Источники звука в живой природе кратко

Обновлено: 05.07.2024

Атмосферная акустика изучает особенности распространения и слышимости звуков в атмосфере. Звуком называется колебательное движение частиц упругой среды с частотами от 16-20 до 20 000 Гц, воспринимаемыми нашим органом слуха. Вокруг источника звука возникает замкнутая волна, которая распространяется во все стороны. Отдельная звуковая волна представляет собой сжатие и последующие распространение воздуха, возникающие вследствие колебательных движений молекул газа вдоль пути распространения волны.

В природе существует целый ряд звуковых явлений , происхождение которых связано с метеорологическими и геофизическими процессами. Общеизвестно и наиболее изучено звуковое явление метеорологического происхождения - гром , который обычно сопровождает разряды молнии. Образование грома объясняется следующим. Вдоль пути разряда молнии возникает внезапное нагревание и вследствие этого сильное расширение воздуха, похожее на сильный взрыв. Это расширение и вызывает ударную волну, перемещающуюся в атмосфере и достигающую земной поверхности.


Обычно гром воспринимается не как отдельный резкий звук (это наблюдается редко), а как ряд последовательных ударов, так называемых раскатов , которые отличаются интенсивностью и продолжаются по несколько секунд, создавая непрерывный рокочущий звук. Продолжительность и раскаты грома зависят главным образом от длины и изломанности пути молнии. Резкие и короткие удары отмечаются в тех случаях, когда грозовой разряд происходит вблизи от наблюдателя, и в особенности при небольшой длине канала молнии (при ударе молнии в землю). Чем больше расстояние от наблюдателя до молнии, длиннее и извилистее ее траектория, тем более продолжительным и раскатистым оказывается гром. Это объясняется тем, что гром возникает по всей траектории молнии практически одновременно, но при большой протяженности канала молнии звук от различных точек ее доходит до наблюдателя не одновременно и при том с неодинаковой интенсивностью. Кроме того, по одному каналу молнии проходит несколько последовательных разрядов и производимые ими звуки сливаются, увеличивают продолжительность, создают раскаты грома. Наконец, в образовании раскатов грома некоторую роль играет отражение звука (эхо) как от земной поверхности, так и от облаков и от поверхностей раздела воздушных масс.

Несмотря на большую силу источника звука, дальность слышимости грома редко превышает 20-25 км. Происходит это потому, что, во-первых, гром возникает при всем извилистом пути молнии и его энергия рассеивается по этому пути; во-вторых, гром всегда возникает при метеорологических условиях, неблагоприятных для слышимости.

По промежутку времени между вспышкой молнии и громом можно определить расстояние от наблюдателя до места удара молнии. Для этого следует этот промежуток времени умножить на среднюю скорость звука, равную 332 м/с.

Звуковые явления, такие, как вой ветра , гудение проводов , шум леса , шелест ивы и другие, объясняются следующим образом. При обтекании воздушным потоком твердых предметов около каждого из них возникают завихрения воздуха. Если срыв вихрей с препятствий происходит с частотой, воспринимаемой ухом (что имеет место при большой скорости ветра), то возникает звуковая волна. Чем больше скорость ветра, тем выше тон образующегося звука. А так как ветер дует обычно порывами, то создается большое число различных звуков.

При обтекании воздухом проводов тон звука зависит еще и от диаметра колеблющего провода, а сила звука - от степени натяжения его. Особенно сильно гудение проводов наблюдается зимой при сильных морозах, когда провода, охлаждаясь, укорачиваются и сильнее натягиваются.

Звуки, которые возникают при падении капель дождя и градин на предметы или почву , при перемещении снежинок по снежным полям, при движении песчаных масс , вызываются соударениями отдельных частиц и колебаниями той поверхности, на которую они падают или вдоль которой происходит их перемещение.

Скрип снега при значительных морозах объясняется тем, что снежинки под давлением ноги человека, полозьев саней или колес машины не плавятся, как при более высоких температурах, а разламываются и перемещаются. И чем ниже температура, тем сильнее скрипит снег.

Распространение звуковых волн (скорость и направление) определяются свойствами и состоянием среды, в которой распространяется звук. Атмосфера является акустически неоднородной средой, поэтому акустические волны, т.е звук, испытывают в ней ослабление, отражение и преломление, причем все эти процессы тесно связаны с ее физическими состоянием. Поэтому изучение особенностей распространения звука в атмосфере имеет практическое значение как один из косвенных методов исследования ее свойств для звуковой сигнализации и определения ее местонахождения источника звука (звуковой разведки).

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Источники звука в живой природе Работу выполнил Ученик 11 класса Барилов Вита.

Описание презентации по отдельным слайдам:

Источники звука в живой природе Работу выполнил Ученик 11 класса Барилов Вита.

Источники звука в живой природе Работу выполнил Ученик 11 класса Барилов Виталий Руководитель Учитель физики Дреев Н.Ф.

Что такое звук? Звук — это механическое явление. Звук может распространяться.

Что такое звук? Звук — это механическое явление. Звук может распространяться только в какой-нибудь среде, например в воздухе, воде, железе. Распространяется звук в виде волн. От источника звука в среде возникают сгущения и разряжения.

Если звук — это волна, распространяющаяся в воздухе, то он должен возникать в.

Если звук — это волна, распространяющаяся в воздухе, то он должен возникать всякий раз, когда частицы воздуха приходят в колебательное движение. Размахивание руками, например, тоже должно было бы вызвать звук: ведь машущие руки заставляют частицы колебаться. Известно, однако, что размахивание руками не воспринимается ухом как звук, хотя волна при этом возникает. Объясняется это тем, что ощущение звука создается только при определенных частотах колебаний в волне. Опыт показывает, что для органа слуха человека звуковыми являются только такие волны, в которых колебания происходят с частотами от 20 до 20 000 Гц. Размахивать руками 20 и более раз в секунду никто не может!

Громкость звука Звуки бывают громкими и тихими. Громкость, определяемая разма.

Громкость звука Звуки бывают громкими и тихими. Громкость, определяемая размахом колебаний источника звука, измеряется в децибелах (дБ). Единица громкости названа в честь изобретателя телефона А. Белла. Самый слабый звук, который мы слышим, — 10 дБ (с таким звуком падает с дерева лист). Если вы шепчете, это 30 дБ, если кричите — 70 дБ, раскаты грома — 100 дБ. Шумы свыше 130 дБ вызывают болезненные ощущения в ушах и головокружение, потому что звуки в ушах преобразуются в нервные импульсы и по слуховому нерву передаются в мозг. Вот почему от громкой музыки на дискотеке может заболеть голова.

Пчела

Как же пчела издаёт звуки? Крылья пчел работают с очень высокой скоростью взм.

Как же пчела издаёт звуки? Крылья пчел работают с очень высокой скоростью взмахов, при этом создается такой характерный жужжащий звук, напоминающий звук работающего пропеллера. Так быстро крылья раздвигают окружающий их воздух. Считается, что скорость полета пчелы в среднем равна 25-30 километров час, хотя некоторые источники утверждают, что налегке и при попутном ветре пчела может удвоить свою скорость и лететь со скоростью 60 километров час. Чтобы достичь такой высокой скорости передвижения пчеле приходится делать не менее 200 взмахов крыльями в секунду, а иногда и все 250 взмахов. скорость очень большая и неудивительно, что при полете пчелы издают громкий звук.

У пчел две пары крылышек – передние и задние. По своему строению, они двуслой.

У пчел две пары крылышек – передние и задние. По своему строению, они двуслойные, тонкие и ровные. Крылья совершают движения разной направленности – могут двигаться поперек или вдоль своей оси, и даже вращаться вокруг оси. Эти особенности и используют насекомые для того, чтобы издавать различные по спектру звуки и передавать нужную информацию.

Кузнечик

Стрекочут у кузнечиков в основном самцы,но у некоторых видов и самки."стрекот.

Стрекочут у кузнечиков в основном самцы,но у некоторых видов и самки."стрекоталка" у кузнечика состоит из двух частей,расположенных на надкрылках.На правом расположено зеркальце выполняющее роль резонатора - тонкая округлая полупрозрачная перепонка окруженная толстой жилкой-рамкой. На левом надкрылке точно такое зеркальце,но плотное и непрозрачное ,окруженное так же толстой жилкой,но с зубчиками,она выполняет роль смычка.Частота звука у каждого вида своя (от 3,6 до 4 кГц). В момент опасности кузнечики стрекот прекращают.

Лягушка

Для звукоизвлечения лягушки используют свой собственный метод. Особенностью с.

Дельфины

Как и у всех прочих млекопитающих, у предков дельфинов голосовой аппарат, ско.

Как и у всех прочих млекопитающих, у предков дельфинов голосовой аппарат, скорее всего, был связан с дыхательной системой. Но у дельфинов и их родственников голосовая система не связана с легкими. Рот у них служит лишь для захвата предметов, включая пищу. Дыхательная система дельфинов сложная, точка вдоха и выдоха — это дыхало, которое находится в верхней точке головы. С дыхательным проходом дельфинов соединены сразу три пары воздушных мешков. Ученые считают, что эти мешки играют важную роль в генерации звуков дельфинами. Общаются они, закрыв пасть и дыхало, под водой, а не на поверхности.

Птицы

Источник звука у птиц Птицы воистину самые виртуозные музыканты из всех живот.

Источник звука у птиц Птицы воистину самые виртуозные музыканты из всех животных. И одной из причин, является то, что они обладают весьма оригинально устроенным "музыкальным инструментом". Как и у человека, голосовой аппарат птиц принадлежит к духовым "музыкальным инструментам", то есть звук в нем образуются за счет движения воздуха, выдыхаемого из легких. При этом воздушная струя вызывает колебание упругих перепонок, которые и рождают звуковые волны, У человека такими перепонками являются голосовые связки, расположенные в гортани. Высота голоса определяется степенью мышечного натяжения голосовых связок: чем сильнее напряжение, тем выше звук. Сила голоса зависит от плотности смыкания этих связок и воздушного давления в легких: чем плотнее смыкание и выше давление, тем сильнее и громче звук.

Презентация: Источники звука в живой природе

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.

Аннотация к презентации

Посмотреть и скачать бесплатно презентацию по теме "Источники звука в живой природе", состоящую из 21 слайда. Размер файла 4.68 Мб. Средняя оценка: 2.3 балла из 5. Для студентов. Каталог презентаций, школьных уроков, студентов, а также для детей и их родителей.

Содержание

Презентация: Источники звука в живой природе


Слайд 2


Слайд 3

Введение Человек живёт в мире звуков. Звук для человека является источником информации. Он предостерегает людей об опасности. Звук в виде музыки, пения птиц доставляет нам наслаждение. Мы с удовольствием слушаем человека с приятным голосом. Звуки важны не только для человека, но и для животных, которым хорошее улавливание звука помогает выжить.


Слайд 4

Что такое звук ? Звук — это механическое явление. Звук может распространяться только в какой-нибудь среде, например в воздухе, воде, железе. Распространяется звук в виде волн. От источника звука в среде возникают сгущения и разряжения.


Слайд 5

Если звук — это волна, распространяющаяся в воздухе, то он должен возникать всякий раз, когда частицы воздуха приходят в колебательное движение. Размахивание руками, например, тоже должно было бы вызвать звук: ведь машущие руки заставляют частицы колебаться. Известно, однако, что размахивание руками не воспринимается ухом как звук, хотя волна при этом возникает. Объясняется это тем, что ощущение звука создается только при определенных частотах колебаний в волне. Опыт показывает, что для органа слуха человека звуковыми являются только такие волны, в которых колебания происходят с частотами от 20 до 20 000 Гц. Размахивать руками 20 и более раз в секунду никто не может!


Слайд 6

Громкость звука Звуки бывают громкими и тихими. Громкость, определяемая размахом колебаний источника звука, измеряется в децибелах (дБ). Единица громкости названа в честь изобретателя телефона А. Белла. А. Белла


Слайд 7

Самый слабый звук, который мы слышим, — 10 дБ (с таким звуком падает с дерева лист) Если вы шепчете, это 30 дБ, если кричите — 70 дБ раскаты грома — 100 дБ


Слайд 8

Шумы свыше 130 дБ вызывают болезненные ощущения в ушах и головокружение, потому что звуки в ушах преобразуются в нервные импульсы и по слуховому нерву передаются в мозг. Вот почему от громкой музыки на дискотеке может заболеть голова.


Слайд 9


Слайд 10

Как же пчела издаёт звуки? Крылья пчел работают с очень высокой скоростью взмахов, при этом создается такой характерный жужжащий звук, напоминающий звук работающего пропеллера. Так быстро крылья раздвигают окружающий их воздух. Считается, что скорость полета пчелы в среднем равна 25-30 километров час, хотя некоторые источники утверждают, что налегке и при попутном ветре пчела может удвоить свою скорость и лететь со скоростью 60 километров час. Чтобы достичь такой высокой скорости передвижения пчеле приходится делать не менее 200 взмахов крыльями в секунду, а иногда и все 250 взмахов. скорость очень большая и неудивительно, что при полете пчелы издают громкий звук.


Слайд 11

У пчел две пары крылышек – передние и задние. По своему строению, они двухслойные, тонкие и ровные. Крылья совершают движения разной направленности – могут двигаться поперек или вдоль своей оси, и даже вращаться вокруг оси. Эти особенности и используют насекомые для того, чтобы издавать различные по спектру звуки и передавать нужную информацию.


Слайд 12


Слайд 13

Стрекочут у кузнечиков в основном самцы , но у некоторых видов и самки."стрекоталки" у кузнечика состоит из двух частей ,расположеных на над крылках.На правом расположено зеркальце выполняющее роль резонатора - тонкая округлая полупрозрачная перепонка окруженная толстой жилкой-рамкой. На левом над крылке точно такое зеркальце , но плотное и непрозрачное ,окруженное так же толстой жилкой ,но с зубчиками , она выполняет роль смычка .Частота звука у каждого вида своя (от 3,6 до 4 кГц). В момент опасности кузнечики стрекот прекращают


Слайд 14


Слайд 15


Слайд 16


Слайд 17

Как и у всех прочих млекопитающих, у предков дельфинов голосовой аппарат, скорее всего, был связан с дыхательной системой. Но у дельфинов и их родственников голосовая система не связана с легкими. Рот у них служит лишь для захвата предметов, включая пищу. Дыхательная система дельфинов сложная, точка вдоха и выдоха — это дыхало, которое находится в верхней точке головы. С дыхательным проходом дельфинов соединены сразу три пары воздушных мешков. Ученые считают, что эти мешки играют важную роль в генерации звуков дельфинами. Общаются они, закрыв пасть и дыхало, под водой, а не на поверхности.


Слайд 18


Слайд 19

Источник звука у птиц Птицы воистину самые виртуозные музыканты из всех животных. И одной из причин, является то, что они обладают весьма оригинально устроенным "музыкальным инструментом". Как и у человека, голосовой аппарат птиц принадлежит к духовым "музыкальным инструментам", то есть звук в нем образуются за счет движения воздуха, выдыхаемого из легких. При этом воздушная струя вызывает колебание упругих перепонок, которые и рождают звуковые волны, У человека такими перепонками являются голосовые связки, расположенные в гортани. Высота голоса определяется степенью мышечного натяжения голосовых связок: чем сильнее напряжение, тем выше звук. Сила голоса зависит от плотности смыкания этих связок и воздушного давления в легких: чем плотнее смыкание и выше давление, тем сильнее и громче звук.


Слайд 20


Слайд 21

Любое тело, колеблющееся со звуковой частотой, является источником звука , так как в окружающей среде возникают распространяющиеся от него волны .

Любое тело, колеблющееся со звуковой частотой, является источником звука, так как в окружающей среде возникают распространяющиеся от него волны.

Существуют как естественные, так и искусственные источ­ники звука. Один из искусственных источников звука, камер­тон, был изобретен в 1711 г. английским музыкан­том Дж. Шором для настройки музыкальных инструментов.

Камертон представляет собой изогнутый (в виде двух ветвей) металлический стержень с держателем посередине. Ударив резиновым молоточком по одной из ветвей камертона, мы услышим определенный звук. Ветви камертона начинают вибрировать, создавая вокруг себя попеременные сжатия и разрежения воздуха (рис. а). Распространяясь по воздуху, эти возмущения образуют звуковую волну.

Звук звуковые волны Источники звука

Стандартная частота колебаний камертона — 440 Гц. Это означает, что за 1 с его ветви совершают 440 колебаний. На глаз они незаметны. Если, однако, прикоснуться к звучащему камертону рукой, то можно почувствовать его вибрацию. Для определения характера колебаний камертона к одной из его ветвей следует прикрепить иглу. Заставив камертон звучать, проведем соединенной с ним иглой по поверхности закопченной стеклянной пластинки. На пластинке появится след в форме синусоиды.

Звук звуковые волны Источники звука

Для усиления звука, создаваемого камертоном, его держатель укрепляют на деревянном ящи­ке, открытом с одной стороны (см. рис. б). Этот ящик называют резонатором. При коле­баниях камертона вибрация ящика передается находящемуся в нем воздуху. Из-за резонанса, возникающего при правильно подобранных размерах ящика, амплитуда вынужденных колебаний воздуха возрастает, и звук усиливается. Его усилению способствует и увеличение площади излучающей поверхности, которое имеет место при соединении камертона с ящиком.

Нечто подобное происходит и в таких музыкальных инструментах, как гитара, скрипка. Сами по себе струны этих инструментов создают слабый звук. Громким он становится благодаря наличию у них корпуса определенной формы с отверстием, через которое могут выходить звуковые волны.

Источниками звука могут быть не только колеблющиеся твердые тела, но и некоторые явления, вызывающие колебания давления в окружающей среде (взрывы, полет пуль, завывания ветра и т. д.). Наиболее ярким примером подобных явлений является молния. Во время грозы темпера­тура в канале молнии увеличивается до 30 000 °С. Давление резко возрастает, и в воздухе возни­кает ударная волна, постепенно переходящая в звуковые колебания (с типичной частотой 60 Гц), распространяющиеся в виде раскатов грома.

Интересным источником звука является дисковая сирена, изобретенная немецким физиком Т. Зеебеком (1770-1831). Она представляет собой соединенный с электродвигателем диск с отверстиями, расположенными перед сильной струей воздуха. При вращении диска поток воздуха, проходящего через отверстия, периодически прерывается, в результате чего возникает резкий характерный звук. Частота этого звука определяется по формуле v = nk, где n — частота вращения диска, k — число отверстий в нем.

Используя сирену с несколькими рядами отверстий и регулируемой частотой вращения диска, можно получить звуки разной частоты. Частотный диапазон сирен, применяемых на практике, составляет обычно от 200 Гц до 100 кГц и выше.

Свое название эти источники звука получили по имени полуптиц-полуженщин, которые, согласно древнегреческим мифам, завлекали своим пением мореходов на кораблях, и те разбивались о прибрежные скалы.

Читайте также: