теплоты.

Нагревательный элемент и подводящие провода представляют собой проводники, соединённые последовательно. В § 9-б мы узнали, что в таких проводниках сила тока одинакова. Следовательно, согласно закону Джоуля–Ленца, количества теплот, выделяющихся в этих проводниках, прямо пропорциональны их сопротивлениям (так как силы токов и времена его прохождения одинаковы). Поэтому каждая единица длины нихромовой проволоки выделяет в 50 раз больше теплоты, чем единица длины медного провода, если площади их поперечного сечения одинаковы.

_?_

Во-вторых, нихромовая проволока свёрнута в спираль, длина которой в 10-20 раз меньше длины самой проволоки (см. рисунок). Поэтому на единице длины спирали выделяется в 10-20 раз больше теплоты, чем на единице длины прямого отрезка нихромовой проволоки.

Итак, две причины – применение вещества с большим удельным сопротивлением (нихрома или аналогичного) и плотное его размещение (спираль с близкими витками) приводят к тому, что основное количество теплоты выделяется именно в нагревательном элементе электроприбора, а не в проводах.


Давайте посмотрим вокруг. Можете ли вы представить свою жизнь без утюга? Или, например, у многих есть фены, электрические чайники, электрические плиты и так далее. Все эти приборы относятся к бытовым электронагревательным приборам. На этом уроке мы узнаем, что по сравнению с нагревом от открытого пламени электронагрев имеет несколько преимуществ. Поговорим о видах электронагревательных приборов.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Бытовые электронагревательные приборы"

Давайте посмотрим вокруг. Можете ли вы представить свою жизнь без утюга? Или, например, у многих есть фены, электрические чайники, электрические плиты и так далее.


Все эти приборы относятся к бытовым электронагревательным приборам.

Большинство из них работает на основе теплового действия электрического тока. Впервые это действие было изучено русским академиком Эмилием Ленцем и английским физиком Джеймсом Джоулем.

В чём же отличие электронагрева от нагрева открытого пламени? Сравним электронагрев с нагревом от газовой плиты. Для того, чтобы разжечь газовую плиту нужны дополнительные источники открытого пламени. Например, спички или зажигалка.

Помимо этого, при горении газа расходуется кислород и в воздух выделяются вредные для человека продукты, а открытое пламя чаще становится источником пожара.

Давайте познакомимся с основными видами бытовых электронагревательных приборов.

Приборы для приготовления и разогревания пищи. К ним относятся: электрическая плита, микроволновка, мультиварка, тостер.

Приборы для нагрева воды. Это и электрические чайники и кипятильники, термопоты, водонагреватели.

Электронагревательные приборы для дополнительного обогрева жилища. К ним относятся обогреватели, электрокамины.

Следующий вид приборов – для личной гигиены. К ним относятся фены, плойки и прочие устройства.

Приборы для глажения. Это и утюги и отпариватели одежды, гладильные машины.

К приборам для обогрева можно отнести медицинские грелки, электроодеяла, и другие подобные приспособления.

И последний вид – электронагревательные инструменты. К ним можно отнести паяльник, тепловую пушку.

Как понятно из названия, основной частью всех этих приборов можно назвать нагревательный элемент.

Материал для изготовления нагревательного элемента выбирается в зависимости от назначения прибора.

Поскольку нагревательные элементы в приборах для приготовления пищи, кипячения воды и обогрева жилища работают при высоких температурах, примерно 800° – 850°, то материал для изготовления нагревательных элементов должен иметь температуру плавления от 1000°.

Если говорить о лечебно-гигиенических приборах, то к температуре плавления нагревательного элемента особых требований нет, но к качеству изоляционных материалов нагревателя предъявляются повышенные требования.

Ещё одной характеристикой от которой зависит выбор материала для нагревательного элемента можно назвать размеры прибора. Понятно, что чем больше устройство, тем больше в нем должен быть нагревательный элемент. Обратите внимание, что чем меньше размеры нагревательного элемента, тем выше должно быть его удельное сопротивление. Напомним, что удельное сопротивление – это физическая величина, которая характеризует способность вещества препятствовать прохождению электрического тока.

Для увеличения удельного сопротивления применяют сплавы нихром и фехроль. Их удельное сопротивление превышает сопротивление стали и тантола в 8 – 10 раз.

Нихром – это сплав, в котором содержится от пятидесяти пяти до семидесяти восьми процентов никеля, от пятнадцати до двадцати трёх процентов хрома и присутствуют добавки марганца, кремния, железа и алюминия.


Фехраль – это сплав, в котором содержится от двенадцати до двадцати семи процентов хрома, от трёх с половиной до пяти с половиной процентов алюминия, кремний, марганец и железо.


Давайте посмотрим на таблицу характеристик металлов и сплавов, которые используются в электронагревательных элементах.

Нагревательные элементы бытовых электронагревательных приборов изготавливают из проволоки или сплавов с высоким удельным сопротивлением, которые быстро нагреваются, когда через них проходит электрический ток. Чтобы размеры нагревательного элемента были небольшими, проволоку диаметром от нуля целых трёх десятых до нуля целых шести десятых миллиметра свивают в спираль, а ленту из сплавов наматывают на пластины из твёрдых диэлектриков.

Сам нагревательный элемент обязательно надо изолировать от корпуса прибора. Делают это с помощью тв ёрдых или порошкообразных материалов, которые имеют высокие диэлектрические свойства.

Примеры твёрдых диэлектриков – слюда и фарфор.

Порошковые диэлектрики – это так называемый алунд – окись алюминия, кварцевый песок и окись магния.

Существует три основных вида нагревательных элементов: открытого типа, закрытого и герметизированные.

Познакомимся с каждым из видов поближе.

Начнём с нагревательных элементов открытого типа. Они, как правило, имеют вид спирали, которая размещена в канавках электроизоляционного материала или подвешена на изоляторах.


У них есть ряд достоинств и недостатков. Перечислим их.

К достоинствам можно отнести простоту конструкции, дешевизну и доступность нагревательных элементов для ремонта.

Недостатки. Поскольку спираль интенсивно окисляется кислородом воздуха, то возможно замыкание её витков. При перегорании может произойти замыкание спирали на корпус прибора или соприкосновение с нагреваемым объектом. Велика возможность случайного касания нагретой спирали, которая влечёт за собой ожог.

Нагревательные элементы открытого типа во много раз увеличивают опасность поражения электрическим током.

Поговорим об электронагревательных элементах закрытого типа.

Спираль в таких элементах имеет защищённую оболочку из изоляционного материала. В качестве оболочки можно использовать керамические бусы, которые не только защищают спираль от механических повреждений, но и препятствуют замыканию на корпус при перегорании спирали.


Но такие бусы не закрывают доступ воздуха к спирали и не защищают её от окисления.

Чаще всего такие нагревательные элементы устанавливают в утюгах, электрочайниках и электроплитках.

Но не все нагревательные элементы закрытого типа имеют защитную оболочку, некоторые их них могут помещаются в специальные канавки, которые проложены в чугунном корпусе.

В таком случае, пространство между корпусом и спиралью заполняется порошкообразным наполнителем, закрывается асбестовым листом и железной крышкой.

Нагревательные элементы закрытого типа более надёжны в работе, но самым главным их недостатком можно назвать то, что при неисправности они не подлежат ремонту или замене.

Существует ещё один вид нагревательных элементов закрытого типа – со спиралью, размещённой в кварцевой трубке. Приборы с такими нагревателями используют, как правило в аквариумах.

Поговорим о герметизированных нагревательных элементах. К ним относят трубчатые электронагревательные элементы или сокращённо – ТЭНы.


На сегодняшний день они наиболее совершенны. Как понятно из названия, их нагревательную спираль помещают в трубку. От стенок трубки спираль изолируется кварцевым песком или порошком окиси алюминия.

Чаще всего в качестве материала для изготовления трубки используют латунь или нержавеющую сталь.

Чтобы защитить спираль от воздействия воздуха, концы трубки герметизируют электроизоляционными втулками. Их заливают стекловидной термостойкой эмалью.

Поскольку ТЭНы долговечны и надёжны, то их широко применяют в различных современных бытовых электронагревательных приборах.

Давайте поближе познакомимся с устройством утюга и электроплитки.

Важной частью электроплитки естественно считается конфорка. Наиболее распространены чугунные и трубчатые конфорки.

Чугунная конфорка имеет очень массивный корпус. Это придаёт электроплитке стойкость при резких колебаниях температуры и защищает поверхность конфорки от коробления. Чугунные конфорки имеют хороший тепловой контакт с посудой.


В пазы на внутренней стороне чугунной конфорки укладывают два три проволочных нагревательных элемента. Их концы соединяют с переключателем, который может включать нагревательные элементы поочерёдно, последовательно или параллельно.

При этом можно регулировать мощность конфорки и количества тепла, которое она выделяет.

Регулировать температуру нагрева можно даже тогда, когда в конфорке располагается только один нагревательный элемент. Для этого нужно одновременно с ним включить терморегулятор.

Максимальная температура на поверхности конфорки, составляет 500°.

В трубчатых же конфорках обычно располагаются один или два ТЭНа в форме спирали. Чтобы теплообмен с посудой был лучше, поверхность ТЭНа делают плоской. Чтобы повысить коэффициент полезного действия конфорки под ТЭН необходимо установить отражатель из нержавеющей стали. Температура в трубчатой конфорки больше чугунной и составляет от 650° до 800° градусов цельсия. КПД чугунных конфорок составляет 65%, в то время как КПД трубчатых конфорок равен 75%.

Однако, стоит обратить внимание, что такое высокое КПД конфорки показывают только в том случае, когда используется высококачественная посуда с ровным, плоским дном. Размер дна должен быть немного больше чем размер конфорки. Если дно посуды имеет какую-нибудь неровность, то между конфоркой и посудой возникает зазор, в результате чего КПД конфорки падает на 35% – 50%, что влечёт за собой перерасход электроэнергии.

Чтобы такого не происходило, в домах с электроплитами рекомендуется иметь другие электронагревательные приборы. КПД таких приборов достаточно велик, а кипячение воды в таких приборах намного экономичнее чем кипячение воды на электроплите.

Во многих бытовых электронагревательных приборах есть терморегулятор – устройство для регулирования температуры. Самым распространённым можно назвать биметаллический терморегулятор.


В его основе лежит биметаллическая пластина. Это маленькая пластина, спаянная или склёпанная из полосок двух металлов с различной теплопроводимостью. Чаще всего для неё берут сталь и медь. Поскольку тепловое расширение пластин из разных металлов разное, например, у меди оно больше, то при нагревании медная часть удлиняется больше стальной. Это приводит к изгибанию биметаллической пластины. Если на неё установить контакты, то при нагревании они будут замыкаться или размыкаться в зависимости от того, где находится неподвижный контакт, располагаемый вне пластины.

На схеме показан принцип работы биметаллического регулятора.

Если пластину периодически нагревать и охлаждать, то её температура будет колебаться около некоторого среднего значения. Чтобы это значение изменить, нужно или увеличить зазор между толкателем и подвижной пластиной или изменить силу давления между контактами с помощью винта.

Про электроплитку мы с вами поговорили, а теперь поговорим об устройстве утюга.

Вряд ли вы найдёте утюг без терморегулятора. Как правило, все современные утюги им оснащены. Терморегулятор быстро нагревается до рабочей температуры. Такие утюги, удобны в эксплуатации и экономичны. При глажении электрическим утюгом расход электроэнергии уменьшается на десять пятнадцать процентов. А поскольку такие утюги гладят каждую ткань в нужном для нее режиме, то качество ткани сохраняется дольше. Для легкого управления, на ручке терморегулятора показаны положения для выбора правильной температуры для того или иного материала.

Посмотрите на электрическую схему утюга.

Подведём итоги урока.

Сегодня мы узнали, что по сравнению с нагревом от открытого пламени электронагрев имеет несколько преимуществ. Для его включения не нужен источник открытого пламени и такие приборы более безопасные.

Существует несколько видов электронагревательных приборов. Приборы для приготовления и разогревания пищи. К ним относятся: электрическая плита, микроволновка, мультиварка, тостер.

Приборы для нагрева воды. Это и электрические чайники и кипятильники, термопоты, водонагреватели.

Электронагревательные приборы для дополнительного обогрева жилища. К ним относятся обогреватели, электрокамины.

Следующий вид приборов – для личной гигиены. К ним относятся фены, плойки и прочие устройства.

Приборы для глажения. Это и утюги и отпариватели одежды, гладильные машины.

К приборам для обогрева можно отнести медицинские грелки, электроодеяла, и другие подобные приспособления.

И последний вид – электронагревательные инструменты. К ним можно отнести паяльник, тепловую пушку.

Нагревательный элемент приборов может быть трёх видов: открытого типа, закрытого типа, герметизированный.

Помимо этого, мы познакомились с устройством электрической плитки и утюга.

Читайте также: